RESUMO
Relaxases play essential roles in conjugation, the main process by which bacteria exchange genetic material, notably antibiotic resistance genes. They are bifunctional enzymes containing a trans-esterase activity, which is responsible for nicking the DNA strand to be transferred and for covalent attachment to the resulting 5'-phosphate end, and a helicase activity, which is responsible for unwinding the DNA while it is being transported to a recipient cell. Here we show that these two activities are carried out by two conformers that can both load simultaneously on the origin of transfer DNA. We solve the structure of one of these conformers by cryo electron microscopy to near-atomic resolution, elucidating the molecular basis of helicase function by relaxases and revealing insights into the mechanistic events taking place in the cell prior to substrate transport during conjugation.
Assuntos
Conjugação Genética , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/genética , Microscopia Crioeletrônica , DNA Helicases/química , DNA Bacteriano/química , DNA Bacteriano/ultraestrutura , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Modelos MolecularesRESUMO
Type IV secretion systems (T4SSs) are large multisubunit translocons, found in both gram-negative and gram-positive bacteria and in some archaea. These systems transport a diverse array of substrates from DNA and protein-DNA complexes to proteins, and play fundamental roles in both bacterial pathogenesis and bacterial adaptation to the cellular milieu in which bacteria live. This review describes the various biochemical and structural advances made toward understanding the biogenesis, architecture, and function of T4SSs.
Assuntos
Bactérias/metabolismo , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/ultraestrutura , Bactérias/química , Bactérias/classificação , Fator F/genética , Microscopia EletrônicaRESUMO
Conjugative type IV secretion systems (T4SS) mediate bacterial conjugation, a process that enables the unidirectional exchange of genetic materials between a donor and a recipient bacterial cell. Bacterial conjugation is the primary means by which antibiotic resistance genes spread among bacterial populations (Barlow 2009; Virolle et al, 2020). Conjugative T4SSs form pili: long extracellular filaments that connect with recipient cells. Previously, we solved the cryo-electron microscopy (cryo-EM) structure of a conjugative T4SS. In this article, based on additional data, we present a more complete T4SS cryo-EM structure than that published earlier. Novel structural features include details of the mismatch symmetry within the OMCC, the presence of a fourth VirB8 subunit in the asymmetric unit of both the arches and the inner membrane complex (IMC), and a hydrophobic VirB5 tip in the distal end of the stalk. Additionally, we provide previously undescribed structural insights into the protein VirB10 and identify a novel regulation mechanism of T4SS-mediated pilus biogenesis by this protein, that we believe is a key checkpoint for this process.
Assuntos
Microscopia Crioeletrônica , Fímbrias Bacterianas , Sistemas de Secreção Tipo IV , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Fímbrias Bacterianas/genética , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/química , Modelos Moleculares , Conjugação Genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Escherichia coli/metabolismo , Escherichia coli/genética , Conformação ProteicaRESUMO
The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.
Assuntos
Proteínas de Bactérias , Bartonella , Sistemas de Secreção Tipo IV , Bartonella/metabolismo , Bartonella/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Transporte Proteico , AnimaisRESUMO
CRISPR-associated (Cas) endonucleases and their derivatives are widespread tools for the targeted genetic modification of both prokaryotic and eukaryotic genomes. A critical step of all CRISPR-Cas technologies is the delivery of the Cas endonuclease to the target cell. Here, we investigate the possibility of using bacterial conjugation to translocate Cas proteins into recipient bacteria. Conjugative relaxases are translocated through a type IV secretion system into the recipient cell, covalently attached to the transferred DNA strand. We fused relaxase R388-TrwC with the endonuclease Cas12a and confirmed that it can be transported through a T4SS. The fusion protein maintained its activity upon translocation by conjugation into the recipient cell, as evidenced by the induction of the SOS signal resulting from DNA breaks produced by the endonuclease in the recipient cell, and the detection of mutations at the target position. We further show how a template DNA provided on the transferred DNA can be used to introduce specific mutations. The guide RNA can also be encoded by the transferred DNA, enabling its production in the recipient cells where it can form a complex with the Cas nuclease transferred as a protein. This self-contained setup enables to target wild-type bacterial cells. Finally, we extended this strategy to the delivery of relaxases fused to base editors. Using TrwC and MobA relaxases as drivers, we achieved precise editing of transconjugants. Thus, conjugation provides a delivery system for Cas-derived editing tools, bypassing the need to deliver and express a cas gene in the target cells.
Assuntos
Sistemas CRISPR-Cas , Conjugação Genética , Sistemas de Secreção Tipo IV , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genéticaRESUMO
Many bacteria kill rival species by translocating toxic effectors into target cells. Effectors are often encoded along with cognate immunity proteins that could (i) protect against "friendly-fire" (trans-intoxication) from neighboring sister cells and/or (ii) protect against internal cis-intoxication (suicide). Here, we distinguish between these two mechanisms in the case of the bactericidal Xanthomonas citri Type IV Secretion System (X-T4SS). We use a set of X. citri mutants lacking multiple effector/immunity protein (X-Tfe/X-Tfi) pairs to show that X-Tfis are not absolutely required to protect against trans-intoxication by wild-type cells. Our investigation then focused on the in vivo function of the lysozyme-like effector X-TfeXAC2609 and its cognate immunity protein X-TfiXAC2610. In the absence of X-TfiXAC2610, we observe X-TfeXAC2609-dependent and X-T4SS-independent accumulation of damage in the X. citri cell envelope, cell death, and inhibition of biofilm formation. While immunity proteins in other systems have been shown to protect against attacks by sister cells (trans-intoxication), this is an example of an antibacterial secretion system in which the immunity proteins are dedicated to protecting cells against cis-intoxication.
Assuntos
Proteínas de Bactérias , Xanthomonas , Humanos , Proteínas de Bactérias/metabolismo , Xanthomonas/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Antibacterianos/metabolismoRESUMO
Eukaryotes have cytosolic surveillance systems to detect invading microorganisms and initiate protective immune responses. In turn, host-adapted pathogens have evolved strategies to modulate these surveillance systems, which can promote dissemination and persistence in the host. The obligate intracellular pathogen Coxiella burnetii infects mammalian hosts without activating many innate immune sensors. The Defect in Organelle Trafficking/Intracellular Multiplication (Dot/Icm) protein secretion system is necessary for C. burnetii to establish a vacuolar niche inside of host cells, which sequesters these bacteria in a specialized organelle that could evade host surveillance systems. However, bacterial secretion systems often introduce agonists of immune sensors into the host cytosol during infection. For instance, nucleic acids are introduced to the host cytosol by the Dot/Icm system of Legionella pneumophila, which results in type I interferon production. Despite host infection requiring a homologous Dot/Icm system, C. burnetii does not induce type I interferon production during infection. Here, it was found that type I interferons are detrimental to C. burnetii infection and that C. burnetii blocks type I interferon production mediated by retionic acid inducible gene I (RIG-I) signaling. Two Dot/Icm effector proteins, EmcA and EmcB, are required for C. burnetii inhibition of RIG-I signaling. EmcB is sufficient to block RIG-I signaling and is a ubiquitin-specific cysteine protease capable of deconjugating ubiquitin chains from RIG-I that are necessary for signaling. EmcB preferentially cleaves K63-linked ubiquitin chains of three or more monomers, which represent ubiquitin chains that potently activate RIG-I signaling. Identification of a deubiquitinase encoded by C. burnetii provides insights into how a host-adapted pathogen antagonizes immune surveillance.
Assuntos
Coxiella burnetii , Animais , Coxiella burnetii/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Enzimas Desubiquitinantes/metabolismo , Ubiquitinas/metabolismo , Interações Hospedeiro-Patógeno/genética , Mamíferos/metabolismoRESUMO
Peptidoglycan is a critical component of the bacteria cell envelope. Remodeling of the peptidoglycan is required for numerous essential cellular processes and has been linked to bacterial pathogenesis. Peptidoglycan deacetylases that remove the acetyl group of the N-acetylglucosamine (NAG) subunit protect bacterial pathogens from immune recognition and digestive enzymes secreted at the site of infection. However, the full extent of this modification on bacterial physiology and pathogenesis is not known. Here, we identify a polysaccharide deacetylase of the intracellular bacterial pathogen Legionella pneumophila and define a two-tiered role for this enzyme in Legionella pathogenesis. First, NAG deacetylation is important for the proper localization and function of the Type IVb secretion system, linking peptidoglycan editing to the modulation of host cellular processes through the action of secreted virulence factors. As a consequence, the Legionella vacuole mis-traffics along the endocytic pathway to the lysosome, preventing the formation of a replication permissive compartment. Second, within the lysosome, the inability to deacetylate the peptidoglycan renders the bacteria more sensitive to lysozyme-mediated degradation, resulting in increased bacterial death. Thus, the ability to deacetylate NAG is important for bacteria to persist within host cells and in turn, Legionella virulence. Collectively, these results expand the function of peptidoglycan deacetylases in bacteria, linking peptidoglycan editing, Type IV secretion, and the intracellular fate of a bacterial pathogen.
Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Legionella pneumophila/metabolismo , Peptidoglicano/metabolismo , Vacúolos/metabolismo , Legionella/metabolismo , Lisossomos/metabolismo , Proteínas de Bactérias/metabolismo , Doença dos Legionários/microbiologiaRESUMO
Remodeling of host cellular membrane transport pathways is a common pathogenic trait of many intracellular microbes that is essential to their intravacuolar life cycle and proliferation. The bacterium Brucella abortus generates a host endoplasmic reticulum-derived vacuole (rBCV) that supports its intracellular growth, via VirB Type IV secretion system-mediated delivery of effector proteins, whose functions and mode of action are mostly unknown. Here, we show that the effector BspF specifically promotes Brucella replication within rBCVs by interfering with vesicular transport between the trans-Golgi network (TGN) and recycling endocytic compartment. BspF targeted the recycling endosome, inhibited retrograde traffic to the TGN, and interacted with the Arf6 GTPase-activating Protein (GAP) ACAP1 to dysregulate Arf6-/Rab8a-dependent transport within the recycling endosome, which resulted in accretion of TGN-associated vesicles by rBCVs and enhanced bacterial growth. Altogether, these findings provide mechanistic insight into bacterial modulation of membrane transport used to promote their own proliferation within intracellular vacuoles.
Assuntos
Fator 6 de Ribosilação do ADP/metabolismo , Brucella abortus/fisiologia , Brucelose/metabolismo , Brucelose/microbiologia , Interações Hospedeiro-Patógeno , Vacúolos/microbiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Brucelose/imunologia , Endossomos/metabolismo , Endossomos/microbiologia , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Modelos Biológicos , Ligação Proteica , Transporte Proteico , Sistemas de Secreção Tipo IV , Rede trans-GolgiRESUMO
Coxiella burnetii is a bacterial pathogen that replicates within host cells by establishing a membrane-bound niche called the Coxiella-containing vacuole. Biogenesis of this compartment requires effectors of its Dot/Icm type IV secretion system. A large cohort of such effectors has been identified, but the function of most of them remain elusive. Here, by a cell-based functional screening, we identified the effector Cbu0513 (designated as CinF) as an inhibitor of NF-κB signaling. CinF is highly similar to a fructose-1,6-bisphosphate (FBP) aldolase/phosphatase present in diverse bacteria. Further study reveals that unlike its ortholog from Sulfolobus tokodaii, CinF does not exhibit FBP phosphatase activity. Instead, it functions as a protein phosphatase that specifically dephosphorylates and stabilizes IκBα. The IκBα phosphatase activity is essential for the role of CinF in C. burnetii virulence. Our results establish that C. burnetii utilizes a protein adapted from sugar metabolism to subvert host immunity.
Assuntos
Proteínas de Bactérias , Coxiella burnetii , Fosfoproteínas Fosfatases , Febre Q , Transdução de Sinais , Fatores de Virulência , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Chlorocebus aethiops , Coxiella burnetii/genética , Coxiella burnetii/imunologia , Coxiella burnetii/patogenicidade , Células HEK293 , Células HeLa , Humanos , NF-kappa B/genética , NF-kappa B/imunologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/imunologia , Febre Q/genética , Febre Q/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Vero , Fatores de Virulência/genética , Fatores de Virulência/imunologiaRESUMO
Many soil-, water-, and plant-associated bacterial species from the orders Xanthomonadales, Burkholderales, and Neisseriales carry a type IV secretion system (T4SS) specialized in translocating effector proteins into other gram-negative species, leading to target cell death. These effectors, known as X-Tfes, carry a carboxyl-terminal domain of â¼120 residues, termed XVIPCD, characterized by several conserved motifs and a glutamine-rich tail. Previous studies showed that the XVIPCD is required for interaction with the T4SS coupling protein VirD4 and for T4SS-dependent translocation. However, the structural basis of the XVIPCD-VirD4 interaction is unknown. Here, we show that the XVIPCD interacts with the central all-alpha domain of VirD4 (VirD4AAD). We used solution NMR spectroscopy to solve the structure of the XVIPCD of X-TfeXAC2609 from Xanthomonas citri and to map its interaction surface with VirD4AAD Isothermal titration calorimetry and in vivo Xanthomonas citri versus Escherichia coli competition assays using wild-type and mutant X-TfeXAC2609 and X-TfeXAC3634 indicate that XVIPCDs can be divided into two regions with distinct functions: the well-folded N-terminal region contains specific conserved motifs that are responsible for interactions with VirD4AAD, while both N- and carboxyl-terminal regions are required for effective X-Tfe translocation into the target cell. The conformational stability of the N-terminal region is reduced at and below pH 7.0, a property that may facilitate X-Tfe unfolding and translocation through the more acidic environment of the periplasm.
Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Escherichia coli/química , Sistemas de Secreção Tipo IV/antagonistas & inibidores , Sistemas de Secreção Tipo IV/química , Xanthomonas/química , Proteínas de Bactérias/genética , Escherichia coli/genética , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Relação Estrutura-Atividade , Sistemas de Secreção Tipo IV/genética , Xanthomonas/genéticaRESUMO
The Legionella pneumophila effector MavC induces ubiquitination of the E2 ubiquitin-conjugating enzyme UBE2N by transglutamination, thereby abolishing its function in the synthesis of K63 -type polyubiquitin chains. The inhibition of UBE2N activity creates a conundrum because this E2 enzyme is important in multiple signaling pathways, including some that are important for intracellular L. pneumophila replication. Here, we show that prolonged inhibition of UBE2N activity by MavC restricts intracellular bacterial replication and that the activity of UBE2N is restored by MvcA, an ortholog of MavC (50% identity) with ubiquitin deamidase activity. MvcA functions to deubiquitinate UBE2N-Ub using the same catalytic triad required for its deamidase activity. Structural analysis of the MvcA-UBE2N-Ub complex reveals a crucial role of the insertion domain in MvcA in substrate recognition. Our study establishes a deubiquitination mechanism catalyzed by a deamidase, which, together with MavC, imposes temporal regulation of the activity of UBE2N during L. pneumophila infection.
Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/fisiologia , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Proteínas de Bactérias/genética , Células HEK293 , Humanos , Legionella pneumophila/enzimologia , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Poliubiquitina/metabolismo , Sistemas de Secreção Tipo IV , Enzimas de Conjugação de Ubiquitina/genética , UbiquitinaçãoRESUMO
We here describe the structure-based design of small molecule inhibitors of the type IV secretion system of Helicobacter pylori. The secretion system is encoded by theâ¯cagâ¯pathogenicity island, and we chose Cagα, a hexameric ATPase and member of the family of VirB11-like proteins, as target for inhibitor design. We first solved the crystal structure of Cagα in a complex with the previously identified small molecule inhibitor 1G2. The molecule binds at the interface between two Cagα subunits and mutagenesis of the binding site identified Cagα residues F39 and R73 as critical for 1G2 binding. Based on the inhibitor binding site we synthesized 98 small molecule derivates of 1G2 to improve binding of the inhibitor. We used the production of interleukin-8 of gastric cancer cells during H. pylori infection to screen the potency of inhibitors and we identified five molecules (1G2_1313, 1G2_1338, 1G2_2886, 1G2_2889, and 1G2_2902) that have similar or higher potency than 1G2. Differential scanning fluorimetry suggested that these five molecules bind Cagα, and enzyme assays demonstrated that some are more potent ATPase inhibitors than 1G2. Finally, scanning electron microscopy revealed that 1G2 and its derivatives inhibit the assembly of T4SS-determined extracellular pili suggesting a mechanism for their anti-virulence effect.
Assuntos
Adenosina Trifosfatases , Proteínas de Bactérias , Helicobacter pylori , Helicobacter pylori/enzimologia , Humanos , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/antagonistas & inibidores , Desenho de Fármacos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Modelos Moleculares , Sítios de Ligação , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Interleucina-8/metabolismoRESUMO
Antimicrobial resistance (AMR) has been recognized as an important health crisis in the twenty first century. Type IV secretion systems (T4SSs) play key roles in the dissemination of AMR plasmids. Novel strategies that combat AMR problem by targeting T4SS sprung up in recent years. Here, we focus on the strategy of male-specific phages that could target and kill bacteria carrying conjugative AMR plasmids encoding T4SSs. We reviewed the recent advances in male-specific phages, including anti-conjugation mechanisms, clinical isolation and identification methods, classification and characteristics, in vitro and in vivo anti-conjugation efficacy and improving strategies. Male-specific phages constitute exciting candidates for developing sustainable anti-resistance biocontrol applications.
RESUMO
Porphyromonas gingivalis is a nonmotile, obligate anaerobic, Gram-negative bacterium known for its association with periodontal disease and its involvement in systemic diseases such as atherosclerosis, cardiovascular disease, colon cancer, and Alzheimer's disease. This bacterium produces several virulence factors, including capsules, fimbriae, lipopolysaccharides, proteolytic enzymes, and hemagglutinins. A comparative genomic analysis revealed the open pangenome of P. gingivalis and identified complete type IV secretion systems in strain KCOM2805 and almost complete type VI secretion systems in strains KCOM2798 and ATCC49417, which is a new discovery as previous studies did not find the proteins involved in secretion systems IV and VI. Conservation of some virulence factors between different strains was observed, regardless of their genetic diversity and origin. In addition, we performed for the first time a reconstruction analysis of the gene regulatory network, identifying transcription factors and proteins involved in the regulatory mechanisms of bacterial pathogenesis. In particular, QseB regulates the expression of hemagglutinin and arginine deaminase, while Rex may suppress the release of gingipain through interactions with PorV and the formatum/nitrate transporter. Our study highlights the central role of conserved virulence factors and regulatory pathways, particularly QseB and Rex, in P. gingivalis and provides insights into potential therapeutic targets.
Assuntos
Redes Reguladoras de Genes , Genoma Bacteriano , Redes e Vias Metabólicas , Porphyromonas gingivalis , Fatores de Virulência , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidade , Fatores de Virulência/genética , Redes e Vias Metabólicas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Regulação Bacteriana da Expressão GênicaRESUMO
Infection with obligatory intracellular bacteria is difficult to treat, as intracellular targets and delivery methods of therapeutics are not well known. Ehrlichia translocated factor-1 (Etf-1), a type IV secretion system (T4SS) effector, is a primary virulence factor for an obligatory intracellular bacterium, Ehrlichia chaffeensis In this study, we developed Etf-1-specific nanobodies (Nbs) by immunizing a llama to determine if intracellular Nbs block Etf-1 functions and Ehrlichia infection. Of 24 distinct anti-Etf-1 Nbs, NbD7 blocked mitochondrial localization of Etf-1-GFP in cotransfected cells. NbD7 and control Nb (NbD3) bound to different regions of Etf-1. Size-exclusion chromatography showed that the NbD7 and Etf-1 complex was more stable than the NbD3 and Etf-1 complex. Intracellular expression of NbD7 inhibited three activities of Etf-1 and E. chaffeensis: up-regulation of mitochondrial manganese superoxide dismutase, reduction of intracellular reactive oxygen species, and inhibition of cellular apoptosis. Consequently, intracellular NbD7 inhibited Ehrlichia infection, whereas NbD3 did not. To safely and effectively deliver Nbs into the host cell cytoplasm, NbD7 was conjugated to cyclized cell-permeable peptide 12 (CPP12-NbD7). CPP12-NbD7 effectively entered mammalian cells and abrogated the blockade of cellular apoptosis caused by E. chaffeensis and inhibited infection by E. chaffeensis in cell culture and in a severe combined-immunodeficiency mouse model. Our results demonstrate the development of an Nb that interferes with T4SS effector functions and intracellular pathogen infection, along with an intracellular delivery method for this Nb. This strategy should overcome current barriers to advance mechanistic research and develop therapies complementary or alternative to the current broad-spectrum antibiotic.
Assuntos
Ehrlichia chaffeensis/efeitos dos fármacos , Ehrlichiose/tratamento farmacológico , Anticorpos de Domínio Único/farmacologia , Sistemas de Secreção Tipo IV/genética , Animais , Apoptose/genética , Subpopulações de Linfócitos B/imunologia , Ehrlichia chaffeensis/genética , Ehrlichia chaffeensis/imunologia , Ehrlichia chaffeensis/patogenicidade , Ehrlichiose/genética , Ehrlichiose/imunologia , Ehrlichiose/patologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Anticorpos de Domínio Único/imunologia , Sistemas de Secreção Tipo IV/antagonistas & inibidores , Sistemas de Secreção Tipo IV/imunologia , Fatores de VirulênciaRESUMO
Ehrlichia chaffeensis infects human monocytes or macrophages and causes human monocytic ehrlichiosis (HME), an emerging life-threatening zoonosis. After internalization, E. chaffeensis resides in membrane-bound inclusions, E. chaffeensis-containing vesicles (ECVs), which have early endosome-like characteristics and fuse with early autophagosomes but not lysosomes, to evade host innate immune microbicidal mechanisms and obtain nutrients for bacterial intracellular growth. The mechanisms exploited by E. chaffeensis to modulate intracellular vesicle trafficking in host cells have not been comprehensively studied. Here, we demonstrate that E. chaffeensis type IV secretion system (T4SS) effector Etf-3 induces RAB15 upregulation in host cells and that RAB15, which is localized on ECVs, inhibits ECV fusion with lysosomes and induces autophagy. We found that E. chaffeensis infection upregulated RAB15 expression using qRT-PCR, and RAB15 was colocalized with E. chaffeensis using confocal microscopy. Silence of RAB15 using siRNA enhanced ECV maturation to late endosomes and fusion with lysosomes, as well as inhibited host cell autophagy. Overexpression of Etf-3 in host cells specifically induced RAB15 upregulation and autophagy. Our findings deepen the understanding of E. chaffeensis pathogenesis and adaptation in hosts as well as the function of RAB15 and facilitate the development of new therapeutics for HME.
Assuntos
Ehrlichia chaffeensis , Humanos , Regulação para Cima , Autofagossomos , Autofagia , Mecanismos de DefesaRESUMO
Conjugation is a major form of horizontal gene transfer, contributing to bacterial evolution and the acquisition of new traits. During conjugation, a donor cell transfers DNA to a recipient through a specialized DNA translocation channel classified as a type IV secretion system (T4SS). Here, we focused on the T4SS of ICEBs1, an integrative and conjugative element in Bacillus subtilis. ConE, encoded by ICEBs1, is a member of the VirB4 family of ATPases, the most conserved component of T4SSs. ConE is required for conjugation and localizes to the cell membrane, predominantly at the cell poles. In addition to Walker A and B boxes, VirB4 homologs have conserved ATPase motifs C, D, and E. Here, we created alanine substitutions in five conserved residues within or near ATPase motifs in ConE. Mutations in all five residues drastically decreased conjugation frequency but did not affect ConE protein levels or localization, indicating that an intact ATPase domain is critical for DNA transfer. Purified ConE is largely monomeric with some oligomers and lacks enzymatic activity, suggesting that ATP hydrolysis may be regulated or require special solution conditions. Finally, we investigated which ICEBs1 T4SS components interact with ConE using a bacterial two-hybrid assay. ConE interacts with itself, ConB, and ConQ, but these interactions are not required to stabilize ConE protein levels and largely do not depend on conserved residues within the ATPase motifs of ConE. The structure-function characterization of ConE provides more insight into this conserved component shared by all T4SSs. IMPORTANCE Conjugation is a major form of horizontal gene transfer and involves the transfer of DNA from one bacterium to another through the conjugation machinery. Conjugation contributes to bacterial evolution by disseminating genes involved in antibiotic resistance, metabolism, and virulence. Here, we characterized ConE, a protein component of the conjugation machinery of the conjugative element ICEBs1 of the bacterium Bacillus subtilis. We found that mutations in the conserved ATPase motifs of ConE disrupt mating but do not alter ConE localization, self-interaction, or levels. We also explored which conjugation proteins ConE interacts with and whether these interactions contribute to stabilizing ConE. Our work contributes to the understanding of the conjugative machinery of Gram-positive bacteria.
Assuntos
Bacillus subtilis , Conjugação Genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Elementos de DNA Transponíveis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transferência Genética HorizontalRESUMO
The majority of bacteria live and evolve in surface biofilms. Both growth in biofilms and horizontal transfer of DNA are regulated by quorum-sensing pheromone signals. The common regulation of bacterial surface growth and DNA transfers illustrates how physiology contributes to bacterial evolution.
RESUMO
Legionella pneumophila, a bacterial pathogen that causes a severe pneumonia known as Legionnaires' disease, extensively exploits the ubiquitin (Ub) pathway in the infected host cells through certain virulence effectors excreted by the Dot/Icm system. To date, several Dot/Icm effectors have been found to act as Ub ligases, and four effectors, including LotA, LotB, LotC, and Ceg7, have been identified as deubiquitinases (DUBs) from the ovarian tumor (OTU) domain family. LotA is unique among other OTU DUBs because it possesses two distinct DUB domains and exclusively exhibits catalytic activity against K6-linked diUb and polyUb chains. However, the structure of LotA and the molecular mechanism for the dual DUB activity remains elusive. In this study, we solved the structure of LotA in complex with proximally bound Ub and distal covalently bound Ub. Both Ub molecules are bound to the DUB1 domain and mimic a K6-linked diUb. Structural analysis reveals that the DUB1 domain utilizes a distinct mechanism for recognition of the K6-linked diUb within a large S1' binding site that is uncommon to OTU DUBs. Structural fold of the LotA DUB2 domain closely resembles LotB and LotC, similarly containing an extra α-helix lobe that has been demonstrated to play an important role in Ub binding. Collectively, our study uncovers the structural basis for the dual catalytic activity of the unique OTU family DUB LotA.