Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proteins ; 92(1): 76-95, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37646459

RESUMO

Cell invasion is an important process in cancer progression and recurrence. Invasion and implantation of cancer cells from their original place to other tissues, by disabling vital organs, challenges the treatment of cancer patients. Given the importance of the matter, many molecular treatments have been developed to inhibit cancer cell invasion. Because of their low production cost and ease of production, peptides are valuable therapeutic molecules for inhibiting cancer cell invasion. In recent years, advances in the field of computational biology have facilitated the design of anti-cancer peptides. In our investigation, using computational biology approaches such as evolutionary analysis, residue scanning, protein-peptide interaction analysis, molecular dynamics, and free energy analysis, our team designed a peptide library with about 100 000 candidates based on A6 (acetyl-KPSSPPEE-amino) sequence which is an anti-invasion peptide. During computational studies, two of the designed peptides that give the highest scores and showed the greatest sequence similarity to A6 were entered into the experimental analysis workflow for further analysis. In experimental analysis steps, the anti-metastatic potency and other therapeutic effects of designed peptides were evaluated using MTT assay, RT-qPCR, zymography analysis, and invasion assay. Our study disclosed that the IK1 (acetyl-RPSFPPEE-amino) peptide, like A6, has great potency to inhibit the invasion of cancer cells.


Assuntos
Receptores de Ativador de Plasminogênio Tipo Uroquinase , Ativador de Plasminogênio Tipo Uroquinase , Humanos , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico , Peptídeos/farmacologia , Invasividade Neoplásica
2.
J Hepatol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508241

RESUMO

BACKGROUND & AIMS: Hepatic stellate cells (HSCs) are the key drivers of fibrosis in metabolic dysfunction-associated steatohepatitis (MASH), the fastest growing cause of hepatocellular carcinoma (HCC) worldwide. HSCs are heterogenous, and a senescent subset of HSCs is implicated in hepatic fibrosis and HCC. Administration of anti-uPAR (urokinase-type plasminogen activator receptor) CAR T cells has been shown to deplete senescent HSCs and attenuate fibrosis in murine models. However, the comprehensive features of senescent HSCs in MASH, as well as their cellular ontogeny have not been characterized; hence, we aimed to comprehensively characterize and define the origin of HSCs in human and murine MASH. METHODS: To comprehensively characterize the phenotype and ontogeny of senescent HSCs in human and murine MASH, we integrated senescence-associated beta galactosidase activity with immunostaining, flow cytometry and single-nucleus RNA sequencing (snRNAseq). We integrated the immunohistochemical profile with a senescence score applied to snRNAseq data to characterize senescent HSCs and mapped the evolution of uPAR expression in MASH. RESULTS: Using pseudotime trajectory analysis, we establish that senescent HSCs arise from activated HSCs. While uPAR is expressed in MASH, the magnitude and cell-specificity of its expression evolve with disease stage. In early disease, uPAR is more specific to activated and senescent HSCs, while it is also expressed by myeloid-lineage cells, including Trem2+ macrophages and myeloid-derived suppressor cells, in late disease. Furthermore, we identify novel surface proteins expressed on senescent HSCs in human and murine MASH that could be exploited as therapeutic targets. CONCLUSIONS: These data define features of HSC senescence in human and murine MASH, establishing an important blueprint to target these cells as part of future antifibrotic therapies. IMPACT AND IMPLICATIONS: Hepatic stellate cells (HSCs) are the primary drivers of scarring in chronic liver diseases. As injury develops, a subset of HSCs become senescent; these cells are non-proliferative and pro-inflammatory, thereby contributing to worsening liver injury. Here we show that senescent HSCs are expanded in MASH (metabolic dysfunction-associated steatohepatitis) in humans and mice, and we trace their cellular origin from the activated HSC subset. We further characterize expression of uPAR (urokinase plasminogen activated receptor), a protein that marks senescent HSCs, and report that uPAR is also expressed by activated HSCs in early injury, and in immune cells as liver injury advances. We have integrated high-resolution single-nucleus RNA sequencing with immunostaining and flow cytometry to identify five other novel proteins expressed by senescent HSCs, including mannose receptor CD206, which will facilitate future therapeutic development.

3.
Cell Biol Int ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023281

RESUMO

Pulmonary fibrosis, a debilitating lung disorder characterised by excessive fibrous tissue accumulation in lung parenchyma, compromises respiratory function leading to a life-threatening respiratory failure. While its origins are multifaceted and poorly understood, the urokinase system, including urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plays a significant role in regulating fibrotic response, extracellular matrix remodelling, and tissue repair. Mesenchymal stem/stromal cells (MSCs) hold promise in regenerative medicine for treating pulmonary fibrosis. Our study aimed to investigate the potential of MSCs to inhibit pulmonary fibrosis as well as the contribution of uPAR expression to this effect. We found that intravenous MSC administration significantly reduced lung fibrosis in the bleomycin-induced pulmonary fibrosis model in mice as revealed by MRI and histological evaluations. Notably, administering the MSCs isolated from adipose tissue of uPAR knockout mice (Plaur-/- MSCs) attenuated lung fibrosis to a lesser extent as compared to WT MSCs. Collagen deposition, a hallmark of fibrosis, was markedly reduced in lungs treated with WT MSCs versus Plaur-/- MSCs. Along with that, endogenous uPA levels were affected differently; after Plaur-/- MSCs were administered, the uPA content was specifically decreased within the blood vessels. Our findings support the potential of MSC treatment in attenuating pulmonary fibrosis. We provide evidence that the observed anti-fibrotic effect depends on uPAR expression in MSCs, suggesting that uPAR might counteract the uPA accumulation in lungs.

4.
Mol Divers ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935305

RESUMO

The urokinase-type plasminogen activator receptor (uPAR) emerges as a key target for anti-metastasis owing to its pivotal role in facilitating the invasive and migratory processes of cancer cells. Recently, we identified the uPAR-targeting anti-metastatic ability of diltiazem (22), a commonly used antihypertensive agent. Fine-tuning the chemical structures of known hits represents a vital branch of drug development. To develop novel anti-metastatic drugs, we performed an interface-driven structural evolution strategy on 22. The uPAR-targeting and anti-cancer abilities of this antihypertensive drug wereidentified by us recently. Based on in silico strategy, including extensive molecular dynamics (MD) simulations, hierarchical binding free energy predictions, and ADMET profilings, we designed, synthesized, and identified three new diltiazem derivatives (221-8, 221-57, and 221-68) as uPAR inhibitors. Indeed, all of these three derivatives exhibited uPAR-depending inhibitory activity against PC-3 cell line invasion at micromolar level. Particularly, derivatives 221-68 and 221-8 showed enhanced uPAR-dependent inhibitory activity against the tumor cell invasion compared to the original compound. Microsecond timesclae MD simulations demonstrated the optimized moiety of 221-68 and 221-8 forming more comprehensive interactions with the uPAR, highlighting the reasonability of our strategy. This work introduces three novel uPAR inhibitors, which not only pave the way for the development of effective anti-metastatic therapeutics, but also emphasize the efficacy and robustness of an in silico-based lead compound optimization strategy in drug design.

5.
Eur J Pediatr ; 183(5): 2383-2389, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448612

RESUMO

Pediatric obesity and type 1 diabetes mellitus (T1DM) represent two common chronic diseases associated with chronic inflammation, endothelial dysfunction and long-term complications. The aim of the present study was to assess the possible diagnostic and prognostic value of soluble urokinase plasminogen activator receptor (suPAR), a marker of inflammation and impaired endothelial function, in children with the diseases. In this cross-sectional study, children and adolescents with T1DM (N = 41) or obesity (N = 37), aged < 18 years old, and without proteinuria were included, together with children of similar age and without evident morbidity that served as controls (N = 42). Serum samples were obtained during standard outpatient follow up and the urokinase-type plasminogen activator receptor (suPAR) concentrations were measured using a commercially available sandwich ELISA kit (DUP00, R&D systems). Clinical and biochemical indices that were also assessed include body mass index (BMI) z-score, Tanner stages, glycosylated haemoglobin (HbA1c), fasting lipid profile and serum creatinine. Mean serum suPAR levels were significantly higher in patients with obesity compared to patients with T1DM and controls, while children with T1DM had similar suPAR levels to controls. Also, serum suPAR levels showed a negative correlation with age (Spearman rho -0.359, p < 0.001) and serum creatinine levels (Spearman rho -0.334, p = 0.005), and a positive correlation with BMI z-score (Spearman rho 0.354, p = 0.009) in the whole cohort.  Conclusion: Serum suPAR may be a useful predictive marker of inflammation or endothelial dysfunction for children with obesity and T1DM, as well as a promising therapeutic target. Further studies are needed in order to clarify whether the reported differences in suPAR levels could reflect a greater impairment of the inflammation status and endothelial function in children with obesity compared to children with T1DM. What is Known: • Paediatric obesity and type 1 diabetes are characterised by chronic inflammation and metabolic dysregulation. • Urokinase plasminogen activator receptor (uPAR) has been proposed as a useful biomarker for chronic inflammation and cardiovascular risk in adults. What is New: • Serum suPAR levels were increased in children and adolescents with obesity compared to those with T1DM and healthy controls; thus, obesity may affect the inflammatory status and endothelial function to a higher degree than T1DM during childhood. • Serum suPAR may serve as a diagnostic and predictive marker of inflammation and endothelial dysfunction for children and adolescents with obesity and T1DM.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 1 , Endotélio Vascular , Obesidade Infantil , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Humanos , Estudos Transversais , Criança , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/fisiopatologia , Masculino , Biomarcadores/sangue , Feminino , Adolescente , Obesidade Infantil/sangue , Obesidade Infantil/complicações , Endotélio Vascular/fisiopatologia , Estudos de Casos e Controles , Pré-Escolar
6.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396677

RESUMO

Urokinase plasminogen activator receptor (uPAR) encoded by the PLAUR gene is known as a clinical marker for cell invasiveness in glioblastoma multiforme (GBM). It is additionally implicated in various processes, including angiogenesis and inflammation within the tumor microenvironment. However, there has not been a comprehensive study that depicts the overall functions and molecular cooperators of PLAUR with respect to intra-tumoral subtypes of GBM. Using single-cell RNA sequencing data from 37 GBM patients, we identified PLAUR as a marker gene for two distinct subtypes in GBM. One subtype is featured by inflammatory activities and the other subtype is marked by ECM remodeling processes. Using the whole-transcriptome data from single cells, we are able to uncover the molecular cooperators of PLAUR for both subtypes without presuming biological pathways. Two protein networks comprise the molecular context of PLAUR, with each of the two subtypes characterized by a different dominant network. We concluded that targeting PLAUR directly influences the mechanisms represented by these two protein networks, regardless of the subtype of the targeted cell.


Assuntos
Glioblastoma , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Humanos , Glioblastoma/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Microambiente Tumoral/genética , Análise da Expressão Gênica de Célula Única , Biomarcadores Tumorais
7.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891925

RESUMO

Stress exposure worsens allergic inflammatory diseases substantially. Mast cells (MCs) play a key role in peripheral immune responses to neuroendocrine stress mediators such as nerve growth factor (NGF) and substance P (SP). Mast cell proteases (MCPs) and cholinergic factors (Chrna7, SLURP1) were recently described to modulate MC stress response. We studied MCPs and Chrna7/SLURP1 and their interplay in a mouse model for noise induced stress (NiS) and atopic dermatitis-like allergic inflammation (AlD) and in cultured MC lacking Chrna7. We found that the cholinergic stress axis interacts with neuroendocrine stress mediators and stress-mediator cleaving enzymes in AlD. SP-cleaving mMCP4+ MC were upregulated in AlD and further upregulated by stress in NiS+AlD. Anti-NGF neutralizing antibody treatment blocked the stress-induced upregulation in vivo, and mMCP4+ MCs correlated with measures of AlD disease activity. Finally, high mMCP4 production in response to SP depended on Chrna7/SLURP1 in cultured MCs. In conclusion, mMCP4 and its upstream regulation by Chrna7/SLURP1 are interesting novel targets for the treatment of allergic inflammation and its aggravation by stress.


Assuntos
Dermatite Atópica , Modelos Animais de Doenças , Mastócitos , Pele , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Mastócitos/metabolismo , Mastócitos/imunologia , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Dermatite Atópica/imunologia , Camundongos , Pele/metabolismo , Pele/patologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Peptídeo Hidrolases/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Substância P/metabolismo , Estresse Fisiológico , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/metabolismo
8.
Mol Biol Rep ; 50(6): 4975-4982, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086298

RESUMO

BACKGROUND: The PLAUR gene encodes the urokinase-like plasminogen activator receptor (uPAR) and may undergo alternative splicing. Excluding cassette exons 3, 5 and 6 from the transcript results in truncated protein variants whose precise functions have not been elucidated yet. The PLAUR gene is one of several expressed in myeloid cells, where uPAR participates in different cellular processes, including the contact activation system and kallikrein-kinin system, which play an important role in hereditary angioedema (HAE) pathogenesis. A hypothesis about the PLAUR splicing pattern impact on HAE severity was tested. METHODS AND RESULTS: The RT-PCR quantified by capillary electrophoresis was used. Although no significant difference in alternative transcript frequency was observed between healthy volunteers and HAE patients, a significant increase in all cassette exon inclusion variants was revealed during monocyte-to-macrophage differentiation. CONCLUSIONS: PLAUR alternative splicing in monocytes and macrophages neither was different between HAE patients and healthy controls, nor reflected disease severity. However, the results showed an PLAUR splicing pattern was changing during monocyte-to-macrophage differentiation, but the significance of these changes is unknown and awaits future clarification.


Assuntos
Angioedemas Hereditários , Monócitos , Humanos , Processamento Alternativo/genética , Angioedemas Hereditários/genética , Angioedemas Hereditários/patologia , Leucócitos , Macrófagos/patologia
9.
Mol Biol Rep ; 50(2): 1701-1711, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36414878

RESUMO

Bikunin is a small chondroitin sulfate proteoglycan (PG) with Ser-protease inhibitory activity that plays pleiotropic roles in health and disease. It is involved in several physiological processes including stabilization of the extracellular matrix (ECM) of connective tissues and key reproductive events. Bikunin is also implicated in both acute and chronic inflammatory conditions and represents a non-invasive circulating and/or urinary (as Urinary Trypsin Inhibitor or UTI) biomarker. It exerts inhibitory effects on urokinase-type plasminogen activator (uPA) and its receptor (uPAR) mediating tumor invasiveness by a down-regulation of uPA mRNA expression, thus representing an anti-metastatic agent. However, only limited data on its potential as a diagnostic and/or prognostic marker of cancer have been reported so far. Recent technological advances in mass spectrometry-based proteomics have provided researchers with a huge amount of information allowing for large-scale surveys of the cancer proteome. To address such issues, we analyzed bikunin expression data across several types of tumors, by using UALCAN proteogenomic analysis portal. In this article we critically review the roles of bikunin in human pathobiology, with a special focus on its inhibitory effects and mechanisms in cancer aggressiveness as well as its significance as cancer circulating biomarker.


Assuntos
Matriz Extracelular , Glicoproteínas , Humanos , Glicoproteínas/genética , Invasividade Neoplásica , Matriz Extracelular/metabolismo , Regulação para Baixo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ativador de Plasminogênio Tipo Uroquinase
10.
Drug Dev Res ; 84(7): 1468-1481, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37534761

RESUMO

Distant metastasis is the primary reason for treatment failure in patients with nasopharyngeal carcinoma (NPC). In this study, we investigated the effect of ulinastatin (UTI) on NPC metastasis and its underlying mechanism. Highly-metastatic NPC cell lines S18 and 58F were treated with UTI and the effect on cell proliferation, migration, and invasion were determined by MTS and Transwell assays. S18 cells with luciferase-expressing (S18-1C3) were injected into the left hind footpad of nude mice to establish a model of spontaneous metastasis from the footpad to popliteal lymph node (LN). The luciferase messenger RNA (mRNA) was measured by quantitative polymerase chain reaction (qPCR), and the metastasis inhibition rate was calculated. Key molecular members of the UTI-related uPA, uPAR, and JAT/STAT3 signaling pathways were detected by qPCR and immunoblotting. UTI suppressed the migration and infiltration of S18 and 5-8F cells and suppressed the metastasis of S18 cells in vivo without affecting cell proliferation. uPAR expression decreased from 24 to 48 h after UTI treatment. The antimetastatic effect of UTI is partly due to the suppression of uPA and uPAR. UTI partially suppresses NPC metastasis by downregulating the expression of uPA and uPAR.


Assuntos
Neoplasias Nasofaríngeas , Animais , Camundongos , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/patologia , Luciferases , Movimento Celular , Invasividade Neoplásica , Metástase Neoplásica
11.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675310

RESUMO

Fibrotic diseases, such as systemic sclerosis (SSc), idiopathic pulmonary fibrosis, renal fibrosis and liver cirrhosis are characterized by tissue overgrowth due to excessive extracellular matrix (ECM) deposition. Fibrosis progression is caused by ECM overproduction and the inhibition of ECM degradation due to several events, including inflammation, vascular endothelial dysfunction, and immune abnormalities. Recently, it has been reported that urokinase plasminogen activator (uPA) and its receptor (uPAR), known to be fibrinolytic factors, orchestrate the inflammatory response, vascular homeostasis, and immune homeostasis system. The uPA/uPAR system may show promise as a potential therapeutic target for fibrotic diseases. This review considers the role of the uPA/uPAR system in the progression of fibrotic diseases.


Assuntos
Inflamação , Ativador de Plasminogênio Tipo Uroquinase , Humanos , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Fibrose , Sistema Imunitário/metabolismo , Homeostase
12.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674896

RESUMO

Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis. We analyzed uPA and uPAR expression in human lung tissues from COVID-19 patients with pulmonary fibrosis using single-cell RNA-seq and immunohistochemistry. We modeled lung fibrosis in Plau-/- and Plaur-/- mice upon bleomycin instillation and explored the effect of uPAR downregulation in A549 and BEAS-2B lung epithelial cells. We found that uPAR expression drastically decreased in the epithelial airway basal cells and monocyte/macrophage cells, whereas uPA accumulation significantly increased in tissue samples of COVID-19 patients. Lung injury and fibrosis in Plaur-/- vs. WT mice upon bleomycin instillation revealed that uPAR deficiency resulted in pro-fibrogenic uPA accumulation, IL-6 and ACE2 upregulation in lung tissues and was associated with severe fibrosis, weight loss and poor survival. uPAR downregulation in A549 and BEAS-2B was linked to an increased N-cadherin expression, indicating the onset of epithelial-mesenchymal transition and potentially contributing to pulmonary fibrosis. Here for the first time, we demonstrate that plasminogen treatment reversed lung fibrosis in Plaur-/- mice: the intravenous injection of 1 mg of plasminogen on the 21st day of bleomycin-induced fibrosis resulted in a more than a two-fold decrease in the area of lung fibrosis as compared to non-treated mice as evaluated by the 42nd day. The expression and function of the plasminogen activator system are dysregulated upon COVID-19 infection, leading to excessive pulmonary fibrosis and worsening the prognosis. The potential of plasminogen as a life-saving treatment for non-resolving post-COVID-19 pulmonary fibrosis warrants further investigation.


Assuntos
COVID-19 , Lesão Pulmonar , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , COVID-19/complicações , Fibrose , Plasminogênio , Bleomicina/toxicidade
13.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958542

RESUMO

One of the largest challenges to the implementation of cardiac cell therapy is identifying selective reparative targets to enhance stem/progenitor cell therapeutic efficacy. In this work, we hypothesized that such a target could be an urokinase-type plasminogen activator receptor (uPAR)-a glycosyl-phosphatidyl-inositol-anchored membrane protein, interacting with urokinase. uPAR is able to form complexes with various transmembrane proteins such as integrins, activating intracellular signaling pathway and thus regulating multiple cell functions. We focused on studying the CD117+ population of cardiac mesenchymal progenitor cells (MPCs), expressing uPAR on their surface. It was found that the number of CD117+ MPCs in the heart of the uPAR-/- mice is lower, as well as their ability to proliferate in vitro compared with cells from wild-type animals. Knockdown of uPAR in CD117+ MPCs of wild-type animals was accompanied by a decrease in survival rate and Akt signaling pathway activity and by an increase in the level of caspase activity in these cells. That suggests the role of uPAR in supporting cell survival. After intramyocardial transplantation of uPAR(-) MPCs, reduced cell retention and angiogenesis stimulation were observed in mice with myocardial infarction model compared to uPAR(+) cells transplantation. Taken together, the present results appear to prove a novel mechanism of uPAR action in maintaining the survival and angiogenic properties of CD117+ MPCs. These results emphasize the importance of the uPAR as a potential pharmacological target for the regulation of reparative properties of myocardial mesenchymal progenitor cells.


Assuntos
Células-Tronco Mesenquimais , Miocárdio , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Animais , Camundongos , Integrinas , Células-Tronco Mesenquimais/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Miocárdio/citologia
14.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674481

RESUMO

Various species of non-coding RNAs (ncRNAs) may act as functional molecules regulating diverse biological processes. In cancer cell biology, ncRNAs include RNAs that regulate the expression of oncogenes and tumor suppressor genes through various mechanisms. The urokinase (uPA)-mediated plasminogen activation system (PAS) includes uPA, its inhibitors PAI-1 and PAI-2 and its specific cellular receptor uPAR; their increased expression represents a negative prognostic factor in several cancers. Here, we will briefly describe the main uPA-mediated PAS components and ncRNA species; then, we will review more recent evidence of the roles that ncRNAs may play in regulating the expression and functions of uPA-mediated PAS components in cancer.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Regulação da Expressão Gênica , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , RNA não Traduzido/genética , Plasminogênio/genética , Plasminogênio/metabolismo
15.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047495

RESUMO

Nicotinic acetylcholine receptors (nAChRs) present as many different subtypes in the nervous and immune systems, muscles and on the cells of other organs. In the immune system, inflammation is regulated via the vagus nerve through the activation of the non-neuronal α7 nAChR subtype, affecting the production of cytokines. The analgesic properties of α7 nAChR-selective compounds are mostly based on the activation of the cholinergic anti-inflammatory pathway. The molecular mechanism of neuropathic pain relief mediated by the inhibition of α9-containing nAChRs is not fully understood yet, but the role of immune factors in this process is becoming evident. To obtain appropriate drugs, a search of selective agonists, antagonists and modulators of α7- and α9-containing nAChRs is underway. The naturally occurring three-finger snake α-neurotoxins and mammalian Ly6/uPAR proteins, as well as neurotoxic peptides α-conotoxins, are not only sophisticated tools in research on nAChRs but are also considered as potential medicines. In particular, the inhibition of the α9-containing nAChRs by α-conotoxins may be a pathway to alleviate neuropathic pain. nAChRs are involved in the inflammation processes during AIDS and other viral infections; thus they can also be means used in drug design. In this review, we discuss the role of α7- and α9-containing nAChRs in the immune processes and in pain.


Assuntos
Conotoxinas , Neuralgia , Receptores Nicotínicos , Animais , Humanos , Receptores Nicotínicos/metabolismo , Neuralgia/tratamento farmacológico , Conotoxinas/uso terapêutico , Conotoxinas/química , Sistema Imunitário/metabolismo , Inflamação , Mamíferos/metabolismo
16.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069271

RESUMO

SLURP-1 is a three-finger human protein targeting nicotinic acetylcholine receptors (nAChRs). The recombinant forms of SLURP-1 produced in E. coli differ in added fusion fragments and in activity. The closest in sequence to the naturally occurring SLURP-1 is the recombinant rSLURP-1, differing by only one additional N-terminal Met residue. sSLURP-1 can be prepared by peptide synthesis and its amino acid sequence is identical to that of the natural protein. In view of recent NMR analysis of the conformational mobility of rSLURP-1 and cryo-electron microscopy structures of complexes of α-bungarotoxin (a three-finger snake venom protein) with Torpedo californica and α7 nAChRs, we compared conformations of sSLURP-1 and rSLURP-1 by Raman spectroscopy and CD-controlled thermal denaturation, analyzed their competition with α-bungarotoxin for binding to the above-mentioned nAChRs, compared the respective receptor complexes with computer modeling and compared their inhibitory potency on the α9α10 nAChR. The CD revealed a higher thermostability of sSLURP-1; some differences between sSLURP-1 and rSLURP-1 were observed in the regions of disulfides and tyrosine residues by Raman spectroscopy, but in binding, computer modeling and electrophysiology, the proteins were similar. Thus, sSLURP-1 and rSLURP-1 with only one additional Met residue appear close in structure and functional characteristics, being appropriate for research on nAChRs.


Assuntos
Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bungarotoxinas/metabolismo , Microscopia Crioeletrônica , Proteínas/metabolismo
17.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834299

RESUMO

Alzheimer disease (AD) is a widespread neurodegenerative disease characterized by the accumulation of oligomeric toxic forms of ß-amyloid (Aß1-42) and dysfunction of the cholinergic system in the different brain regions. However, the exact mechanisms of AD pathogenesis and the role of the nicotinic acetylcholine receptors (nAChRs) in the disease progression remain unclear. Here, we revealed a decreased expression of a number of the Ly6/uPAR proteins targeting nAChRs in the cerebellum of 2xTg-AD mice (model of early AD) in comparison with non-transgenic mice both at mRNA and protein levels. We showed that co-localization of one of them, - neuromodulator Lynx1, with α7-nAChR was diminished in the vicinity of cerebellar astrocytes of 2xTg-AD mice, while Aß1-42 co-localization with this receptor present was increased. Moreover, the expression of anti-inflammatory transcription factor KLF4 regulating transcription of the Ly6/uPAR genes was decreased in the cerebellum of 2xTg-AD mice, while expression of inflammatory cytokine TNF-α was increased. Based on these data together with observed astrocyte degeneration in the cerebellum of 2xTg-AD mice, we suggest the mechanism by which expression of the Ly6/uPAR proteins upon Aß pathology results in dysregulation of the cholinergic system and particularly of α7-nAChR function in the cerebellum. This leads to enhanced neuroinflammation and cerebellar astrocyte degeneration.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Receptores Nicotínicos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Astrócitos/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Receptores Nicotínicos/metabolismo , Cerebelo/metabolismo , Colinérgicos/metabolismo
18.
AAPS PharmSciTech ; 24(8): 236, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989972

RESUMO

Antibody-based therapeutics have recently gained keen attention for the treatment of pulmonary indications. However, systemically administered antibody exposure in the lungs needs to be better understood and remains a topic of interest. In this study, we evaluated the exposure of two different uPAR (urokinase-type plasminogen activator receptor) targeting full-length monoclonal IgGs in plasma and lung epithelial lining fluid (ELF) of mice after IP and IV administration. Antibody AK17 exhibited linear pharmacokinetics (PK) in plasma and ELF at 3 and 30 mg/kg single IV dose. The average plasma and ELF half-lives for AK17 and AK21 ranged between ~321-411 h and ~230-345 h, respectively, indicating sustained systemic and lung exposure of antibodies. The average ELF to the plasma concentration ratio of antibodies was ~0.01 and ~0.03 with IP and IV dosing, respectively, over 2 weeks post single dose. We simultaneously characterized plasma and ELF PK of antibody in mice by developing a minimal lung PBPK model for antibody. This model reasonably captured the plasma and ELF PK data while estimating three parameters. The model accounts for the convective transport of antibody into the tissues via blood and lymph flow. FcRn-mediated transcytosis was incorporated into the model for antibody distribution across the lung epithelial barrier. This model serves as a platform to predict the pulmonary PK of systemically administered antibodies and to support optimal dose selection for desired exposure in the lungs as the site of action.


Assuntos
Pulmão , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Camundongos , Animais , Anticorpos Monoclonais , Antibacterianos
19.
Dokl Biochem Biophys ; 511(1): 145-150, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37833597

RESUMO

Alzheimer's disease is a rapidly progressive neurodegenerative disease, the development of which is associated with the accumulation of ß-amyloid oligomers, dysfunction of the α7-nAChR nicotinic acetylcholine receptor, and activation of inflammation. Previously, we showed that the neuromodulator Lynx1, which belongs to the Ly6/uPAR family, competes with ß-amyloid(1-42) for binding to α7-nAChR. In this work, we studied the expression and localization of Ly6/uPAR family proteins in the hippocampus of 2xTg-AD transgenic mice that model AD and demonstrate increased amyloidosis in the brain. Using real-time PCR, we showed a decrease in the expression of the genes encoding Lynx1, Lypd6b, and the postsynaptic marker PSD95, as well as an increase in the expression of the TNFα gene in the hippocampus of 2xTg-AD mice. Histochemical analysis showed that, in the hippocampus of 2xTg-AD mice, Lynx1 does not colocalize with α7-nAChR, which can lead to the development of pathology when the receptor interacts with oligomeric ß-amyloid. In addition, in 2xTg-AD mice, activation of systemic inflammation was shown, which manifests itself in a decrease in the serum level of SLURP-1, a Ly6/uPAR family protein capable of regulating inflammatory processes, as well as in an increase in the content of proinflammatory cytokines TNFα and TNFß. Thus, α7-nAChR dysfunction and maintenance of the inflammatory microenvironment in the brain in Alzheimer's disease may be associated with a decrease in the expression of Ly6/uPAR family proteins that regulate α7-nAChR activity and inflammation.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Receptores Nicotínicos , Animais , Camundongos , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Citocinas , Hipocampo/metabolismo , Inflamação/metabolismo , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Receptores Nicotínicos/metabolismo , Soro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Am J Physiol Cell Physiol ; 323(1): C104-C115, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649252

RESUMO

Corneal fibroblasts are embedded within an extracellular matrix composed largely of collagen type 1, proteoglycans, and other proteins in the corneal stroma, and their morphology and function are subject to continuous regulation by collagen. During wound healing and in various pathological conditions, corneal fibroblasts differentiate into myofibroblasts characterized by the expression of α-smooth muscle actin (α-SMA). Endo180, also known as urokinase-type plasminogen activator (uPA) receptor-associated protein (uPARAP), is a collagen receptor. Here we investigated whether targeting of Endo180 and the uPA receptor (uPAR) by uPA might play a role in the regulation of α-SMA expression by culturing corneal fibroblasts derived from uPA-deficient (uPA-/-) or wild-type (uPA+/+) mice in a collagen gel or on plastic. The expression of α-SMA was upregulated, the amounts of full-length Endo180 and uPAR were increased, and the levels of both transforming growth factor-ß (TGF-ß) expression and Smad3 phosphorylation were higher in uPA-/- corneal fibroblasts compared with uPA+/+ cells under the collagen gel culture condition. Antibodies to Endo180 inhibited these effects of uPA deficiency on α-SMA and TGF-ß expression, whereas a TGF-ß signaling inhibitor blocked the effects on Smad3 phosphorylation and α-SMA expression. Our results suggest that uPA deficiency might promote the interaction between collagen and Endo180 and thereby increase α-SMA expression in a manner dependent on TGF-ß signaling. Expression of α-SMA is thus negatively regulated by uPA through targeting of Endo180 and uPAR.


Assuntos
Actinas , Ativador de Plasminogênio Tipo Uroquinase , Actinas/metabolismo , Animais , Colágeno/metabolismo , Fibroblastos/metabolismo , Camundongos , Músculo Liso/metabolismo , Receptores Mitogênicos , Fator de Crescimento Transformador beta/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA