Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Indian J Microbiol ; 64(2): 583-592, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39011004

RESUMO

This study analysed the genetic diversity of DBL1α domain of Plasmodium falciparum var gene in severe and non-severe malaria patients from Delhi and Mewat in Northern India. After confirming P. falciparum infection, samples were cloned and the var gene DBL1α domain was sequenced. Out of 377 cloned DBL sequences, 194 were from severe samples and 183 from non-severe samples. Proportion of DBL1α sequences belonging to groups 1, 4 and 5 were significantly higher in severe isolates as compared to non-severe isolates-group 1 (4.1% vs 1.09%, P = 0.0333), group 4 (69.58% vs 74.31%, P < 0.0001), and group 5 (19.58% vs 10.38%, P < 0.0001). Conversely, higher proportion of group 2 was observed in non-severe isolates (0% vs 3.82%, P = 0.0350). Highest diversity was seen in PoLV4 motif of severe and non-severe isolates and like other DBL1α sequences reported from several geographical areas (Africa, Americas, Asia, and Oceania). A total of 247 DBL1α domain haplotypes were found in this study where 139 (56.27%) haplotypes are novel and not reported from India till date. These findings could aid in developing effective malaria interventions, including vaccine and drug targets, by understanding the existing antigenic diversity and vulnerabilities in the parasite's genetic makeup. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01200-1.

2.
Mol Microbiol ; 115(5): 1025-1038, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33538363

RESUMO

Sirtuins (PfSIR2A and PfSIR2B) are implicated to play pivotal roles in the silencing of sub-telomeric genes and the maintenance of telomere length in P. falciparum 3D7 strain. Here, we identify the key factors that regulate the cellular abundance and activity of these two histone deacetylases. Our results demonstrate that PfSIR2A and PfSIR2B are transcriptionally downregulated at the mid-ring stage in response to febrile temperature. We found that the molecular chaperone PfHsp90 acts as a repressor of PfSIR2A & B transcription. By virtue of its presence in the PfSIR2A & B promoter proximal regions PfHsp90 helps recruiting H3K9me3, conferring heterochromatic state, and thereby leading to the downregulation of PfSIR2A & B transcription. Such transcriptional downregulation can be reversed by the addition of 17-(allylamino)-17-demethoxygeldanamycin or Radicicol, two potent inhibitors of PfHsp90. The reduced occupancy of PfSir2 at sub-telomeric var promoters leads to the de-repression of var genes. Thus, here we uncover how exposure to febrile temperature, a hallmark of malaria, enables the parasites to manipulate the expression of the two prominent epigenetic modifiers PfSir2A and PfSir2B.


Assuntos
Epigênese Genética , Proteínas de Choque Térmico HSP90/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Sirtuínas/genética , Regulação para Baixo , Proteínas de Choque Térmico HSP90/genética , Humanos , Plasmodium falciparum/metabolismo , Regiões Promotoras Genéticas , Proteínas de Protozoários/metabolismo , Sirtuínas/metabolismo , Temperatura
3.
Annu Rev Microbiol ; 71: 625-641, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28697665

RESUMO

Malaria is a significant threat throughout the developing world. Among the most fascinating aspects of the protozoan parasites responsible for this disease are the methods they employ to avoid the immune system and perpetuate chronic infections. Key among these is antigenic variation: By systematically altering antigens that are displayed to the host's immune system, the parasite renders the adaptive immune response ineffective. For Plasmodium falciparum, the species responsible for the most severe form of human malaria, this process involves a complicated molecular mechanism that results in continuously changing patterns of variant-antigen-encoding gene expression. Although many features of this process remain obscure, significant progress has been made in recent years to decipher various molecular aspects of the regulatory cascade that causes chronic infection.


Assuntos
Variação Antigênica , Regulação da Expressão Gênica , Evasão da Resposta Imune , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Animais , Interações Hospedeiro-Patógeno , Humanos , Malária/imunologia , Malária/parasitologia
4.
BMC Genomics ; 17: 652, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27538502

RESUMO

BACKGROUND: Understanding the regulation mechanism of var gene expression is crucial for explaining antigenic variation in Plasmodium falciparum. Recent work observed that while all var genes produce transcripts, only a few var genes exhibit high expression levels. However, the global regulation of var expression and the relationship between epigenetic and genetic control remains to be established. RESULT: We have systematically reanalyzed the existing genomic data including chromatin configurations and gene expressions; and for the first time used robust statistical methods to show that the intron and 2 kb upstream regions of each endogenous var gene always maintain high chromatin accessibility, with high potential to bind transcription factors (TFs). The levels of transcripts for different var gene family members are associated with this chromatin accessibility. Any given var gene thus shows punctuated chromatin states throughout the asexual life cycle. This is demonstrated by three independent transcript datasets. Chromatin accessibility in the var intron and 2 kb upstream regions are also positively correlated with their GC content, suggesting the level of var genes silencing might be encoded in their intron sequences. Interestingly, both var intron and 2 kb upstream regions exhibit higher chromatin accessibility when the genes have relatively lower transcription levels, suggesting a punctuated repressive function for these regulatory elements. CONCLUSION: By integrating and analyzing epigenomic, genomic and transcriptomic data, our work reveals a novel distal element in var control. We found dynamic modulations of specific epigenetic marks around the var intron and distal upstream regions are involved in the general var gene expression patterns in malarial antigenic variation.


Assuntos
Cromatina/genética , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/genética , Composição de Bases , Bases de Dados Genéticas , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genoma de Protozoário , Íntrons , Plasmodium falciparum/genética
5.
Front Mol Biosci ; 10: 1223682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593128

RESUMO

The human malaria parasite Plasmodium falciparum maintains the chronicity of infections through antigenic variation, a well-coordinated immune evasion mechanism. The most prominent molecular determinant of antigenic variation in this parasite includes the members of the var multigene family. Homologous recombination (HR)-mediated genomic rearrangements have been implicated to play a major role in var gene diversification. However, the key molecular factors involved in the generation of diversity at var loci are less known. Here, we tested the hypothesis that PfRad51 could carry out recombination between var genes that are not homologous but homeologous in nature. We employed the whole-genome sequencing (WGS) approach to investigate recombination events among var sequences over 100 generations and compared the rate of sequence rearrangement at the var loci in both PfRad51-proficient and -deficient parasite lines. This brief report provides evidence that the loss of the key recombinase function renders the parasite with inefficient HR and results in fewer recombination events among the var sequences, thereby impacting the diversification of the var gene repertoire.

6.
Pathog Dis ; 80(1)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35640888

RESUMO

In order to survive and establish infection, the Plasmodium parasite employs various strategies to evade the host immune response. The var genes family, a repertoire of 60 genes, expresses parasite-specific protein PfEMP1, a variable surface antigen, on the membrane of infected erythrocytes, and by continuously switching the variants of PfEMP1, help the parasite to avoid detection and destruction by the host immune system during the intra-erythrocytic developmental cycle. Although chromatin modifications are recognised to be a prominent phenomenon in regulation of mono-allelic expression of these var genes, the precise histone codes and molecular players and mechanisms guiding these modifications have yet to be unravelled in depth. In this study, we have functionally characterised RUVBL proteins of Plasmodium falciparum and shown that PfMYST (an essential lysine acetyl transferase) and PfRUVBL protein complex occupy the TARE region and var gene promoter in the ring stage of the parasite. Further, we have demonstrated that the PfMYST/PfRUVBL complex interacts with core histones, H3 and H4. Overall the findings of this study add further information by identifying the potential role of epigenetic regulators, PfMYST and PfRUVBL, in the regulation of monoallelic expression of var genes in the malaria parasite.


Assuntos
Plasmodium falciparum , Proteínas de Protozoários , Eritrócitos , Histonas/genética , Histonas/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
7.
mSphere ; 7(5): e0032922, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36121150

RESUMO

Sir2 protein of Plasmodium falciparum has been implicated to play crucial roles in the silencing of subtelomeric var genes and rRNA. It is also involved in telomere length maintenance. Epigenetic regulation of PfSIR2 transcription occurs through a direct participation of the molecular chaperon PfHsp90, wherein PfHsp90 acts as a transcriptional repressor. However, whether the chaperonic activity of PfHsp90 is essential for the maturation and stability of PfSir2A protein has not yet been explored. Here, we show that PfSir2A protein is a direct client of PfHsp90. We demonstrate that PfHsp90 physically interacts with PfSir2A, and the inhibition of PfHsp90 activity via chemical inhibitors, such as 17-AAG or Radicicol, results in the depletion of PfSir2A protein, and consequently its histone deacetylase activity. Thus, derepression of var genes and ribosomal silencing were observed under PfHsp90 inactivation. This finding that PfHsp90 provides stability to PfSir2A protein, in addition to the previous finding that PfHsp90 downregulates PfSIR2A transcription and subsequently cellular abundance, uncovers the multifaceted roles of PfHsp90 in regulating PfSir2 abundance and activity. Given the importance of PfSir2 protein in Plasmodium biology, it is reasonable to propose that the PfHsp90-PfSir2 axis can be exploited as a novel druggable target. IMPORTANCE Malaria continues to severely impact the global public health not only due to the mortality and morbidity associated with it, but also because of the huge burden on the world economy it imparts. Despite the intensive vaccine-research and drug-development programs, there is not a single effective vaccine suitable for all age groups, and there is no drug on the market against which resistance is not developed. Thus, there is an urgent need to develop novel intervention strategies by identifying the crucial targets from Plasmodium biology. Here, we uncover that the molecular chaperone PfHsp90 regulates the abundance and activity of the histone-deacetylase PfSir2, a prominent regulator of Plasmodium epigenome. Given that PfSir2 controls both virulence and multiplicity of the parasite, and that PfHsp90 is an essential chaperone involved in diverse cellular processes, our findings argue that the PfHsp90-PfSir2 axis could be targeted to curb malaria.


Assuntos
Proteínas de Choque Térmico HSP90 , Histona Desacetilases , Plasmodium falciparum , Humanos , Epigênese Genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plasmodium falciparum/enzimologia
8.
Cell Biosci ; 12(1): 91, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715862

RESUMO

BACKGROUND: Cerebral malaria (CM) is a preeminent cause of severe disease and premature deaths in Sub-Saharan Africa, where an estimated 90% of cases occur. The key features of CM are a deep, unarousable coma that persists for longer than 1 h in patients with peripheral Plasmodium falciparum and no other explanation for encephalopathy. Significant research efforts on CM in the last few decades have focused on unravelling the molecular underpinnings of the disease pathogenesis and the identification of potential targets for therapeutic or pharmacologic intervention. These efforts have been greatly aided by the generation and study of mouse models of CM, which have provided great insights into key events of CM pathogenesis, revealed an interesting interplay of host versus parasite factors that determine the progression of malaria to severe disease and exposed possible targets for therapeutic intervention in severe disease. MAIN BODY: This paper reviews our current understanding of the pathogenic and immunologic factors involved in CM. We present the current view of the roles of certain gene products e.g., the var gene, ABCA-1, ICAM-1, TNF-alpha, CD-36, PfEMP-1 and G6PD, in CM pathogenesis. We also present alterations in the blood-brain barrier as a consequence of disease proliferation as well as complicated host and parasite interactions, including the T-cell immune reaction, reduced deformation of erythrocytes and cytoadherence. We further looked at recent advances in cerebral malaria treatment interventions by emphasizing on biomarkers, new diagnostic tools and emerging therapeutic options. CONCLUSION: Finally, we discuss how the current understanding of some of these pathogenic and immunologic factors could inform the development of novel therapeutic interventions to fight CM.

9.
mSystems ; 6(6): e0022621, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34846163

RESUMO

var genes encode Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens. These highly diverse antigens are displayed on the surface of infected erythrocytes and play a critical role in immune evasion and sequestration of infected erythrocytes. Studies of var expression using non-leukocyte-depleted blood are challenging because of the predominance of host genetic material and lack of conserved var segments. Our goal was to enrich for parasite RNA, allowing de novo assembly of var genes and detection of expressed novel variants. We used two overall approaches: (i) enriching for total mRNA in the sequencing library preparations and (ii) enriching for parasite RNA with a custom capture array based on Roche's SeqCap EZ enrichment system. The capture array was designed with probes based on the whole 3D7 reference genome and an additional >4,000 full-length var gene sequences from other P. falciparum strains. We tested each method on RNA samples from Malian children with severe or uncomplicated malaria infections. All reads mapping to the human genome were removed, the remaining reads were assembled de novo into transcripts, and from these, var-like transcripts were identified and annotated. The capture array produced the longest maximum length and largest numbers of var gene transcripts in each sample, particularly in samples with low parasitemia. Identifying the most-expressed var gene sequences in whole-blood clinical samples without the need for extensive processing or generating sample-specific reference genome data is critical for understanding the role of PfEMP1s in malaria pathogenesis. IMPORTANCE Malaria parasites display antigens on the surface of infected red blood cells in the human host that facilitate attachment to blood vessels, contributing to the severity of infection. These antigens are highly variable, allowing the parasite to evade the immune system. Identifying these expressed antigens is critical to understanding the development of severe malarial disease. However, clinical samples contain limited amounts of parasite genetic material, a challenge for sequencing efforts further compounded by the extreme diversity of the parasite surface antigens. We present a method that enriches for these antigen sequences in clinical samples using a custom capture array, requiring minimal processing in the field. While our results are focused on the malaria parasite Plasmodium falciparum, this approach has broad applicability to other highly diverse antigens from other parasites and pathogens such as those that cause giardiasis and leishmaniasis.

10.
Parasitol Int ; 84: 102397, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34033864

RESUMO

Duffy binding-like domain (DBL) and cysteine-rich interdomain region (CIDR) domain genes of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) encode malaria virulence proteins. The variants of these genes have been reported to be associated with severe/complicated malaria. The present study investigated the prevalence and distribution patterns of DBLα0.6/9, DBLα1.1, DBLα1 not var3 genes, DBLα2/α1.1/2/4/7, DBLß12 & DBLß3/5, DBLε8, CIDRα1.4, and CIDRα1.6 of P. falciparum isolates along the Thai-Myanmar border. The association between PfEMP1 variants and parasite density was also investigated. Two hundred and thirteen finger-prick dried blood spot (DBS) or whole blood samples were collected in 2007 and 2015, from patients with acute uncomplicated P. falciparum in Tak, Kanchanaburi, and Ranong provinces. Analysis of the variant genes was performed using polymerase chain reaction (PCR). The DBLs variant which was found at the highest and lowest frequencies in the three provinces were DBLα1 not var3 (72.77%), and DBLε8 (17.37%). The two CIDR domain variants were found at relatively lower frequencies compared with DBL domain variants (9.9% and 30.1%). P. falciparum isolates carrying the four PfEMP1 variants, i.e., DBLα0.6/9, DBLα1.1, DBLα2/α.1.1/2/4/7, and DBLε8 were found to be significantly associated with low parasitemia. Both DBLα0.6/9 and DBLα2/α1.1/2/4/7 variant genes which were present at high frequencies in this border area could be potential candidate markers for predicting P. falciparum hyperparasitemia and in this border area. Furthermore, the information could be exploited as candidate proteins for the development of an effective malaria vaccine in specific malaria-endemic areas.


Assuntos
Variação Genética , Malária Falciparum/parasitologia , Parasitemia/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Teste em Amostras de Sangue Seco , Humanos , Mianmar , Tailândia
11.
Infect Genet Evol ; 95: 105049, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450294

RESUMO

Background The major variant surface antigen (VSA) in Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) encoded by var gene family has an important role in cytoadhesion/sequestration and rosetting by adhesion of uninfected erythrocytes to infected erythrocytes leading to disease severity. DBL1α domain in the PfEMP-1, protein is crucial in the cytoadhesion phenomena in P. falciparum infections and this review aims to analyse the genetic diversity of DBL1α domain sequences in PfEMP-1 from different geographical regions globally. Methods All available DBL1α sequence data was reviewed by using the electronic database PubMed, ResearchGate, Google, Google scholar, MEDLINE with the following Keywords-Plasmodium falciparum", "var gene", "DBL1α", "field isolate", "diversity", "polymorphism", "Africa", "America", "Asia" and "Caribbean" from different geographical regions across the world. Results A total of 240 studies were identified initially but only 20 studies qualified for this systematic review. The overall ratio of distinct sequences DBL1α domain was 24.62/1167 the highest in African region (33.59/766 isolates) and lowest in South America (5.6/215 isolates). In the 18 included studies, the presence of distinct DBL1α sequences was the highest in Oceania 55.32% (1186/2144) followed by Africa (38.43%), Asia (22.45%) and South America (16.48%), though the sample size in Oceania was comparatively smaller to that of Africa and South America. Conclusion This review highlights the ratio and percentage of distinct sequences of DBL1α domain of var gene in different geographical regions giving an idea of the existing diversity prevalent in this potential vaccine target gene which may contribute to designing the preventive measures towards disease severity.


Assuntos
Variação Genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , África , Ásia , Região do Caribe , Malária Falciparum/parasitologia , Oceania , América do Sul
12.
Elife ; 102021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648633

RESUMO

Falciparum malaria is clinically heterogeneous and the relative contribution of parasite and host in shaping disease severity remains unclear. We explored the interaction between inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship underpins the variation observed in controlled human malaria infection (CHMI). We uncovered marked heterogeneity in the host response to blood challenge; some volunteers remained quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to ask whether variants associated with severe disease rapidly expand in naive hosts, we found no transcriptional evidence to support this hypothesis. These data indicate that parasite variants that dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they presumably rely upon infection-induced changes in their within-host environment for selection.


Assuntos
Variação Antigênica , Interações Hospedeiro-Patógeno/genética , Malária Falciparum/imunologia , Plasmodium falciparum/genética , Adulto , Animais , Anopheles/parasitologia , Anticorpos Antiprotozoários/genética , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
13.
Parasit Vectors ; 13(1): 48, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019597

RESUMO

BACKGROUND: Various transcription factors are involved in the process of mutually exclusive expression and clonal variation of the Plasmodium multigene (var) family. Recent studies revealed that a P. falciparum SWI/SNF-related matrix-associated actin-dependent regulator of chromatin (PfSWIB) might trigger stage-specific programmed cell death (PCD), and was not only crucial for the survival and development of parasite, but also had profound effects on the parasite by interacting with other unknown proteins. However, it remains unclear whether PfSIWB is involved in transcriptional regulation of this virulence gene and its functional properties. METHODS: A conditional knockdown system "PfSWIB-FKBP-LID" was introduced to the parasite clone 3D7, and an integrated parasite line "PfSWIB-HA-FKBP-LID" was obtained by drug cycling and clone screening. Growth curve analysis (GCA) was performed to investigate the growth and development of different parasite lines during 96 h in vitro culturing, by assessing parasitemia. Finally, we performed qPCR assays to detect var gene expression profiling in various comparison groups, as well as the mutually exclusive expression pattern of the var genes within a single 48 h life-cycle of P. falciparum in different parasite lines. In addition, RNA-seq was applied to analyze the var gene expression in different lines. RESULTS: GCA revealed that conditional knockdown of PfSWIB could interfere with the growth and development of P. falciparum. The parasitemia of PfSWIB∆ showed a significant decline at 96 h during in vitro culture compared with the PfSWIB and 3D7 lines (P < 0.0001). qPCR and RNA-seq analysis confirmed that depletion of PfSWIB not only silences upsA, upsC and partial upsB var genes, as well as removes the silencing of partial upsB var genes at the ring stage in PfSWIB∆ line, but also leads to aberrant expression of upsA and partial upsB/upsC var genes at the mature stage of P. falciparum, during a single 48-h life-cycle. CONCLUSIONS: We demonstrated that PfSWIB was involved in the process of clonal variation in var gene expression, and crucial for the survival and development of Plasmodium parasite. These findings could provide better understanding of the mechanism and function of PfSWIB contributing to the pathogenesis in malaria parasites.


Assuntos
Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Montagem e Desmontagem da Cromatina/genética , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Inativação Gênica , Genes de Protozoários , Humanos , Estágios do Ciclo de Vida/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Fatores de Virulência/genética
14.
Front Immunol ; 10: 2328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681266

RESUMO

In sub-Saharan Africa, children below 5 years bear the greatest burden of severe malaria because they lack naturally acquired immunity that develops following repeated exposure to infections by Plasmodium falciparum. Antibodies to the surface of P. falciparum infected erythrocytes (IE) play an important role in this immunity. In children under the age of 6 months, relative protection from severe malaria is observed and this is thought to be partly due to trans-placental acquired protective maternal antibodies. However, the protective effect of maternal antibodies has not been fully established, especially the role of antibodies to variant surface antigens (VSA) expressed on IE. Here, we assessed the immune pressure on parasites infecting infants using markers associated with the acquisition of naturally acquired immunity to surface antigens. We hypothesized that, if maternal antibodies to VSA imposed a selection pressure on parasites, then the expression of a relatively conserved subset of var genes called group A var genes in infants should change with waning maternal antibodies. To test this, we compared their expression in parasites from children between 0 and 12 months and above 12 months of age. The transcript quantity and the proportional expression of group A var subgroup, including those containing domain cassette 13, were positively associated with age during the first year of life, which contrasts with above 12 months. This was accompanied by a decline in infected erythrocyte surface antibodies and an increase in parasitemia during this period. The observed increase in group A var gene expression with age in the first year of life, when the maternal antibodies are waning and before acquisition of naturally acquired antibodies with repeated exposure, is consistent with the idea that maternally acquired antibodies impose a selection pressure on parasites that infect infants and may play a role in protecting these infants against severe malaria.


Assuntos
Anticorpos Antiprotozoários/imunologia , Variação Antigênica , Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Lactente , Recém-Nascido , Quênia , Masculino
15.
mBio ; 10(2)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040236

RESUMO

The clinical presentation of severe Plasmodium falciparum malaria differs between children and adults, but the mechanistic basis for this remains unclear. Contributing factors to disease severity include total parasite biomass and the diverse cytoadhesive properties mediated by the polymorphic var gene parasite ligand family displayed on infected erythrocytes. To explore these factors, we performed a multicohort analysis of the contribution of var expression and parasite biomass to severe malaria in two previously published pediatric cohorts in Tanzania and Malawi and an adult cohort in India. Machine learning analysis revealed independent and complementary roles for var adhesion types and parasite biomass in adult and pediatric severe malaria and showed that similar var profiles, including upregulation of group A and DC8 var, predict severe malaria in adults and children. Among adults, patients with multiorgan complications presented infections with significantly higher parasite biomass without significant differences in var adhesion types. Conversely, pediatric patients with specific complications showed distinct var signatures. Cerebral malaria patients showed broadly increased expression of var genes, in particular group A and DC8 var, while children with severe malaria anemia were classified based on high transcription of DC8 var only. This study represents the first large multisite meta-analysis of var expression, and it demonstrates the presence of common var profiles in severe malaria patients of different ages across distant geographical sites, as well as syndrome-specific disease signatures. The complex associations between parasite biomass, var adhesion type, and clinical presentation revealed here represent the most comprehensive picture so far of the relationship between cytoadhesion, parasite load, and clinical syndrome.IMPORTANCEP. falciparum malaria can cause multiple disease complications that differ by patient age. Previous studies have attempted to address the roles of parasite adhesion and biomass in disease severity; however, these studies have been limited to single geographical sites, and there is limited understanding of how parasite adhesion and biomass interact to influence disease manifestations. In this meta-analysis, we compared parasite disease determinants in African children and Indian adults. This study demonstrates that parasite biomass and specific subsets of var genes are independently associated with detrimental outcomes in both childhood and adult malaria. We also explored how parasite var adhesion types and biomass play different roles in the development of specific severe malaria pathologies, including childhood cerebral malaria and multiorgan complications in adults. This work represents the largest study to date of the role of both var adhesion types and biomass in severe malaria.


Assuntos
Variação Genética , Genótipo , Malária Falciparum/patologia , Malária Falciparum/parasitologia , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Índia , Lactente , Aprendizado de Máquina , Malaui , Masculino , Carga Parasitária , Tanzânia
16.
Front Microbiol ; 9: 3117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619191

RESUMO

Plasmodium falciparum erythrocyte membrane protein 1, encoded by var gene, is an immunodominant antigen mediating immune evasion in humans. At a given time, only a single var gene is commonly expressed in one parasite. However, the regulation mechanism of var transcription remains largely unknown. In this study, we identified the antisense long non-coding RNA (aslncRNA) derived from var intron as an activation factor for the corresponding var gene. The exogenous artificial var aslncRNA transcribed by T7 RNA polymerase from episome can specifically activate the homologous var gene, and the exogenous aslncRNA activates transcription of both var mRNA and endogenous aslncRNA in a manner independent of the conserved intron sequence within the var gene family. Interestingly, the newly activated var gene and the previously dominant var gene then could be co-expressed in the same parasite nuclei, which suggests that the aslncRNA-mediated var gene activation could escape from the control of mutually exclusively expression of the var gene family. Together, our work shows that var aslncRNA is the activator responsible for var gene transcriptional regulation.

17.
Ecol Evol ; 8(7): 3574-3588, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29686839

RESUMO

The concept of niche partitioning has received considerable theoretical attention at the interface of ecology and evolution of infectious diseases. Strain theory postulates that pathogen populations can be structured into distinct nonoverlapping strains by frequency-dependent selection in response to intraspecific competition for host immune space. The malaria parasite Plasmodium falciparum presents an opportunity to investigate this phenomenon in nature, under conditions of high recombination rate and extensive antigenic diversity. The parasite's major blood-stage antigen, Pf EMP1, is encoded by the hyperdiverse var genes. With a dataset that includes thousands of var DBLα sequence types sampled from asymptomatic cases within an area of high endemicity in Ghana, we address how var diversity is distributed within isolates and compare this to the distribution of microsatellite allelic diversity within isolates to test whether antigenic and neutral regions of the genome are structured differently. With respect to var DBLα sequence types, we find that on average isolates exhibit significantly lower overlap than expected randomly, but that there also exists frequent pairs of isolates that are highly related. Furthermore, the linkage network of var DBLα sequence types reveals a pattern of nonrandom modularity unique to these antigenic genes, and we find that modules of highly linked DBLα types are not explainable by neutral forces related to var recombination constraints, microsatellite diversity, sampling location, host age, or multiplicity of infection. These findings of reduced overlap and modularity among the var antigenic genes are consistent with a role for immune selection as proposed by strain theory. Identifying the evolutionary and ecological dynamics that are responsible for the nonrandom structure in P. falciparum antigenic diversity is important for designing effective intervention in endemic areas.

18.
mSphere ; 2(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28101534

RESUMO

Plasmodium falciparum, the most deadly of the human malaria parasites, is a member of the Laverania subgenus that also infects African Great Apes. The virulence of P. falciparum is related to cytoadhesion of infected erythrocytes in microvasculature, but the origin of dangerous parasite adhesion traits is poorly understood. To investigate the evolutionary history of the P. falciparum cytoadhesion pathogenicity determinant, we studied adhesion domains from the chimpanzee malaria parasite P. reichenowi. We demonstrate that the P. reichenowi var gene repertoire encodes cysteine-rich interdomain region (CIDR) domains which bind human CD36 and endothelial protein C receptor (EPCR) with the same levels of affinity and at binding sites similar to those bound by P. falciparum. Moreover, P. reichenowi domains interfere with the protective function of the activated protein C-EPCR pathway on endothelial cells, a presumptive virulence trait in humans. These findings provide evidence for ancient evolutionary origins of two key cytoadhesion properties of P. falciparum that contribute to human infection and pathogenicity. IMPORTANCE Cytoadhesion of P. falciparum-infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum, it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P. falciparum. Our findings suggest that parasite adhesion traits associated with both mild and severe malaria have much earlier origins than previously appreciated and have important implications for virulence evolution in a major human pathogen.

19.
Clin Microbiol Infect ; 23(3): 211.e1-211.e4, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27773760

RESUMO

OBJECTIVES: Severe Plasmodium falciparum malaria (SM) involves cytoadhesion of parasitized red blood cells, mediated by P. falciparum erythrocyte membrane protein 1, which is encoded by var genes. Expression of var gene group A and B or encoding domain cassettes DC4, DC5, DC8 and DC13 has been implicated in SM in African children, but no data exist in the context of imported malaria. The aim of this study was to investigate var gene expression linked to clinical presentation and host factors in SM imported into France. METHODS: Expression level of var gene groups A, B, C, var1, var2csa, var3 and var genes encoding DC4, DC5, DC8 and DC13 was measured by quantitative RT-PCR and expressed in transcript units. Seventy SM and 48 uncomplicated malaria (UM) P. falciparum cases were analysed according to disease severity, epidemiological characteristics (migrants or travellers) and anti-P. falciparum antibodies. Cluster analysis was performed to identify gene expression profiles. RESULTS: Var1 and B/C expression were higher in UM than SM (0.66 (0-1.1) and 1.88 (1.3-2.4); p <0.04, respectively). Group C expression differed between migrants and travellers (0.21 (0-0.75) versus 0 (0-0); p 0.002). Group A differed in naive and pre-exposed patients (1.1 (0.7-1.5) versus 0.4 (0-1.1); p 0.01). Population clusters revealed increased expression from group A and B var genes, and DC4, DC8 and DC13 in SM. CONCLUSIONS: These results corroborate the implication of DC4, DC8 and DC13 in severe imported malaria cases as African children, and their expression depends of host factors.


Assuntos
Perfilação da Expressão Gênica , Malária Falciparum/patologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/biossíntese , Adulto , Feminino , França , Humanos , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de Doença , Adulto Jovem
20.
Mol Biochem Parasitol ; 201(1): 76-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26094597

RESUMO

Binding of host immunoglobulin is a common immune evasion mechanism demonstrated by microbial pathogens. Previous work showed that the malaria parasite Plasmodium falciparum binds the Fc-region of human IgM molecules, resulting in a coating of IgM on the surface of infected erythrocytes. IgM binding is a property of P. falciparum strains showing virulence-related phenotypes such as erythrocyte rosetting. The parasite ligands for IgM binding are members of the diverse P. falciparum Erythrocyte Membrane Protein One (PfEMP1) family. However, little is known about the amino acid sequence requirements for IgM binding. Here we studied an IgM binding domain from a rosette-mediating PfEMP1 variant, DBL4ζ of TM284var1, and found that the minimal IgM binding region mapped to the central region of the DBL domain, comprising all of subdomain 2 and adjoining parts of subdomains 1 and 3. Site-directed mutagenesis of charged amino acids within subdomain 2, predicted by molecular modelling to form the IgM binding site, showed no marked effect on IgM binding properties. Overall, this study identifies the minimal IgM binding region of a PfEMP1 domain, and indicates that the existing homology model of PfEMP1-IgM interaction is incorrect. Further work is needed to identify the specific interaction site for IgM within the minimal binding region of PfEMP1.


Assuntos
Imunoglobulina M/imunologia , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA