Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.266
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2314036121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857391

RESUMO

Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.


Assuntos
Biomassa , Ecossistema , Pergelissolo , Tibet , Áreas Alagadas , Plantas/metabolismo , Mudança Climática , Temperatura , Ciclo do Carbono , Desenvolvimento Vegetal/fisiologia , Solo/química , Pradaria
2.
Proc Natl Acad Sci U S A ; 121(6): e2306200121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285938

RESUMO

The assumption that vegetation improves air quality is prevalent in scientific, popular, and political discourse. However, experimental and modeling studies show the effect of green space on air pollutant concentrations in urban settings is highly variable and context specific. We revisited the link between vegetation and air quality using satellite-derived changes of urban green space and air pollutant concentrations from 2,615 established monitoring stations over Europe and the United States. Between 2010 and 2019, stations recorded declines in ambient NO2, (particulate matter) PM10, and PM2.5 (average of -3.14% y-1), but not O3 (+0.5% y-1), pointing to the general success of recent policy interventions to restrict anthropogenic emissions. The effect size of total green space on air pollution was weak and highly variable, particularly at the street scale (15 to 60 m radius) where vegetation can restrict ventilation. However, when isolating changes in tree cover, we found a negative association with air pollution at borough to city scales (120 to 16,000 m) particularly for O3 and PM. The effect of green space was smaller than the pollutant deposition and dispersion effects of meteorological drivers including precipitation, humidity, and wind speed. When averaged across spatial scales, a one SD increase in green space resulted in a 0.8% (95% CI: -3.5 to 2%) decline in air pollution. Our findings suggest that while urban greening may improve air quality at the borough-to-city scale, the impact is moderate and may have detrimental street-level effects depending on aerodynamic factors like vegetation type and urban form.

3.
Proc Natl Acad Sci U S A ; 120(1): e2215667120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36580594

RESUMO

In semiarid regions, vegetated ecosystems can display abrupt and unexpected changes, i.e., transitions to different states, due to drifting or time-varying parameters, with severe consequences for the ecosystem and the communities depending on it. Despite intensive research, the early identification of an approaching critical point from observations is still an open challenge. Many data analysis techniques have been proposed, but their performance depends on the system and on the characteristics of the observed data (the resolution, the level of noise, the existence of unobserved variables, etc.). Here, we propose an entropy-based approach to identify an upcoming transition in spatiotemporal data. We apply this approach to observational vegetation data and simulations from two models of vegetation dynamics to infer the arrival of an abrupt shift to an arid state. We show that the permutation entropy (PE) computed from the probabilities of two-dimensional ordinal patterns may provide an early warning indicator of an approaching tipping point, as it may display a maximum (or minimum) before decreasing (or increasing) as the transition approaches. Like other spatial early warning indicators, the spatial permutation entropy does not need a time series of the system dynamics, and it is suited for spatially extended systems evolving on long time scales, like vegetation plots. We quantify its performance and show that, depending on the system and data, the performance can be better, similar or worse than the spatial correlation. Hence, we propose the spatial PE as an additional indicator to try to anticipate regime shifts in vegetated ecosystems.


Assuntos
Ecossistema , Entropia , Probabilidade , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 120(7): e2201947120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745789

RESUMO

We are in a modern biodiversity crisis that will restructure community compositions and ecological functions globally. Large mammals, important contributors to ecosystem function, have been affected directly by purposeful extermination and indirectly by climate and land-use changes, yet functional turnover is rarely assessed on a global scale using metrics based on functional traits. Using ecometrics, the study of functional trait distributions and functional turnover, we examine the relationship between vegetation cover and locomotor traits for artiodactyl and carnivoran communities. We show that the ability to detect a functional relationship is strengthened when locomotor traits of both primary consumers (artiodactyls, n = 157 species) and secondary consumers (carnivorans, n = 138 species) are combined into one trophically integrated ecometric model. Overall, locomotor traits of 81% of communities accurately estimate vegetation cover, establishing the advantage of trophically integrated ecometric models over single-group models (58 to 65% correct). We develop an innovative approach within the ecometrics framework, using ecometric anomalies to evaluate mismatches in model estimates and observed values and provide more nuance for understanding relationships between functional traits and vegetation cover. We apply our integrated model to five paleontological sites to illustrate mismatches in the past and today and to demonstrate the utility of the model for paleovegetation interpretations. Observed changes in community traits and their associated vegetations across space and over time demonstrate the strong, rapid effect of environmental filtering on community traits. Ultimately, our trophically integrated ecometric model captures the cascading interactions between taxa, traits, and changing environments.


Assuntos
Biodiversidade , Ecossistema , Animais , Mamíferos , Clima
5.
Proc Natl Acad Sci U S A ; 120(3): e2216024120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623188

RESUMO

Seagrasses provide multiple ecosystem services and act as intense carbon sinks in coastal regions around the globe but are threatened by multiple anthropogenic pressures, leading to enhanced seagrass mortality that reflects in the spatial self-organization of the meadows. Spontaneous spatial vegetation patterns appear in such different ecosystems as drylands, peatlands, salt marshes, or seagrass meadows, and the mechanisms behind this phenomenon are still an open question in many cases. Here, we report on the formation of vegetation traveling pulses creating complex spatiotemporal patterns and rings in Mediterranean seagrass meadows. We show that these structures emerge due to an excitable behavior resulting from the coupled dynamics of vegetation and porewater hydrogen sulfide, toxic to seagrass, in the sediment. The resulting spatiotemporal patterns resemble those formed in other physical, chemical, and biological excitable media, but on a much larger scale. Based on theory, we derive a model that reproduces the observed seascapes and predicts the annihilation of these circular structures as they collide, a distinctive feature of excitable pulses. We show also that the patterns in field images and the empirically resolved radial profiles of vegetation density and sediment sulfide concentration across the structures are consistent with predictions from the theoretical model, which shows these structures to have diagnostic value, acting as a harbinger of the terminal state of the seagrass meadows prior to their collapse.


Assuntos
Ecossistema , Modelos Teóricos , Áreas Alagadas , Sequestro de Carbono , Sulfetos
6.
Proc Natl Acad Sci U S A ; 120(11): e2208120120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877837

RESUMO

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.


Assuntos
Incêndios , Traqueófitas , Incêndios Florestais , Clima , Mudança Climática
7.
Proc Natl Acad Sci U S A ; 120(43): e2306815120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844232

RESUMO

Recent global changes associated with anthropogenic activities are impacting ecological systems globally, giving rise to the Anthropocene. Critical reorganization of biological communities and biodiversity loss are expected to accelerate as anthropogenic global change continues. Long-term records offer context for understanding baseline conditions and those trajectories that are beyond the range of normal fluctuation seen over recent millennia: Are we causing changes that are fundamentally different from changes in the past? Using a rich dataset of late Quaternary pollen records, stored in the open-access and community-curated Neotoma database, we analyzed changes in biodiversity and community composition since the end Pleistocene in North America. We measured taxonomic richness, short-term taxonomic loss and gain, first/last appearances (FAD/LAD), and abrupt community change. For all analyses, we incorporated age-model uncertainty and accounted for differences in sample size to generate conservative estimates. The most prominent signals of elevated vegetation change were seen during the Pleistocene-Holocene transition and since 200 calendar years before present (cal YBP). During the Pleistocene-Holocene transition, abrupt changes and FADs were elevated, and from 200 to -50 cal YBP, we found increases in short-term taxonomic loss, FADs, LADs, and abrupt changes. Taxonomic richness declined from ~13,000 cal YBP until about 6,000 cal YBP and then increased until the present, reaching levels seen during the end Pleistocene. Regionally, patterns were highly variable. These results show that recent changes associated with anthropogenic impacts are comparable to the landscape changes that took place as we moved from a glacial to interglacial world.


Assuntos
Biodiversidade , Ecossistema , Pólen , América do Norte , Biota
8.
Proc Natl Acad Sci U S A ; 120(50): e2311528120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060562

RESUMO

Regular spatial patterns of vegetation are a common sight in drylands. Their formation is a population-level response to water stress that increases water availability for the few via partial plant mortality. At the individual level, plants can also adapt to water stress by changing their phenotype. Phenotypic plasticity of individual plants and spatial patterning of plant populations have extensively been studied independently, but the likely interplay between the two robust mechanisms has remained unexplored. In this paper, we incorporate phenotypic plasticity into a multi-level theory of vegetation pattern formation and use a fascinating ecological phenomenon, the Namibian "fairy circles," to demonstrate the need for such a theory. We show that phenotypic changes in the root structure of plants, coupled with pattern-forming feedback within soil layers, can resolve two puzzles that the current theory fails to explain: observations of multi-scale patterns and the absence of theoretically predicted large-scale stripe and spot patterns along the rainfall gradient. Importantly, we find that multi-level responses to stress unveil a wide variety of more effective stress-relaxation pathways, compared to single-level responses, implying a previously underestimated resilience of dryland ecosystems.


Assuntos
Desidratação , Ecossistema , Plantas/metabolismo , Retroalimentação , Adaptação Fisiológica , Solo/química
9.
Proc Natl Acad Sci U S A ; 119(32): e2202767119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914136

RESUMO

Flash drought often leads to devastating effects in multiple sectors and presents a unique challenge for drought early warning due to its sudden onset and rapid intensification. Existing drought monitoring and early warning systems are based on various hydrometeorological variables reaching thresholds of unusually low water content. Here, we propose a flash drought early warning approach based on spaceborne measurements of solar-induced chlorophyll fluorescence (SIF), a proxy of photosynthesis that captures plant response to multiple environmental stressors. Instead of negative SIF anomalies, we focus on the subseasonal trajectory of SIF and consider slower-than-usual increase or faster-than-usual decrease of SIF as an early warning for flash drought onset. To quantify the deviation of SIF trajectory from the climatological norm, we adopt existing formulas for a rapid change index (RCI) and apply the RCI analysis to spatially downscaled 8-d SIF data from GOME-2 during 2007-2018. Using two well-known flash drought events identified by the operational US Drought Monitor (in 2012 and 2017), we show that SIF RCI can produce strong predictive signals of flash drought onset with a lead time of 2 wk to 2 mo and can also predict drought recovery with several weeks of lead time. While SIF RCI shows great early warning potential, its magnitude diminishes after drought onset and therefore cannot reflect the current drought intensity. With its long lead time and direct relevance for agriculture, SIF RCI can support a global early warning system for flash drought and is especially useful over regions with sparse hydrometeorological data.


Assuntos
Clorofila , Secas , Fluorescência , Previsões , Clorofila/química , Clorofila/metabolismo , Clorofila/efeitos da radiação , Previsões/métodos , Hidrologia , Meteorologia , Fotossíntese , Luz Solar , Estados Unidos
10.
Proc Natl Acad Sci U S A ; 119(20): e2101186119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533276

RESUMO

Fire is an important climate-driven disturbance in terrestrial ecosystems, also modulated by human ignitions or fire suppression. Changes in fire emissions can feed back on the global carbon cycle, but whether the trajectories of changing fire activity will exacerbate or attenuate climate change is poorly understood. Here, we quantify fire dynamics under historical and future climate and human demography using a coupled global climate­fire­carbon cycle model that emulates 34 individual Earth system models (ESMs). Results are compared with counterfactual worlds, one with a constant preindustrial fire regime and another without fire. Although uncertainty in projected fire effects is large and depends on ESM, socioeconomic trajectory, and emissions scenario, we find that changes in human demography tend to suppress global fire activity, keeping more carbon within terrestrial ecosystems and attenuating warming. Globally, changes in fire have acted to warm climate throughout most of the 20th century. However, recent and predicted future reductions in fire activity may reverse this, enhancing land carbon uptake and corresponding to offsetting ∼5 to 10 y of global CO2 emissions at today's levels. This potentially reduces warming by up to 0.11 °C by 2100. We show that climate­carbon cycle feedbacks, as caused by changing fire regimes, are most effective at slowing global warming under lower emission scenarios. Our study highlights that ignitions and active and passive fire suppression can be as important in driving future fire regimes as changes in climate, although with some risk of more extreme fires regionally and with implications for other ecosystem functions in fire-dependent ecosystems.


Assuntos
Incêndios , Aquecimento Global , Carbono , Dióxido de Carbono , Mudança Climática , Demografia , Ecossistema , Humanos
11.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193983

RESUMO

Researchers have long debated the degree to which Native American land use altered landscapes in the Americas prior to European colonization. Human-environment interactions in southern South America are inferred from new pollen and charcoal data from Laguna El Sosneado and their comparison with high-resolution paleoenvironmental records and archaeological/ethnohistorical information at other sites along the eastern Andes of southern Argentina and Chile (34-52°S). The records indicate that humans, by altering ignition frequency and the availability of fuels, variously muted or amplified the effects of climate on fire regimes. For example, fire activity at the northern and southern sites was low at times when the climate and vegetation were suitable for burning but lacked an ignition source. Conversely, abundant fires set by humans and infrequent lightning ignitions occurred during periods when warm, dry climate conditions coincided with ample vegetation (i.e., fuel) at midlatitude sites. Prior to European arrival, changes in Native American demography and land use influenced vegetation and fire regimes locally, but human influences were not widely evident until the 16th century, with the introduction of nonnative species (e.g., horses), and then in the late 19th century, as Euro-Americans targeted specific resources to support local and national economies. The complex interactions between past climate variability, human activities, and ecosystem dynamics at the local scale are overlooked by approaches that infer levels of land use simply from population size or that rely on regionally composited data to detect drivers of past environmental change.


Assuntos
Efeitos Antropogênicos , Ecossistema , Mudança Climática , Humanos , América do Sul
12.
New Phytol ; 241(5): 2287-2299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126264

RESUMO

Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi-permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.


Les changements globaux accélèrent les processus de colonisation et d'extinction locales d'espèces, aboutissant à des gains ou à des pertes de lignées évolutives uniques. Ces gains et pertes se produisent-ils de manière aléatoire dans l'arbre phylogénétique ? Nous avons mesuré: les changements de diversité phylogénétique; et la parenté phylogénétique des espèces végétales gagnées ou perdues dans 2672 placettes semi-permanentes disposées dans le sous-bois de forêts tempérées d'Europe sur une période moyenne de 40 ans. Une fois corrigée par la richesse spécifique, la diversité phylogénétique a légèrement augmenté au cours du temps dans les différentes placettes. Les espèces perdues ont une plus grande parenté phylogénétique que les espèces gagnées. Les espèces gagnées sont donc issues d'un plus grand nombre de lignées évolutives que les espèces perdues. Certaines lignées ont gagné ou perdu davantage d'espèces que ce qui est prédit par le hasard : les Ericaceae, les Fabaceae et les Orchidaceae ayant davantage perdu, tandis que les Amaranthaceae, les Cyperaceae, et les Rosaceae ont plus gagné. Il n'y a pas de signal phylogénétique des gains ou pertes d'espèces en réponse aux changements de conditions macroclimatiques ou des dépôts atmosphériques d'azote. Alors que les changements globaux d'origine anthropique s'intensifient, les sous-bois des forêts tempérées connaissent des gains et des pertes de certaines lignées évolutives et de certaines stratégies écologiques, sans que la diversité phylogénétique moyenne ne s'en trouve véritablement affectée.


El cambio global ha acelerado las extinciones y colonizaciones a escala local, lo que a menudo ha supuesto pérdidas y ganancias de linajes evolutivos con características únicas. Ahora bien, ¿estas pérdidas y ganancias ocurren aleatoriamente a lo largo de la filogenia? Cuantificamos: los cambios temporales en la diversidad filogenética de las plantas; y la relación filogenética de las especies perdidas y ganadas en 2.672 parcelas de vegetación semipermanente en sotobosques templados europeos y re-muestreadas durante un período promedio de 40 años. Al controlar por las diferencias en la riqueza de especies, la diversidad filogenética aumentó ligeramente con el tiempo y entre parcelas. Además, las especies perdidas dentro de las parcelas exhibieron un mayor grado de relación filogenética que las especies ganadas. Esto implica que las especies ganadas se originaron en un conjunto de linajes evolutivos más diversos que las especies perdidas. Ciertos linajes también perdieron y ganaron más especies de las esperadas aleatoriamente: Ericaceae, Fabaceae y Orchidaceae experimentaron pérdidas y Amaranthaceae, Cyperaceae y Rosaceae mostraron ganancias. Las pérdidas y ganancias de especies no mostraron ninguna señal filogenética significativa en respuesta a los cambios en las condiciones macro-climáticas y la deposición de nitrógeno. A medida que se intensifica el cambio global antropogénico, los sotobosques temperados experimentan pérdidas y ganancias en ramas filogenéticas y estrategias ecológicas específicas, mientras que la diversidad filogenética media general permanece relativamente estable.


Assuntos
Biodiversidade , Nitrogênio , Filogenia , Mudança Climática , Florestas , Plantas
13.
New Phytol ; 242(3): 916-934, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482544

RESUMO

Deserts represent key carbon reservoirs, yet as these systems are threatened this has implications for biodiversity and climate change. This review focuses on how these changes affect desert ecosystems, particularly plant root systems and their impact on carbon and mineral nutrient stocks. Desert plants have diverse root architectures shaped by water acquisition strategies, affecting plant biomass and overall carbon and nutrient stocks. Climate change can disrupt desert plant communities, with droughts impacting both shallow and deep-rooted plants as groundwater levels fluctuate. Vegetation management practices, like grazing, significantly influence plant communities, soil composition, root microorganisms, biomass, and nutrient stocks. Shallow-rooted plants are particularly susceptible to climate change and human interference. To safeguard desert ecosystems, understanding root architecture and deep soil layers is crucial. Implementing strategic management practices such as reducing grazing pressure, maintaining moderate harvesting levels, and adopting moderate fertilization can help preserve plant-soil systems. Employing socio-ecological approaches for community restoration enhances carbon and nutrient retention, limits desert expansion, and reduces CO2 emissions. This review underscores the importance of investigating belowground plant processes and their role in shaping desert landscapes, emphasizing the urgent need for a comprehensive understanding of desert ecosystems.


Assuntos
Carbono , Ecossistema , Humanos , Biodiversidade , Plantas , Solo , Clima Desértico , Raízes de Plantas
14.
New Phytol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101271

RESUMO

All plant populations fluctuate in time. Apart from the dynamics imposed by external forces such as climate, these fluctuations can be driven by endogenous processes taking place within the community. In this study, we aimed to identify potential role of soil-borne microbial communities in driving endogenous fluctuations of plant populations. We combined a unique, 35-yr long abundance data of 11 common plant species from a species-rich mountain meadow with development of their soil microbiome (pathogenic fungi, arbuscular mycorrhizal fungi and oomycetes) observed during 4 yr of experimental cultivation in monocultures. Plant species which abundance fluctuated highly in the field (particularly legumes) accumulated plant pathogens in their soil mycobiome. We also identified increasing proportion of mycoparasitic fungi under highly fluctuating legume species, which may indicate an adaptation of these species to mitigate the detrimental effects of pathogens. Our study documented that long-term fluctuations in the abundance of plant species in grassland communities can be explained by the accumulation of plant pathogens in plant-soil microbiome. By contrast, we found little evidence of the role of mutualists in plant population fluctuations. These findings offer new insights for understanding mechanisms driving both long-term vegetation dynamics and patterns of species coexistence and richness.

15.
New Phytol ; 242(3): 1018-1028, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436203

RESUMO

Biodiversity world-wide has been under increasing anthropogenic pressure in the past century. The long-term response of biotic communities has been tackled primarily by focusing on species richness, community composition and functionality. Equally important are shifts between entire communities and habitat types, which remain an unexplored level of biodiversity change. We have resurveyed > 2000 vegetation plots in temperate forests in central Europe to capture changes over an average of five decades. The plots were assigned to eight broad forest habitat types using an algorithmic classification system. We analysed transitions between the habitat types and interpreted the trend in terms of changes in environmental conditions. We identified a directional shift along the combined gradients of canopy openness and soil nutrients. Nutrient-poor open-canopy forest habitats have declined strongly in favour of fertile closed-canopy habitats. However, the shift was not uniform across the whole gradients. We conclude that the shifts in habitat types represent a century-long successional trend with significant consequences for forest biodiversity. Open forest habitats should be urgently targeted for plant diversity restoration through the implementation of active management. The approach presented here can be applied to other habitat types and at different spatio-temporal scales.


Assuntos
Ecossistema , Florestas , Biodiversidade , Plantas , Biota
16.
New Phytol ; 242(2): 351-371, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38416367

RESUMO

Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.


Las características de las raíces de los bosques tropicales y las estrategias de adquisición de recursos están subrepresentadas en modelos de vegetación, lo que dificulta la predicción del efecto de cambio de clima para estos ecosistemas ricos en carbono. Los bosques tropicales a menudo tienen combinaciones únicas a nivel mundial de alta biodiversidad taxonómica y funcional, estacionalidad de precipitación, y suelos infértiles, dando lugar a patrones distintos en los rasgos y funciones de las raíces en comparación con los ecosistemas de latitudes más altas. Integramos los avances recientes en nuestra comprensión de la función subterránea de los bosques tropicales en modelos de vegetación, centrándonos en la adquisición de agua y nutrientes. Ofrecemos comparaciones de avances recientes en la comprensión empírica y de modelos de las características de las raíces que representan procesos funcionales importantes en los bosques tropicales. Nos centramos en: (1) estrategias de raíces finas para adquisición de recursos del suelo, (2) acoplamiento y compensaciones entre adquisición del agua y de nutrientes, y (3) vínculos entre funciones sobre tierra y debajo del superficie en bosques tropicales. Sugerimos vías para representar estas comunidades de plantas extremadamente diversas en grupos computacionalmente manejables y ecológicamente significativos en modelos. Los bosques tropicales se están calentando, tienen cambios en los regímenes de lluvias, y tienen una exacerbación de la escasez de nutrientes del suelo causada por el elevado CO2 atmosférico. La representación precisa de las funciones de los bosques tropicales en modelos es crucial para comprender las interacciones de este bioma con el clima.


Assuntos
Ecossistema , Raízes de Plantas , Nitrogênio , Florestas , Solo , Plantas , Água , Clima Tropical , Árvores
17.
New Phytol ; 242(5): 1891-1910, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649790

RESUMO

Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, we found that average WUD varied more among biomes than plant functional types (i.e. deciduous/evergreen broadleaves and conifers), illustrating the importance of the hydroclimate, especially precipitation seasonality, on WUD. By combining records of rooting depth with WUD, we observed a consistently deeper maximum rooting depth than WUD with the largest differences in arid regions - indicating that deep taproots act as lifelines while not contributing to the majority of water uptake. The most ubiquitous observation across the literature was that woody plants switch water sources to soil layers with the highest water availability within short timescales. Hence, seasonal shifts to deep soil layers occur across the globe when shallow soils are drying out, allowing continued transpiration and hydraulic safety. While there are still significant gaps in our understanding of WUD, the consistency across global ecosystems allows integration of existing knowledge into the next generation of vegetation process models.


Assuntos
Árvores , Água , Água/metabolismo , Árvores/fisiologia , Solo/química , Estações do Ano , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Ecossistema , Geografia
18.
New Phytol ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39175085

RESUMO

Soil moisture shapes ecological patterns and processes, but it is difficult to continuously measure soil moisture variability across the landscape. To overcome these limitations, soil moisture is often bioindicated using community-weighted means of the Ellenberg indicator values of vascular plant species. However, the ecology and distribution of plant species reflect soil water supply as well as atmospheric water demand. Therefore, we hypothesized that Ellenberg moisture values can also reflect atmospheric water demand expressed as a vapour pressure deficit (VPD). To test this hypothesis, we disentangled the relationships among soil water content, atmospheric vapour pressure deficit, and Ellenberg moisture values in the understory plant communities of temperate broadleaved forests in central Europe. Ellenberg moisture values reflected atmospheric VPD rather than soil water content consistently across local, landscape, and regional spatial scales, regardless of vegetation plot size, depth as well as method of soil moisture measurement. Using in situ microclimate measurements, we discovered that forest plant indicator values for moisture reflect an atmospheric VPD rather than soil water content. Many ecological patterns and processes correlated with Ellenberg moisture values and previously attributed to soil water supply are thus more likely driven by atmospheric water demand.

19.
New Phytol ; 243(2): 797-810, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38807290

RESUMO

Automated pollen analysis is not yet efficient on environmental samples containing many pollen taxa and debris, which are typical in most pollen-based studies. Contrary to classification, detection remains overlooked although it is the first step from which errors can propagate. Here, we investigated a simple but efficient method to automate pollen detection for environmental samples, optimizing workload and performance. We applied the YOLOv5 algorithm on samples containing debris and c. 40 Mediterranean plant taxa, designed and tested several strategies for annotation, and analyzed variation in detection errors. About 5% of pollen grains were left undetected, while 5% of debris were falsely detected as pollen. Undetected pollen was mainly in poor-quality images, or of rare and irregular morphology. Pollen detection remained effective when applied to samples never seen by the algorithm, and was not improved by spending time to provide taxonomic details. Pollen detection of a single model taxon reduced annotation workload, but was only efficient for morphologically differentiated taxa. We offer guidelines to plant scientists to analyze automatically any pollen sample, providing sound criteria to apply for detection while using common and user-friendly tools. Our method contributes to enhance the efficiency and replicability of pollen-based studies.


Assuntos
Algoritmos , Pólen , Automação , Meio Ambiente , Processamento de Imagem Assistida por Computador/métodos
20.
Plant Cell Environ ; 47(8): 2999-3014, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38644635

RESUMO

Crown removal revitalises sand-fixing shrubs that show declining vigour with age in drought-prone environments; however, the underlying mechanisms are poorly understood. Here, we addressed this knowledge gap by comparing the growth performance, xylem hydraulics and plant carbon economy across different plant ages (10, 21 and 33 years) and treatments (control and crown removal) using a representative sand-fixing shrub (Caragana microphylla Lam.) in northern China. We found that growth decline with plant age was accompanied by simultaneous decreases in soil moisture, plant hydraulic efficiency and photosynthetic capacity, suggesting that these interconnected changes in plant water relations and carbon economy were responsible for this decline. Following crown removal, quick resprouting, involving remobilisation of root nonstructural carbohydrate reserves, contributed to the reconstruction of an efficient hydraulic system and improved plant carbon status, but this became less effective in older shrubs. These age-dependent effects of carbon economy and hydraulics on plant growth vigour provide a mechanistic explanation for the age-related decline and revitalisation of sand-fixing shrubs. This understanding is crucial for the development of suitable management strategies for shrub plantations constructed with species having the resprouting ability and contributes to the sustainability of ecological restoration projects in water-limited sandy lands.


Assuntos
Carbono , Água , Xilema , Carbono/metabolismo , Água/metabolismo , Xilema/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/fisiologia , Caragana/fisiologia , Caragana/crescimento & desenvolvimento , Caragana/metabolismo , Fotossíntese/fisiologia , Areia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Solo/química , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA