Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 444-452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396304

RESUMO

Stomatal closure under high VPDL (leaf to air vapour pressure deficit) is a primary means by which plants prevent large excursions in transpiration rate and leaf water potential (Ψleaf) that could lead to tissue damage. Yet, the drivers of this response remain controversial. Changes in Ψleaf appear to drive stomatal VPDL response, but many argue that dynamic changes in soil-to-leaf hydraulic conductance (Ks-l) make an important contribution to this response pathway, even in well-hydrated soils. Here, we examined whether the regulation of whole plant stomatal conductance (gc) in response to typical changes in daytime VPDL is influenced by dynamic changes in Ks-l. We use well-watered plants of two species with contrasting ecological and physiological features: the herbaceous Arabidopsis thaliana (ecotype Columbia-0) and the dry forest conifer Callitris rhomboidea. The dynamics of Ks-l and gc were continuously monitored by combining concurrent in situ measurements of Ψleaf using an open optical dendrometer and whole plant transpiration using a balance. Large changes in VPDL were imposed to induce stomatal closure and observe the impact on Ks-l. In both species, gc was observed to decline substantially as VPDL increased, while Ks-l remained stable. Our finding suggests that stomatal regulation of transpiration is not contingent on a decrease in Ks-l. Static Ks-l provides a much simpler explanation for transpiration control in hydrated plants and enables simplified modelling and new methods for monitoring plant water use in the field.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Solo , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Água/metabolismo , Transpiração Vegetal/fisiologia
2.
Plant Cell Environ ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230444

RESUMO

Plants differ widely in how soil drying affects stomatal conductance (gs) and leaf water potential (ψleaf), and in the underlying physiological controls. Efforts to breed crops for drought resilience would benefit from a better understanding of these mechanisms and their diversity. We grew 12 diverse genotypes of common bean (Phaseolus vulgaris L.) and four of tepary bean (P. acutifolius; a highly drought resilient species) in the field under irrigation and post-flowering drought, and quantified responses of gs and ψleaf, and their controls (soil water potential [ψsoil], evaporative demand [Δw] and plant hydraulic conductance [K]). We hypothesised that (i) common beans would be more "isohydric" (i.e., exhibit strong stomatal closure in drought, minimising ψleaf decline) than tepary beans, and that genotypes with larger ψleaf decline (more "anisohydric") would exhibit (ii) smaller increases in Δw, due to less suppression of evaporative cooling by stomatal closure and hence less canopy warming, but (iii) larger K declines due to ψleaf decline. Contrary to our hypotheses, we found that half of the common bean genotypes were similarly anisohydric to most tepary beans; canopy temperature was cooler in isohydric genotypes leading to smaller increases in Δw in drought; and that stomatal closure and K decline were similar in isohydric and anisohydric genotypes. gs and ψleaf were virtually insensitive to drought in one tepary genotype (G40068). Our results highlight the potential importance of non-stomatal mechanisms for leaf cooling, and the variability in drought resilience traits among closely related crop legumes.

3.
New Phytol ; 237(6): 2180-2195, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36630602

RESUMO

A warming climate coupled with reductions in water availability and rising salinity are increasingly affecting rice (Oryza sativa) yields. Elevated temperatures combined with vapour pressure deficit (VPD) rises are causing stomatal closure, further reducing plant productivity and cooling. It is unclear what stomatal size (SS) and stomatal density (SD) will best suit all these environmental extremes. To understand how stomatal differences contribute to rice abiotic stress resilience, we screened the stomatal characteristics of 72 traditionally bred varieties. We found significant variation in SS, SD and calculated anatomical maximal stomatal conductance (gsmax ) but did not identify any varieties with SD and gsmax as low as transgenic OsEPF1oe plants. Traditionally bred varieties with high SD and small SS (resulting in higher gsmax ) typically had lower biomasses, and these plants were more resilient to drought than low SD and large SS plants, which were physically larger. None of the varieties assessed were as resilient to drought or salinity as low SD OsEPF1oe transgenic plants. High SD and small SS rice displayed faster stomatal closure during increasing temperature and VPD, but photosynthesis and plant cooling were reduced. Compromises will be required when choosing rice SS and SD to tackle multiple future environmental stresses.


Assuntos
Oryza , Estômatos de Plantas , Oryza/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Estresse Fisiológico , Secas , Água
4.
Glob Chang Biol ; 28(4): 1414-1432, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34741793

RESUMO

A better understanding of how climate affects growth in tree species is essential for improved predictions of forest dynamics under climate change. Long-term climate averages (mean climate) drive spatial variations in species' baseline growth rates, whereas deviations from these averages over time (anomalies) can create growth variation around the local baseline. However, the rarity of long-term tree census data spanning climatic gradients has so far limited our understanding of their respective role, especially in tropical systems. Furthermore, tree growth sensitivity to climate is likely to vary widely among species, and the ecological strategies underlying these differences remain poorly understood. Here, we utilize an exceptional dataset of 49 years of growth data for 509 tree species across 23 tropical rainforest plots along a climatic gradient to examine how multiannual tree growth responds to both climate means and anomalies, and how species' functional traits mediate these growth responses to climate. We show that anomalous increases in atmospheric evaporative demand and solar radiation consistently reduced tree growth. Drier forests and fast-growing species were more sensitive to water stress anomalies. In addition, species traits related to water use and photosynthesis partly explained differences in growth sensitivity to both climate means and anomalies. Our study demonstrates that both climate means and anomalies shape tree growth in tropical forests and that species traits can provide insights into understanding these demographic responses to climate change, offering a promising way forward to forecast tropical forest dynamics under different climate trajectories.


Assuntos
Árvores , Clima Tropical , Mudança Climática , Florestas , Folhas de Planta
5.
J Exp Bot ; 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559211

RESUMO

There is potential sources of alleles and genes currently locked into wheat-related species that could be introduced into wheat breeding programs for current and future hot and dry climates. However, neither the intra- nor the inter-specific diversity of the responses of leaf growth and transpiration to temperature and evaporative demand have been investigated in a large diversity of wheat-related species. By analysing 12 groups of wheat-related sub-species, we questioned the n-dimensional structure of the genetic diversity for traits linked to plant vegetative structures and development, leaf expansion and transpiration together with their responses to "non-stressing" range of temperature and evaporative demand. In addition to provide new insight on how genome type, ploidy level, phylogeny and breeding pressure together structure this genetic diversity, this study provides new mathematical formalisms and the associated parameters of trait responses in the large genetic diversity of wheat-related species. This potentially allow crop models predicting the impact of this diversity on yield, and indicate potential sources of varietal improvement for modern wheat germplasms, through interspecific crosses.

6.
New Phytol ; 227(2): 392-406, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32150759

RESUMO

Recent research has shown that plant acclimation to diverse patterns of light intensity modifies the dynamics of their stomatal response. Therefore, whether plants are grown in controlled conditions or in the field may impact their stomatal dynamics. We analysed the stomatal dynamics of two Populus euramericana and two Populus nigra genotypes grown in the field under contrasting water availability. By comparing their stomatal dynamics with that of the same genotypes grown in a glasshouse, we were able to test whether differences between these growing conditions interacted with genotypic differences in affecting stomatal dynamics and responses to soil water deficit. We found that, despite higher stomatal density and smaller size, in the field stomatal dynamics were much slower than in the glasshouse. Overall, differences among genotypes and their response to soil water deficit were much less pronounced in the field compared with the glasshouse. These results indicate that stomatal dynamics are regulated by both genotype-specific and environmental factors. Moreover, having slower stomata may be advantageous under some conditions. While stomatal dynamics were linked with whole-plant transpiration per leaf area in both experiments, the contribution of stomatal morphology varies dependent on the environmental conditions.


Assuntos
Populus , Secas , Folhas de Planta , Estômatos de Plantas , Transpiração Vegetal , Populus/genética , Pressão de Vapor , Água
7.
New Phytol ; 222(4): 1789-1802, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30681725

RESUMO

Recent findings were able to show significant variability of stomatal dynamics between species, but not much is known about factors influencing stomatal dynamics and its consequences on biomass production, transpiration and water-use efficiency (WUE). We assessed the dynamics of stomatal conductance (gs ) to a change of irradiance or vapour-pressure deficit (VPD) in two Populus euramericana and two Populus nigra genotypes grown under control and drought conditions. Our objectives were to determine the diversity of stomatal dynamics among poplar genotypes, and if soil water deficit can alter it. Physiological and morphological factors were investigated to find their potential links with stomatal morphology, WUE and its components at the whole-plant level. We found significant genotypic variability of gs dynamics to both irradiance and VPD. Genotypes with faster stomatal dynamics were correlated with higher stomatal density and smaller stomata, and the implications of these correlations are discussed. Drought slowed gs dynamics, depending on genotype and especially during stomatal closing. This finding is contrary to previous research on more drought-tolerant species. Independently of the treatment, faster stomatal dynamics were negatively correlated with daily whole-plant transpiration, presenting new evidence of a previously hypothesized contribution of stomatal dynamics to whole-plant water use.


Assuntos
Secas , Luz , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal/efeitos da radiação , Populus/genética , Populus/fisiologia , Pressão de Vapor , Simulação por Computador , Gases/metabolismo , Genótipo , Estômatos de Plantas/anatomia & histologia , Populus/crescimento & desenvolvimento , Água
8.
New Phytol ; 218(4): 1430-1449, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29604221

RESUMO

Terrestrial primary productivity and carbon cycle impacts of droughts are commonly quantified using vapour pressure deficit (VPD) data and remotely sensed greenness, without accounting for soil moisture. However, soil moisture limitation is known to strongly affect plant physiology. Here, we investigate light use efficiency, the ratio of gross primary productivity (GPP) to absorbed light. We derive its fractional reduction due to soil moisture (fLUE), separated from VPD and greenness changes, using artificial neural networks trained on eddy covariance data, multiple soil moisture datasets and remotely sensed greenness. This reveals substantial impacts of soil moisture alone that reduce GPP by up to 40% at sites located in sub-humid, semi-arid or arid regions. For sites in relatively moist climates, we find, paradoxically, a muted fLUE response to drying soil, but reduced fLUE under wet conditions. fLUE identifies substantial drought impacts that are not captured when relying solely on VPD and greenness changes and, when seasonally recurring, are missed by traditional, anomaly-based drought indices. Counter to common assumptions, fLUE reductions are largest in drought-deciduous vegetation, including grasslands. Our results highlight the necessity to account for soil moisture limitation in terrestrial primary productivity data products, especially for drought-related assessments.


Assuntos
Ecossistema , Umidade , Luz , Solo , Secas , Redes Neurais de Computação , Transpiração Vegetal/fisiologia , Chuva , Fatores de Tempo , Pressão de Vapor , Água
10.
J Exp Bot ; 65(22): 6529-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205580

RESUMO

Stomatal responses to closing stimuli are disturbed after long-term exposure of plants to low vapour pressure deficit (VPD). The mechanism behind this disturbance is not fully understood. Genetic variation between naturally occurring ecotypes can be helpful to elucidate the mechanism controlling stomatal movements in different environments. We characterized the stomatal responses of 41 natural accessions of Arabidopsis thaliana to closing stimuli (ABA and desiccation) after they had been exposed for 4 days to moderate VPD (1.17 kPa) or low VPD (0.23 kPa). A fast screening system was used to test stomatal response to ABA using chlorophyll fluorescence imaging under low O2 concentrations of leaf discs floating on ABA solutions. In all accessions stomatal conductance (gs) was increased after prior exposure to low VPD. After exposure to low VPD, stomata of 39 out of 41 of the accessions showed a diminished ABA closing response; only stomata of low VPD-exposed Map-42 and C24 were as responsive to ABA as moderate VPD-exposed plants. In response to desiccation, most of the accessions showed a normal stomata closing response following low VPD exposure. Only low VPD-exposed Cvi-0 and Rrs-7 showed significantly less stomatal closure compared with moderate VPD-exposed plants. Using principle component analysis (PCA), accessions could be categorized to very sensitive, moderately sensitive, and less sensitive to closing stimuli. In conclusion, we present evidence for different stomatal responses to closing stimuli after long-term exposure to low VPD across Arabidopsis accessions. The variation can be a useful tool for finding the mechanism of stomatal malfunctioning.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Ecótipo , Variação Genética , Estômatos de Plantas/fisiologia , Pressão de Vapor , Ácido Abscísico/metabolismo , Dessecação , Geografia , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Transpiração Vegetal/fisiologia , Análise de Componente Principal , Água
11.
Plant Divers ; 46(3): 395-405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798723

RESUMO

Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant. However, very little is known about the stomatal sensitivity to vapour pressure deficit (VPD) in mangroves, and its co-ordination with stomatal morphology and leaf hydraulic traits. We measured the stomatal response to a step increase in VPD in situ, stomatal anatomy, leaf hydraulic vulnerability and pressure-volume traits in nine true mangrove species of five families and collected the data of genome size. We aimed to answer two questions: (1) Does stomatal morphology influence stomatal dynamics in response to a high VPD in mangroves? with a consideration of possible influence of genome size on stomatal morphology; and (2) do leaf hydraulic traits influence stomatal sensitivity to VPD in mangroves? We found that the stomata of mangrove plants were highly sensitive to a step rise in VPD and the stomatal responses were directly affected by stomatal anatomy and hydraulic traits. Smaller, denser stomata was correlated with faster stomatal closure at high VPD across the species of Rhizophoraceae, and stomata size negatively and vein density positively correlated with genome size. Less negative leaf osmotic pressure at the full turgor (πo) was related to higher operating steady-state stomatal conductance (gs); and a higher leaf capacitance (Cleaf) and more embolism resistant leaf xylem were associated with slower stomatal responses to an increase in VPD. In addition, stomatal responsiveness to VPD was indirectly affected by leaf morphological traits, which were affected by site salinity and consequently leaf water status. Our results demonstrate that mangroves display a unique relationship between genome size, stomatal size and vein packing, and that stomatal responsiveness to VPD is regulated by leaf hydraulic traits and stomatal morphology. Our work provides a quantitative framework to better understand of stomatal regulation in mangroves in an environment with high salinity and dynamic water availability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA