Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.948
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2308247121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551833

RESUMO

Diamond color centers have proven to be versatile quantum emitters and exquisite sensors of stress, temperature, electric and magnetic fields, and biochemical processes. Among color centers, the silicon-vacancy (SiV[Formula: see text]) defect exhibits high brightness, minimal phonon coupling, narrow optical linewidths, and high degrees of photon indistinguishability. Yet the creation of reliable and scalable SiV[Formula: see text]-based color centers has been hampered by heterogeneous emission, theorized to originate from surface imperfections, crystal lattice strain, defect symmetry, or other lattice impurities. Here, we advance high-resolution cryo-electron microscopy combined with cathodoluminescence spectroscopy and 4D scanning transmission electron microscopy (STEM) to elucidate the structural sources of heterogeneity in SiV[Formula: see text] emission from nanodiamond with sub-nanometer-scale resolution. Our diamond nanoparticles are grown directly on TEM membranes from molecular-level seedings, representing the natural formation conditions of color centers in diamond. We show that individual subcrystallites within a single nanodiamond exhibit distinct zero-phonon line (ZPL) energies and differences in brightness that can vary by 0.1 meV in energy and over 70% in brightness. These changes are correlated with the atomic-scale lattice structure. We find that ZPL blue-shifts result from tensile strain, while ZPL red shifts are due to compressive strain. We also find that distinct crystallites host distinct densities of SiV[Formula: see text] emitters and that grain boundaries impact SiV[Formula: see text] emission significantly. Finally, we interrogate nanodiamonds as small as 40 nm in diameter and show that these diamonds exhibit no spatial change to their ZPL energy. Our work provides a foundation for atomic-scale structure-emission correlation, e.g., of single atomic defects in a range of quantum and two-dimensional materials.

2.
Proc Natl Acad Sci U S A ; 121(4): e2314396121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38236736

RESUMO

In our quest to leverage the capabilities of the emerging single-atom catalysts (SACs) for wastewater purification, we confronted fundamental challenges related to electron scarcity and instability. Through meticulous theoretical calculations, we identified optimal placements for nitrogen vacancies (Nv) and iron (Fe) single-atom sites, uncovering a dual-site approach that significantly amplified visible-light absorption and charge transfer dynamics. Informed by these computational insights, we cleverly integrated Nv into the catalyst design to boost electron density around iron atoms, yielding a potent and flexible photoactivator for benign peracetic acid. This exceptional catalyst exhibited remarkable stability and effectively degraded various organic contaminants over 20 cycles with self-cleaning properties. Specifically, the Nv sites captured electrons, enabling their swift transfer to adjacent Fe sites under visible light irradiation. This mechanism accelerated the reduction of the formed "peracetic acid-catalyst" intermediate. Theoretical calculations were used to elucidate the synergistic interplay of dual mechanisms, illuminating increased adsorption and activation of reactive molecules. Furthermore, electron reduction pathways on the conduction band were elaborately explored, unveiling the production of reactive species that enhanced photocatalytic processes. A six-flux model and associated parameters were also applied to precisely optimize the photocatalytic process, providing invaluable insights for future photocatalyst design. Overall, this study offers a molecule-level insight into the rational design of robust SACs in a photo-Fenton-like system, with promising implications for wastewater treatment and other high-value applications.

3.
Proc Natl Acad Sci U S A ; 121(25): e2322107121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857396

RESUMO

The photocatalytic CO2-to-CH4 conversion involves multiple consecutive proton-electron coupling transfer processes. Achieving high CH4 selectivity with satisfactory conversion efficiency remains challenging since the inefficient proton and electron delivery path results in sluggish proton-electron transfer kinetics. Herein, we propose the fabrication of atomically adjacent anion-cation vacancy as paired redox active sites that could maximally promote the proton- and electron-donating efficiency to simultaneously enhance the oxidation and reduction half-reactions, achieving higher photocatalytic CO2 reduction activity and CH4 selectivity. Taking TiO2 as a photocatalyst prototype, the operando electron paramagnetic resonance spectra, quasi in situ X-ray photoelectron spectroscopy measurements, and high-angle annular dark-field-scanning transmission electron microscopy image analysis prove that the VTi on TiO2 as initial sites can induce electron redistribution and facilitate the escape of the adjacent oxygen atom, thereby triggering the dynamic creation of atomically adjacent dual-vacancy sites during photocatalytic reactions. The dual-vacancy sites not only promote the proton- and electron-donating efficiency for CO2 activation and protonation but also modulate the coordination modes of surface-bound intermediate species, thus converting the endoergic protonation step to an exoergic reaction process and steering the CO2 reduction pathway toward CH4 production. As a result, these in situ created dual active sites enable nearly 100% CH4 selectivity and evolution rate of 19.4 µmol g-1 h-1, about 80 times higher than that of pristine TiO2. Thus, these insights into vacancy dynamics and structure-function relationship are valuable to atomic understanding and catalyst design for achieving highly selective catalysis.

4.
Proc Natl Acad Sci U S A ; 121(11): e2319427121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442175

RESUMO

Heterogeneous high-valent cobalt-oxo [≡Co(IV)=O] is a widely focused reactive species in oxidant activation; however, the relationship between the catalyst interfacial defects and ≡Co(IV)=O formation remains poorly understood. Herein, photoexcited oxygen vacancies (OVs) were introduced into Co3O4 (OV-Co3O4) by a UV-induced modification method to facilitate chlorite (ClO2-) activation. Density functional theory calculations indicate that OVs result in low-coordinated Co atom, which can directionally anchor chlorite under the oxygen-atom trapping effect. Chlorite first undergoes homolytic O-Cl cleavage and transfers the dissociated O atom to the low-coordinated Co atom to form reactive ≡Co(IV)=O with a higher spin state. The reactive ≡Co(IV)=O rapidly extracts one electron from ClO2- to form chlorine dioxide (ClO2), accompanied by the Co atom returning a lower spin state. As a result of the oxygen-atom trapping effect, the OV-Co3O4/chlorite system achieved a 3.5 times higher efficiency of sulfamethoxazole degradation (~0.1331 min-1) than the pristine Co3O4/chlorite system. Besides, the refiled OVs can be easily restored by re-exposure to UV light, indicating the sustainability of the oxygen atom trap. The OV-Co3O4 was further fabricated on a polyacrylonitrile membrane for back-end water purification, achieving continuous flow degradation of pollutants with low cobalt leakage. This work presents an enhancement strategy for constructing OV as an oxygen-atom trapping site in heterogeneous advanced oxidation processes and provides insight into modulating the formation of ≡Co(IV)=O via defect engineering.

5.
Proc Natl Acad Sci U S A ; 120(40): e2306673120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748073

RESUMO

Electrocatalytic nitrogen reduction is a challenging process that requires achieving high ammonia yield rate and reasonable faradaic efficiency. To address this issue, this study developed a catalyst by in situ anchoring interfacial intergrown ultrafine MoO2 nanograins on N-doped carbon fibers. By optimizing the thermal treatment conditions, an abundant number of grain boundaries were generated between MoO2 nanograins, which led to an increased fraction of oxygen vacancies. This, in turn, improved the transfer of electrons, resulting in the creation of highly active reactive sites and efficient nitrogen trapping. The resulting optimal catalyst, MoO2/C700, outperformed commercial MoO2 and state-of-the-art N2 reduction catalysts, with NH3 yield and Faradic efficiency of 173.7 µg h-1 mg-1cat and 27.6%, respectively, under - 0.7 V vs. RHE in 1 M KOH electrolyte. In situ X-ray photoelectron spectroscopy characterization and density functional theory calculation validated the electronic structure effect and advantage of N2 adsorption over oxygen vacancy, revealing the dominant interplay of N2 and oxygen vacancy and generating electronic transfer between nitrogen and Mo(IV). The study also unveiled the origin of improved activity by correlating with the interfacial effect, demonstrating the big potential for practical N2 reduction applications as the obtained optimal catalyst exhibited appreciable catalytic stability during 60 h of continuous electrolysis. This work demonstrates the feasibility of enhancing electrocatalytic nitrogen reduction by engineering grain boundaries to promote oxygen vacancies, offering a promising avenue for efficient and sustainable ammonia production.

6.
Proc Natl Acad Sci U S A ; 120(16): e2219395120, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040420

RESUMO

Considerable efforts have been devoted to Li-S batteries, typically the soluble polysulfides shuttling effect. As a typical transition metal sulfide, MoS2 is a magic bullet for addressing the issues of Li-S batteries, drawing increasing attention. In this study, we introduce amorphous MoS3 as analogous sulfur cathode material and elucidate the dynamic phase evolution in the electrochemical reaction. The metallic 1T phase incorporated 2H phase MoS2 with sulfur vacancies (SVs-1T/2H-MoS2) decomposed from amorphous MoS3 achieves refined mixing with the "newborn" sulfur at the molecular level and supplies continuous conduction pathways and controllable physical confinement. Meanwhile, the in situ-generated SVs-1T/2H-MoS2 allows lithium intercalation in advance at high discharge voltage (≥1.8 V) and enables fast electron transfer. Moreover, aiming at the unbonded sulfur, diphenyl diselenide (PDSe), as a model redox mediator is applied, which can covalently bond sulfur atoms to form conversion-type organoselenosulfides, changing the original redox pathway of "newborn" sulfur in MoS3, and suppressing the polysulfides shuttling effect. It also significantly lowers the activation energy and thus accelerates the sulfur reduction kinetics. Thus, the in situ-formed intercalation-conversion hybrid electrode of SVs-1T/2H-MoS2 and organoselenosulfides realizes enhanced rate capability and superior cycling stability. This work provides a novel concept for designing high-energy-density electrode materials.

7.
Proc Natl Acad Sci U S A ; 120(3): e2217148120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36630453

RESUMO

Modulation of water activation is crucial to water-involved chemical reactions in heterogeneous catalysis. Organic sulfur (COS and CS2) hydrolysis is such a typical reaction involving water (H2O) molecule as a reactant. However, limited by the strong O-H bond in H2O, satisfactory CS2 hydrolysis performance is attained at high temperature above 310 °C, which is at the sacrifice of the Claus conversion, strongly hindering sulfur recovery efficiency improvement and pollution emissions control of the Claus process. Herein, we report a facile oxygen vacancy (VO) engineering on titanium-based perovskite to motivate H2O activation for enhanced COS and CS2 hydrolysis at lower temperature. Increased amount of VO contributed to improved degree of H2O dissociation to generate more active -OH, due to lower energy barrier for H2O dissociation over surface rich in VO, particularly VO clusters. Besides, low-coordinated Ti ions adjacent to VO were active sites for H2O activation. Consequently, complete conversion of COS and CS2 was achieved over SrTiO3 after H2 reduction treatment at 225 °C, a favorable temperature for the Claus conversion, at which both satisfying COS and CS2 hydrolysis performance and improved sulfur recovery efficiency can be obtained simultaneously. Additionally, the origin of enhanced hydrolysis activity from boosted H2O activation by VO was revealed via in-depth mechanism study. This provides more explicit direction for further design of efficacious catalysts for H2O-involved reactions.


Assuntos
Oxigênio , Titânio , Temperatura , Hidrólise , Água/química , Enxofre
8.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082154

RESUMO

Histological imaging is essential for the biomedical research and clinical diagnosis of human cancer. Although optical microscopy provides a standard method, it is a persistent goal to develop new imaging methods for more precise histological examination. Here, we use nitrogen-vacancy centers in diamond as quantum sensors and demonstrate micrometer-resolution immunomagnetic microscopy (IMM) for human tumor tissues. We immunomagnetically labeled cancer biomarkers in tumor tissues with magnetic nanoparticles and imaged them in a 400-nm resolution diamond-based magnetic microscope. There is barely magnetic background in tissues, and the IMM can resist the impact of a light background. The distribution of biomarkers in the high-contrast magnetic images was reconstructed as that of the magnetic moment of magnetic nanoparticles by employing deep-learning algorithms. In the reconstructed magnetic images, the expression intensity of the biomarkers was quantified with the absolute magnetic signal. The IMM has excellent signal stability, and the magnetic signal in our samples had not changed after more than 1.5 y under ambient conditions. Furthermore, we realized multimodal imaging of tumor tissues by combining IMM with hematoxylin-eosin staining, immunohistochemistry, or immunofluorescence microscopy in the same tissue section. Overall, our study provides a different histological method for both molecular mechanism research and accurate diagnosis of human cancer.


Assuntos
Diamante/química , Magnetismo/métodos , Microscopia de Fluorescência/métodos , Neoplasias/patologia , Pontos Quânticos/química , Humanos , Processamento de Imagem Assistida por Computador/métodos , Nanopartículas/química , Nitrogênio/química
9.
Nano Lett ; 24(23): 6831-6837, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38815209

RESUMO

Phonons are envisioned as coherent intermediaries between different types of quantum systems. Engineered nanoscale devices, such as optomechanical crystals (OMCs), provide a platform to utilize phonons as quantum information carriers. Here we demonstrate OMCs in diamond designed for strong for interactions between phonons and a silicon vacancy (SiV) spin. Using optical measurements at millikelvin temperatures, we measure a line width of 13 kHz (Q-factor of ∼4.4 × 105) for a 6 GHz acoustic mode, a record for diamond in the GHz frequency range and within an order of magnitude of state-of-the-art line widths for OMCs in silicon. We investigate SiV optical and spin properties in these devices and outline a path toward a coherent spin-phonon interface.

10.
Nano Lett ; 24(31): 9591-9597, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051981

RESUMO

Spinel oxides have emerged as a promising candidate in the realm of nanozymes with variable oxidation states, while their limited active sites and low conductivity hinder further application. In this work, we synthesize a series of metal-doped NiCo2O4 nanospheres decorated with Pd, which are deployed as highly efficient nanozymes for the detection of cancer biomarkers. Through meticulous modulation of the molar ratio between NiCo2O4 and Pd, we orchestrated precise control over the oxygen vacancies and electronic structure within the nanozymes, a key factor in amplifying the catalytic prowess. Leveraging the superior H2O2 reduction catalytic properties of Fe-NiCo2O4@Pd, we have successfully implemented its application in the electrochemical detection of biomarkers, achieving unparalleled analytical performance, much higher than that of Pd/C and other reported nanozymes. This research paves the way for innovative electron modification strategies in the design of high-performance nanozymes, presenting a formidable tool for clinical diagnostic analyses.


Assuntos
Cobalto , Peróxido de Hidrogênio , Óxidos , Paládio , Catálise , Paládio/química , Cobalto/química , Óxidos/química , Peróxido de Hidrogênio/química , Oxirredução , Níquel/química , Humanos , Técnicas Eletroquímicas
11.
Nano Lett ; 24(3): 873-880, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207217

RESUMO

Nitrogen-vacancy (NV) magnetometry offers an alternative tool to detect paramagnetic centers in cells with a favorable combination of magnetic sensitivity and spatial resolution. Here, we employ NV magnetic relaxometry to detect cytochrome C (Cyt-C) nanoclusters. Cyt-C is a water-soluble protein that plays a vital role in the electron transport chain of mitochondria. Under ambient conditions, the heme group in Cyt-C remains in the Fe3+ state, which is paramagnetic. We vary the concentration of Cyt-C from 6 to 54 µM and observe a reduction of the NV spin-lattice relaxation time (T1) from 1.2 ms to 150 µs, which is attributed to the spin noise originating from the Fe3+ spins. NV T1 imaging of Cyt-C drop-casted on a nanostructured diamond chip allows us to detect the relaxation rates from the adsorbed Fe3+ within Cyt-C.


Assuntos
Citocromos c , Nitrogênio , Magnetismo , Diamante , Fenômenos Magnéticos
12.
Nano Lett ; 24(5): 1660-1666, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38266180

RESUMO

Scalable and addressable integrated manipulation of qubits is crucial for practical quantum information applications. Different waveguides have been used to transport the optical and electrical driving pulses, which are usually required for qubit manipulation. However, the separated multifields may limit the compactness and efficiency of manipulation and introduce unwanted perturbation. Here, we develop a tapered fiber-nanowire-electrode hybrid structure to realize integrated optical and microwave manipulation of solid-state spins at nanoscale. Visible light and microwave driving pulses are simultaneously transported and concentrated along an Ag nanowire. Studied with spin defects in diamond, the results show that the different driving fields are aligned with high accuracy. The spatially selective spin manipulation is realized. And the frequency-scanning optically detected magnetic resonance (ODMR) of spin qubits is measured, illustrating the potential for portable quantum sensing. Our work provides a new scheme for developing compact, miniaturized quantum sensors and quantum information processing devices.

13.
Nano Lett ; 24(12): 3575-3580, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478720

RESUMO

Silicon vacancy centers (SiVs) in diamond have emerged as a promising platform for quantum sciences due to their excellent photostability, minimal spectral diffusion, and substantial zero-phonon line emission. However, enhancing their slow nanosecond excited-state lifetime by coupling to optical cavities remains an outstanding challenge, as current demonstrations are limited to ∼10-fold. Here, we couple negatively charged SiVs to sub-diffraction-limited plasmonic cavities and achieve an instrument-limited ≤8 ps lifetime, corresponding to a 135-fold spontaneous emission rate enhancement and a 19-fold photoluminescence enhancement. Nanoparticles are printed on ultrathin diamond membranes on gold films which create arrays of plasmonic nanogap cavities with ultrasmall volumes. SiVs implanted at 5 and 10 nm depths are examined to elucidate surface effects on their lifetime and brightness. The interplay between cavity, implantation depth, and ultrathin diamond membranes provides insights into generating ultrafast, bright SiV emission for next-generation diamond devices.

14.
Nano Lett ; 24(2): 696-702, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175193

RESUMO

Selectively achieving the photoreduction of carbon dioxide (CO2) to methane (CH4) remains a significant challenge, which primarily arises from the complexity of the protonation process. In this work, we designed metal-vacancy pair sites in defective metal oxide semiconductors, which anchor the reactive intermediates with a bridged linkage for the selective protonation to produce CH4. As an example, oxygen-deficient Nb2O5 nanosheets are synthesized, in which the niobium-oxygen vacancy pair sites are demonstrated by X-ray photoelectron spectroscopy and electron paramagnetic resonance spectra. In situ Fourier transform infrared spectroscopy monitors the *CH3O intermediate, a key intermediate for CH4 production, during the CO2 photoreduction in oxygen-deficient Nb2O5 nanosheets. Importantly, the built metal-vacancy pair sites regulate the *CH3O formation step as a spontaneous process, making the reduction of CO2 to CH4 the preferred method. Therefore, the oxygen-deficient Nb2O5 nanosheets exhibit a CH4 formation rate of 19.14 µmol g-1 h-1, with an electron selectivity of ∼94.1%.

15.
Nano Lett ; 24(26): 7843-7851, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912682

RESUMO

Two-dimensional-material-based memristors are emerging as promising enablers of new computing systems beyond von Neumann computers. However, the most studied anion-vacancy-enabled transition metal dichalcogenide memristors show many undesirable performances, e.g., high leakage currents, limited memory windows, high programming currents, and limited endurance. Here, we demonstrate that the emergent van der Waals metal phosphorus trisulfides with unconventional nondefective vacancy provide a promising paradigm for high-performance memristors. The different vacancy types (i.e., defective and nondefective vacancies) induced memristive discrepancies are uncovered. The nondefective vacancies can provide an ultralow diffusion barrier and good memristive structure stability giving rise to many desirable memristive performances, including high off-state resistance of 1012 Ω, pA-level programming currents, large memory window up to 109, more than 7-bit conductance states, and good endurance. Furthermore, a high-yield (94%) memristor crossbar array is fabricated and implements multiple image processing successfully, manifesting the potential for in-memory computing hardware.

16.
Nano Lett ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171696

RESUMO

We report the development of an all-optical approach that excites the fundamental compression mode in a diamond Lamb wave resonator with an optical gradient force and detects the induced vibrations via strain coupling to a silicon vacancy center, specifically, via phonon sidebands in the optical excitation spectrum of the silicon vacancy. Sideband optical interferometry has also been used for the detection of in-plane mechanical vibrations, for which conventional optical interferometry is not effective. These experiments demonstrate a gigahertz fundamental compression mode with a Q factor of >107 at temperatures near 7 K, providing a promising platform for reaching the quantum regime of spin mechanics, especially phononic cavity quantum electrodynamics of electron spins.

17.
Nano Lett ; 24(17): 5332-5341, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634554

RESUMO

Alloying-type anode materials provide high capacity for lithium-ion batteries; however, they suffer pulverization problems resulting from the volume change during cycling. Realizing the cycling reversibility of these anodes is therefore critical for sustaining their electrochemical performance. Here, we investigate the structural reversibility of Sn NPs during cycling at atomic-level resolution utilizing in situ high-resolution TEM. We observed a surprisingly near-perfect structural reversibility after a complete cycle. A three-step phase transition happens during lithiation, accompanied by the generation of a significant number of defects, grain boundaries, and up to 202% volume expansion. In subsequent delithiation, the volume, morphology, and crystallinity of the Sn NPs were restored to their initial state. Theoretical calculations show that compressive stress drives the removal of vacancies generated within the NPs during delithiation, therefore maintaining their intact morphology. This work demonstrates that removing vacancies during cycling can efficiently improve the structural reversibility of high-capacity anode materials.

18.
Nano Lett ; 24(7): 2369-2375, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38348823

RESUMO

The deterministic generation of individual color centers with defined orientations or types in solid-state systems is paramount for advancements in quantum technologies. Silicon vacancies in 4H-silicon carbide (4H-SiC) can be formed in V1 and V2 types. However, silicon vacancies are typically generated randomly between V1 and V2 types with similar probabilities. Here, we show that the preferred V2 centers can be selectively generated by focused ion beam (FIB) implantation on the m-plane in 4H-SiC. When implantation is on the m-plane (a-plane), the generation probability ratio between V1 and V2 centers increase exponentially (remains constant) with decreasing FIB fluences. With a fluence of 10 ions/spot, the probability to generate V2 centers is seven times higher than V1 centers. Our results represent a critical step toward the deterministic creation of specific defect types.

19.
Nano Lett ; 24(22): 6474-6479, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767585

RESUMO

Experimental noise often contains information about the interactions of a system with its environment, but establishing a relation between the measured time fluctuations and the underlying physical observables is rarely apparent. Here, we leverage a multidimensional and multisensor analysis of spectral diffusion to investigate the dynamics of trapped carriers near subdiffraction clusters of nitrogen-vacancy (NV) centers in diamond. We establish statistical correlations in the spectral fluctuations we measure as we recursively probe the cluster optical resonances, which we then exploit to reveal proximal traps. Further, we deterministically induce Stark shifts in the cluster spectrum, ultimately allowing us to pinpoint the relative three-dimensional positions of interacting NVs as well as the location and charge sign of surrounding traps. Our results can be generalized to other color centers and provide opportunities for the characterization of photocarrier dynamics in semiconductors and the manipulation of nanoscale spin-qubit clusters connected via electric fields.

20.
Nano Lett ; 24(12): 3606-3613, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483316

RESUMO

We reversibly control ferromagnetic-antiferromagnetic ordering in an insulating ground state by annealing tensile-strained LaCoO3 films in hydrogen. This ionic-magnetic coupling occurs due to the hydrogen-driven topotactic transition between perovskite LaCoO3 and brownmillerite La2Co2O5 at a lower temperature (125-200 °C) and within a shorter time (3-10 min) than the oxygen-driven effect (500 °C, tens of hours). The X-ray and optical spectroscopic analyses reveal that the transition results from hydrogen-driven filling of correlated electrons in the Co 3d-orbitals, which successively releases oxygen by destabilizing the CoO6 octahedra into CoO4 tetrahedra. The transition is accelerated by surface exchange, diffusion of hydrogen in and oxygen out through atomically ordered oxygen vacancy "nanocomb" stripes in the tensile-strained LaCoO3 films. Our ionic-magnetic coupling with fast operation, good reproducibility, and long-term stability is a proof-of-principle demonstration of high-performance ultralow power magnetic switching devices for sensors, energy, and artificial intelligence applications, which are keys for attaining carbon neutrality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA