Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362298

RESUMO

Alterations in muscle structure and function in chronic kidney disease (CKD) patients are associated with poor outcomes. As key organelles in muscle cell homeostasis, mitochondrial metabolism has been studied in the context of muscle dysfunction in CKD. We conducted a study to determine the contribution of oxidative metabolism, glycolysis and fatty acid oxidation to the muscle metabolism in CKD. Mice developed CKD by exposure to adenine in the diet. Muscle of CKD mice showed significant weight loss compared to non-CKD mice, but only extensor digitorum longus (EDL) muscle showed a decreased number of fibers. There was no difference in the proportion of the various muscle fibers in CKD and non-CKD mice. Muscle of CKD mice had decreased expression of proteins associated with oxidative phosphorylation but increased expression of enzymes and transporters associated with glycolysis. In cell culture, myotubes exposed to uremic serum demonstrated decreased oxygen consumption rates (OCR) when glucose was used as substrate, conserved OCR when fatty acids were used and increased lactate production. In conclusion, mice with adenine-induced CKD developed sarcopenia and with increased glycolytic metabolism but without gross changes in fiber structure. In vitro models of uremic myopathy suggest fatty acid utilization is preserved compared to decreased glucose utilization.


Assuntos
Doenças Musculares , Insuficiência Renal Crônica , Camundongos , Animais , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Doenças Musculares/metabolismo , Glucose/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Ácidos Graxos/metabolismo , Adenina/metabolismo
2.
Clin Neurophysiol ; 132(12): 3125-3135, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34740043

RESUMO

OBJECTIVE: Uremic myopathy is a condition seen in end-stage renal disease (ESRD), characterized by muscle weakness and muscle fatigue, in which the pathophysiology is uncertain. The aim of this study was to assess the role of abnormal serum constituents in ESRD patients by relating them to the excitability properties of the tibialis anterior muscle, at rest and during electrically induced muscle activation, by recording muscle velocity recovery cycles (MVRC) and frequency ramp responses. METHODS: Eighteen ESRD patients undergoing hemodialysis were evaluated by blood sample, MVRC, and frequency ramp (before and near the end of dialysis treatment), quantitative electromyography, and nerve conduction studies. Patients were compared to 24 control subjects. RESULTS: In patients, muscle relative refractory period, early supernormality, late supernormality after 5 conditioning stimuli, and latency of the last of 15 and 30 frequency ramp pulses were strongly associated with potassium levels (p < 0.01), showing depolarization before and normalization in the end of hemodialysis. CONCLUSIONS: In ESRD patients, the muscle membrane is depolarized, mainly due to hyperkalemia. SIGNIFICANCE: Since normal muscle fatigue has been attributed to potassium-induced depolarization, it seems likely that this mechanism is also a major cause of the exaggerated muscle fatigue and weakness in ESRD patients.


Assuntos
Falência Renal Crônica/sangue , Contração Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/sangue , Condução Nervosa/fisiologia , Potássio/sangue , Adulto , Idoso , Eletromiografia , Feminino , Humanos , Falência Renal Crônica/complicações , Falência Renal Crônica/fisiopatologia , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Doenças Musculares/etiologia , Doenças Musculares/fisiopatologia , Diálise Renal
3.
J Biomech ; 82: 259-265, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30447801

RESUMO

Chronic kidney disease patients present with metabolic and functional muscle abnormalities, called uremic myopathy, whose mechanisms have not yet been fully elucidated. We investigated whether chronic renal insufficiency (CRI) affects skeletal muscle contractile properties at the cellular level. CRI was induced surgically in New Zealand rabbits (UREM), with sham-operation for controls (CON), and samples were collected at 3 months post-surgery, following euthanasia. All protocols had University Ethics approval following national and European guidelines. Sample treatments and evaluations were blinded. Maximal isometric force was assessed in 382 permeabilized psoas fibers (CON, n = 142, UREM, n = 240) initially at pH7, 10 °C ('standard' conditions), in subsets of fibers in acidic conditions (pH6.2, 10 °C) but also at near physiological temperature (pH7, 30 °C and pH6.2, 30 °C). CRI resulted in significant smaller average cross sectional areas (CSAs) by ∼11% for UREM muscle fibers (vs CON, P < 0.01). At standard conditions, UREM fibers produced lower absolute and specific forces (i.e. normalized force per fiber CSA) (vs CON, P < 0.01); force increased in 30 °C for both groups (P < 0.01), but the disparity between UREM and CON remained significant. Acidosis significantly reduced force (vs pH7, 10 °C P < 0.01), similarly in both groups (in UREM by -48% and in CON by -43%, P > 0.05). For the first time, we give evidence that CRI can induce significant impairments in single psoas muscle fibers force generation, only partly explained by fiber atrophy, thus affecting muscle mechanics at the cellular level.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Insuficiência Renal/fisiopatologia , Animais , Concentração de Íons de Hidrogênio , Masculino , Contração Muscular , Coelhos , Temperatura
4.
Front Physiol ; 9: 1648, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534079

RESUMO

Chronic kidney disease (CKD) is a public health problem and a recognized risk factor for cardiovascular diseases (CVD). CKD could amplify the progression of chronic heart failure leading to the development of type 4 cardio-renal syndrome (T4CRS). The severity and persistence of heart failure are strongly associated with mortality risk in T4CRS. CKD is also a catabolic state leading to renal sarcopenia which is characterized by the loss of skeletal muscle strength and physical function. Renal sarcopenia also promotes the development of CVD and increases the mortality in CKD patients. In turn, heart failure developed in T4CRS could result in chronic muscle hypoperfusion and metabolic disturbances leading to or aggravating the renal sarcopenia. The interplay of multiple factors (e.g., comorbidities, over-activated renin-angiotensin-aldosterone system [RAAS], sympathetic nervous system [SNS], oxidative/nitrative stress, inflammation, etc.) may result in the progression of T4CRS and renal sarcopenia. Among these factors, oxidative/nitrative stress plays a crucial role in the complex pathomechanism and interrelationship between T4CRS and renal sarcopenia. In the heart and skeletal muscle, mitochondria, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, uncoupled nitric oxide synthase (NOS) and xanthine oxidase are major ROS sources producing superoxide anion (O2·-) and/or hydrogen peroxide (H2O2). O2·- reacts with nitric oxide (NO) forming peroxynitrite (ONOO-) which is a highly reactive nitrogen species (RNS). High levels of ROS/RNS cause lipid peroxidation, DNA damage, interacts with both DNA repair enzymes and transcription factors, leads to the oxidation/nitration of key proteins involved in contractility, calcium handling, metabolism, antioxidant defense mechanisms, etc. It also activates the inflammatory response, stress signals inducing cardiac hypertrophy, fibrosis, or cell death via different mechanisms (e.g., apoptosis, necrosis) and dysregulates autophagy. Therefore, the thorough understanding of the mechanisms which lead to perturbations in oxidative/nitrative metabolism and its relationship with pro-inflammatory, hypertrophic, fibrotic, cell death and other pathways would help to develop strategies to counteract systemic and tissue oxidative/nitrative stress in T4CRS and renal sarcopenia. In this review, we also focus on the effects of some well-known and novel pharmaceuticals, nutraceuticals, and physical exercise on cardiac and skeletal muscle oxidative/nitrative stress in T4CRS and renal sarcopenia.

5.
Front Physiol ; 6: 102, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25870564

RESUMO

Renal failure is accompanied by progressive muscle weakness and premature fatigue, in part linked to hypokinesis and in part to uremic toxicity. These changes are associated with various detrimental biochemical and morphological alterations. All of these pathological parameters are collectively termed uremic myopathy. Various interventions while helpful can't fully remedy the pathological phenotype. Complex mechanisms that stimulate muscle dysfunction in uremia have been proposed, and oxidative stress could be implicated. Skeletal muscles continuously produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) at rest and more so during contraction. The aim of this mini review is to provide an update on recent advances in our understanding of how ROS and RNS generation might contribute to muscle dysfunction in uremia. Thus, a systematic review was conducted searching PubMed and Scopus by using the Cochrane and PRISMA guidelines. While few studies met our criteria their findings are discussed making reference to other available literature data. Oxidative stress can direct muscle cells into a catabolic state and chronic exposure to it leads to wasting. Moreover, redox disturbances can significantly affect force production per se. We conclude that oxidative stress can be in part responsible for some aspects of uremic myopathy. Further research is needed to discern clear mechanisms and to help efforts to counteract muscle weakness and exercise intolerance in uremic patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA