Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Immunol ; 68(4): 148-154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402407

RESUMO

More than 100 different herpes simplex virus 1 (HSV-1) genes belong to three major classes, and their expression is coordinately regulated and sequentially ordered in a cascade. This complex HSV-1 gene expression is thought to be regulated by various viral and host cellular proteins. A host cellular protein, Myb-binding protein 1A (MYBBP1A), has been reported to be associated with HSV-1 viral genomes in conjunction with viral and cellular proteins critical for DNA replication, repair, and transcription within infected cells. However, the role(s) of MYBBP1A in HSV-1 infections remains unclear. In this study, we examined the effects of MYBBP1A depletion on HSV-1 infection and found that MYBBP1A depletion significantly reduced HSV-1 replication, as well as the accumulation of several viral proteins. These results suggest that MYBBP1A is an important host cellular factor that contributes to HSV-1 replication, plausibly by promoting viral gene expression.


Assuntos
Proteínas de Ligação a DNA , Herpes Simples , Herpesvirus Humano 1 , Proteínas de Ligação a RNA , Fatores de Transcrição , Humanos , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/genética , Proteínas Virais/farmacologia , Replicação Viral
2.
J Virol ; 96(7): e0190421, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35285685

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of pediatric acute respiratory infection worldwide. There are currently no approved vaccines or antivirals to combat RSV disease. A few transformed cell lines and two historic strains have been extensively used to study RSV. Here, we reported a thorough molecular and cell biological characterization of HEp-2 and A549 cells infected with one of four strains of RSV representing both major subgroups as well as historic and more contemporary genotypes (RSV/A/Tracy [GA1], RSV/A/Ontario [ON], RSV/B/18537 [GB1], and RSV/B/Buenos Aires [BA]) via measurements of viral replication kinetics and viral gene expression, immunofluorescence-based imaging of gross cellular morphology and cell-associated RSV, and measurements of host response, including transcriptional changes and levels of secreted cytokines and growth factors. IMPORTANCE Infection with the respiratory syncytial virus (RSV) early in life is essentially guaranteed and can lead to severe disease. Most RSV studies have involved either of two historic RSV/A strains infecting one of two cell lines, HEp-2 or A549 cells. However, RSV contains ample variation within two evolving subgroups (A and B), and HEp-2 and A549 cell lines are genetically distinct. Here, we measured viral action and host response in both HEp-2 and A549 cells infected with four RSV strains from both subgroups and representing both historic and more contemporary strains. We discovered a subgroup-dependent difference in viral gene expression and found A549 cells were more potently antiviral and more sensitive, albeit subtly, to viral variation. Our findings revealed important differences between RSV subgroups and two widely used cell lines and provided baseline data for experiments with model systems better representative of natural RSV infection.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Células A549 , Antivirais/farmacologia , Linhagem Celular , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Índice de Gravidade de Doença , Especificidade da Espécie , Replicação Viral
3.
J Med Virol ; 95(1): e28387, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478267

RESUMO

Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) is a distinct subtype of gastric cancer (GC) distinguished by the presence of the EBV genome and limited viral gene expression within malignant epithelial cells. EBV infection is generally thought to be a relatively late event following atrophic gastritis in carcinogenesis, which implies the heterogeneity of EBVaGC. To facilitate the study of the role of EBV in EBVaGC, we established two EBV-positive GC cell lines (AGS-EBV and HGC27-EBV) with an epitheliotropic EBV strain M81 and characterized viral and cellular gene expression profiles in comparison to SNU719, a naturally derived EBV-positive GC cell line. Like SNU719, AGS-EBV and HGC27-EBV stably maintained their EBV genomes and expressed EBV-encoded small RNAs and nuclear antigen EBNA1. Comprehensive analysis of the expression of EBV-encoded miRNAs within the BamHI-A region rightward transcript region, and the transcripts of EBV latent and lytic genes in cell lines, as well as xenografts, reveals that AGS-EBV and HGC27-EBV cells undergo distinct viral expression profiles. A very small fraction of AGS-EBV and SNU719 cells can spontaneously produce infectious progeny virions, while HGC27-EBV does not. AGS-EBV (both M81 and Akata) cells largely mimic SNU719 cells in viral gene expression profiles, and altered cellular functions and pathways perturbed by EBV infection. Phylogenetic analysis of the EBV genome shows both M81 and Akata EBV strains are closely related to clinical EBVaGC isolates. Taken together, these two newly established EBV-positive GC cell lines can serve as models to further investigate the role of EBV in different contexts of gastric carcinogenesis and identify novel therapeutics against EBVaGC.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Carcinogênese , Linhagem Celular/metabolismo , Linhagem Celular/virologia , Herpesvirus Humano 4/genética , Filogenia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/virologia
4.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33568511

RESUMO

Transposon-based insertional mutagenesis screens have assessed how disruption of numerous human cytomegalovirus (HCMV) open reading frames (ORFs) impacts in vitro viral replication. Insertional mutagenesis of the HCMV UL30 gene was previously found to substantially inhibit production of viral progeny. However, there are a number of putative UL30-associated ORFs, and it is unclear how they impact viral replication. Here, we report on the contributions of the eight UL30-associated ORFs to infection. We find that deletion of the canonically annotated UL30 ORF substantially reduces production of infectious virus at both high and low multiplicities of infection (MOI). This deletion likely has complex effects on viral replication, as we find that it reduces the expression of neighboring non-UL30-associated ORFs. Mutation of the initiating methionine of the canonical UL30 ORF indicated that it is dispensable for high- and low-MOI infection in the highly passaged AD169 strain, although it is important for low-MOI infection in the less-passaged TB40/E strain. Comutation of eight methionines in the UL30 region results in a low-MOI viral replication defect, as does mutation of the TATA box responsible for the most abundant UL30 transcript, which is found to be necessary for the accumulation of multiple UL30-associated protein isoforms during infection. In total, our data indicate the importance of the UL30-associated ORFs during low-MOI HCMV infection and further highlight the difficulty associated with the functional interrogation of broadly disruptive mutations: e.g., large deletions or transposon insertions.IMPORTANCE Viral genes and their products are the critical determinants of viral infection. Human cytomegalovirus (HCMV) encodes many gene products whose roles during viral infection have not been assessed. Elucidation of the contributions that various HCMV gene products make to infection provides insight into the infectious program, which could potentially be used to limit HCMV-associated morbidity, a major issue during congenital infection and in immunosuppressed populations. Here, we explored the role of HCMV's UL30-associated gene products and found that they are important for HCMV replication. Future work elucidating the mechanisms through which they contribute to viral infection could highlight novel avenues for therapeutic intervention.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus , Regulação Viral da Expressão Gênica , Fases de Leitura Aberta , Replicação Viral/genética , Linhagem Celular , Citomegalovirus/genética , Citomegalovirus/patogenicidade , DNA Viral , Fibroblastos , Genes Virais , Humanos
5.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806257

RESUMO

The effect of the antiviral peptide TAT-I24 on viral gene expression in cells infected with murine cytomegalovirus (MCMV) was investigated. The expression of immediate-early, early and late genes was highly induced upon infection with MCMV. In the presence of the peptide, the expression of all tested genes was sustainably reduced to a similar extent, independent of whether they were immediate-early, early or late genes. In contrast, the expression of host genes, such as NF-κB inhibitor alpha (Nfkbia), interferon-induced protein with tetratricopeptide repeats 1 (Ifit1), chemokine (C-X-C motif) ligand 10 (Cxcl10), chemokine (C-C motif) ligand 7 (Ccl7) and chemokine (C-C motif) ligand 5 (Ccl5), which are induced early upon virus infection, was only transiently suppressed in peptide-treated cells. The expression of other host genes which are affected by MCMV infection and play a role in endoplasmic reticulum stress or DNA-damage repair was not inhibited by the peptide. A combination of TAT-I24 with the nucleoside analogue cidofovir showed enhancement of the antiviral effect, demonstrating that viral replication can be more efficiently inhibited with a combination of drugs acting at different stages of the viral life-cycle.


Assuntos
Muromegalovirus , Animais , Antivirais/farmacologia , Expressão Gênica , Ligantes , Camundongos , Muromegalovirus/genética , Peptídeos/farmacologia , Replicação Viral
6.
J Gen Virol ; 102(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34042564

RESUMO

Viral latency is an active process during which the host cell environment is optimized for latent carriage and reactivation. This requires control of both viral and host gene promoters and enhancers often at the level of chromatin, and several viruses co-opt the chromatin organiser CTCF to control gene expression during latency. While CTCF has a role in the latencies of alpha- and gamma-herpesviruses, it was not known whether CTCF played a role in the latency of the beta-herpesvirus human cytomegalovirus (HCMV). Here, we show that HCMV latency is associated with increased CTCF expression and CTCF binding to the viral major lytic promoter, the major immediate early promoter (MIEP). This increase in CTCF binding is dependent on the virally encoded G protein coupled receptor, US28, and contributes to suppression of MIEP-driven transcription, a hallmark of latency. Furthermore, we show that latency-associated upregulation of CTCF represses expression of the neutrophil chemoattractants S100A8 and S100A9 which we have previously shown are downregulated during HCMV latency. As with downregulation of the MIEP, CTCF binding to the enhancer region of S100A8/A9 drives their suppression, again in a US28-dependent manner. Taken together, we identify CTCF upregulation as an important mechanism for optimizing latent carriage of HCMV at both the levels of viral and cellular gene expression.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Receptores de Quimiocinas/metabolismo , Proteínas Virais/metabolismo , Latência Viral , Fator de Ligação a CCCTC/genética , Calgranulina A/genética , Calgranulina B/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Genes Precoces/genética , Interações Hospedeiro-Patógeno , Humanos , Monócitos/virologia , Regiões Promotoras Genéticas
7.
Avian Pathol ; 50(5): 447-452, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34545745

RESUMO

Routine culturing of goose haemorrhagic polyomavirus (GHPV) is cumbersome, and limited data are available about its replication and gene expression profile. In this study, goose embryo fibroblast cells were infected with GHPV for temporal measurement of the viral genome copy number and mRNA levels with quantitative PCR. Accumulation of small and large tumour antigen-encoding mRNAs was detected as early as 9 hours post-infection (hpi), while high level expression of the capsid protein encoding VP1-VP3, and ORF-X mRNAs was first detected at 24 hpi. Elevation of GHPV genome copy number was noted at 48 hpi. The results indicate that the gene expression profile of GHPV is similar to that described for mammalian polyomaviruses.RESEARCH HIGHLIGHTS GHPV was propagated in culture of primary goose embryo fibroblast cells.The transcription commenced before the onset of viral DNA replication.The transcription patterns of GHPV and mammalian polyomaviruses were comparable.


Assuntos
Doenças das Aves/virologia , Gansos/virologia , Infecções por Polyomavirus/veterinária , Polyomavirus , Animais , Replicação do DNA , DNA Viral , Polyomavirus/genética , RNA Mensageiro/genética , Transcriptoma , Replicação Viral
8.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30602606

RESUMO

Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons. Physical, emotional, and chemical stresses are linked to increasing the incidence of reactivation from latency, but the mechanism of action is not well understood. In general, stress increases corticosteroid levels, leading to activation of the glucocorticoid receptor (GR), a pioneer transcription factor. Consequently, we hypothesized that stress-mediated activation of the GR can stimulate productive infection and viral gene expression. New studies demonstrated that the GR-specific antagonist (CORT-108297) significantly reduced HSV-1 productive infection in mouse neuroblastoma cells (Neuro-2A). Additional studies demonstrated that the activated GR and Krüppel-like transcription factor 15 (KLF15) cooperatively transactivated the infected cell protein 0 (ICP0) promoter, a crucial viral regulatory protein. Interestingly, the synthetic corticosteroid dexamethasone and GR or KLF15 alone had little effect on ICP0 promoter activity in transfected Neuro-2A or Vero cells. Chromatin immunoprecipitation (ChIP) studies revealed that the GR and KLF15 occupied ICP0 promoter sequences important for transactivation at 2 and 4 h after infection; however, binding was not readily detected at 6 h after infection. Similar results were obtained for cells transfected with the full-length ICP0 promoter. ICP0 promoter sequences lack a consensus "whole" GR response element (GRE) but contain putative half-GREs that were important for dexamethasone induced promoter activity. The activated GR stimulates expression of, and interacts with, KLF15; consequently, these data suggest KLF15 and the GR form a feed-forward loop that activates viral gene expression and productive infection following stressful stimuli.IMPORTANCE The ability of herpes simplex virus 1 (HSV-1) to periodically reactivate from latency results in virus transmission and recurrent disease. The incidence of reactivation from latency is increased by chronic or acute stress. Stress increases the levels of corticosteroids, which bind and activate the glucocorticoid receptor (GR). Since GR activation is an immediate early response to stress, we tested whether the GR influences productive infection and the promoter that drives infected cell protein 0 (ICP0) expression. Pretreatment of cells with a GR-specific antagonist (CORT-108297) significantly reduced virus replication. Although the GR had little effect on ICP0 promoter activity alone, the Krüppel-like transcription factor 15 (KLF15) cooperated with the GR to stimulate promoter activity in transfected cells. In transfected or infected cells, the GR and KLF15 occupied ICP0 sequences important for transactivation. Collectively, these studies provide insight into how stress can directly stimulate productive infection and viral gene expression.


Assuntos
Herpesvirus Humano 1/patogenicidade , Proteínas Imediatamente Precoces/genética , Fatores de Transcrição Kruppel-Like/genética , Regiões Promotoras Genéticas/genética , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional/genética , Ubiquitina-Proteína Ligases/genética , Animais , Sítios de Ligação/genética , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Imunoprecipitação da Cromatina/métodos , Regulação Viral da Expressão Gênica/genética , Herpes Simples/metabolismo , Herpes Simples/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/genética , Camundongos , Elementos de Resposta/genética , Células Vero , Proteínas Virais/genética , Ativação Viral/genética , Latência Viral/genética
9.
Med Microbiol Immunol ; 208(3-4): 439-446, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31004200

RESUMO

Roizman's definition of herpesviral latency, which applies also to cytomegaloviruses (CMVs), demands maintenance of reactivation-competent viral genomes after clearance of productive infection. It is more recent understanding that failure to complete the productive viral cycle for virus assembly and release does not imply viral gene silencing at all genetic loci and all the time. It rather appears that CMV latency is transcriptionally "noisy" in that silenced viral genes get desilenced from time to time in a stochastic manner, leading to "transcripts expressed in latency" (TELs). If a TEL happens to code for a protein that contains a CD8 T cell epitope, protein processing can lead to the presentation of the antigenic peptide and restimulation of cognate CD8 T cells during latency. This mechanism is discussed as a potential driver of epitope-selective accumulation of CD8 T cells over time, a phenomenon linked to CMV latency and known as "memory inflation" (MI). So far, expression of an epitope-encoding TEL was shown only for the major immediate-early (MIE) gene m123/ie1 of murine cytomegalovirus (mCMV), which codes for the prototypic MI-driving antigenic peptide YPHFMPTNL that is presented by the MHC class-I molecule Ld. The only known second MI-driving antigenic peptide of mCMV in the murine MHC haplotype H-2d is AGPPRYSRI presented by the MHC-I molecule Dd. This peptide is very special in that it is encoded by the early (E) phase gene m164 and by an overlapping immediate-early (IE) transcript governed by a promoter upstream of m164. If MI is driven by presentation of TEL-derived antigenic peptides, as the hypothesis says, one should find corresponding TELs. We show here that E-phase and IE-phase transcripts that code for the MI-driving antigenic peptide AGPPRYSRI are independently and stochastically expressed in latently infected lungs.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Perfilação da Expressão Gênica , Muromegalovirus/imunologia , Latência Viral , Animais , Antígenos Virais/biossíntese , Modelos Animais de Doenças , Epitopos/biossíntese , Epitopos/imunologia , Memória Imunológica , Muromegalovirus/crescimento & desenvolvimento
10.
J Hepatol ; 68(3): 412-420, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29079285

RESUMO

BACKGROUND & AIMS: The hallmarks of chronic HBV infection are a high viral load (HBV DNA) and even higher levels (>100-fold in excess of virions) of non-infectious membranous particles containing the tolerogenic viral S antigen (HBsAg). Currently, standard treatment effectively reduces viremia but only rarely results in a functional cure (defined as sustained HBsAg loss). There is an urgent need to identify novel therapies that reduce HBsAg levels and restore virus-specific immune responsiveness in patients. We report the discovery of a novel, potent and orally bioavailable small molecule inhibitor of HBV gene expression (RG7834). METHODS: RG7834 antiviral characteristics and selectivity against HBV were evaluated in HBV natural infection assays and in a urokinase-type plasminogen activator/severe combined immunodeficiency humanized mouse model of HBV infection, either alone or in combination with entecavir. RESULTS: Unlike nucleos(t)ide therapies, which reduce viremia but do not lead to an effective reduction in HBV antigen expression, RG7834 significantly reduced the levels of viral proteins (including HBsAg), as well as lowering viremia. Consistent with its proposed mechanism of action, time course RNA-seq analysis revealed a fast and selective reduction in HBV mRNAs in response to RG7834 treatment. Furthermore, oral treatment of HBV-infected humanized mice with RG7834 led to a mean HBsAg reduction of 1.09 log10 compared to entecavir, which had no significant effect on HBsAg levels. Combination of RG7834, entecavir and pegylated interferon α-2a led to significant reductions of both HBV DNA and HBsAg levels in humanized mice. CONCLUSION: We have identified a novel oral HBV viral gene expression inhibitor that blocks viral antigen and virion production, that is highly selective for HBV, and has a unique antiviral profile that is clearly differentiated from nucleos(t)ide analogues. LAY SUMMARY: We discovered a novel small molecule viral expression inhibitor that is highly selective for HBV and unlike current therapy inhibits the expression of viral proteins by specifically reducing HBV mRNAs. RG7834 can therefore potentially provide anti-HBV benefits and increase HBV cure rates, by direct reduction of viral agents needed to complete the viral life cycle, as well as a reduction of viral agents involved in evasion of the host immune responses.


Assuntos
Antivirais , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Vírus da Hepatite B , Hepatite B Crônica , Bibliotecas de Moléculas Pequenas , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Antivirais/farmacocinética , Disponibilidade Biológica , DNA Viral/isolamento & purificação , Modelos Animais de Doenças , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Camundongos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/efeitos adversos , Bibliotecas de Moléculas Pequenas/farmacocinética , Resultado do Tratamento , Carga Viral/efeitos dos fármacos
11.
Virus Genes ; 54(2): 290-296, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29450759

RESUMO

Maize Iranian mosaic virus (MIMV; Mononegavirales, Rhabdoviridae, Nucleorhabdovirus) infects maize and several other poaceous plants. MIMV encodes six proteins, i.e., nucleocapsid protein (N), polymerase cofactor phosphoprotein (P), putative movement protein (P3), matrix protein (M), glycoprotein (G), and large RNA-dependent RNA polymerase (L). In the present study, MIMV gene expression and genetic polymorphism of an MIMV population in maize were determined. N, P, P3, and M protein genes were more highly expressed than the 5' terminal G and L genes. Twelve single nucleotide polymorphisms were identified across the genome within a MIMV population in maize from RNA-Seq read data pooled from three infected plants indicating genomic variations of potential importance to evolution of the virus. MIMV N, P, and M proteins that are known to be involved in rhabdovirus replication and transcription were characterized as to their intracellular localization and interactions. N protein accumulated exclusively in the nucleus and interacted with itself and with P protein. P protein accumulated in both the nucleus and cell periphery and interacted with itself, N and M proteins in the nucleus. M protein was localized in the cell periphery and on endomembranes, and interacted with P protein in the nucleus. MIMV proteins show a distinctive combination of intracellular localizations and interactions.


Assuntos
Variação Genética , Proteínas do Nucleocapsídeo/metabolismo , Fosfoproteínas/metabolismo , Rhabdoviridae/classificação , Rhabdoviridae/isolamento & purificação , Proteínas da Matriz Viral/metabolismo , Zea mays/virologia , Perfilação da Expressão Gênica , Irã (Geográfico) , Doenças das Plantas/virologia , Polimorfismo de Nucleotídeo Único , Mapas de Interação de Proteínas , Rhabdoviridae/genética , Nicotiana/virologia
12.
J Med Virol ; 89(5): 834-844, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27664977

RESUMO

Hepatitis B virus (HBV) infection is a major health problem worldwide. The roles of microRNAs in the regulation of HBV expression are being increasingly recognized. In this study, we found that overexpression of miR-370 suppressed HBV gene expression and replication in Huh7 cells, whereas antisense knockdown of endogenous miR-370 enhanced HBV gene expression and replication in Huh7 cells and HepG2.2.15 cells. Further, we identified the transcription factor nuclear factor IA (NFIA) as a new host target of miR-370. Overexpression and knockdown studies showed that NFIA stimulated HBV gene expression and replication. Importantly, overexpression of NFIA counteracted the effect of miR-370 on HBV gene expression and replication. Further mechanistic studies showed that miR-370 suppressed HBV replication and gene expression by repressing HBV Enhancer I activity, and one of the NFIA binding site in the Enhancer I element was responsible for the repressive effect of miR-370 on HBV Enhancer I activity. Altogether, our results demonstrated that miR-370 suppressed HBV gene expression and replication through repressing NFIA expression, which stimulates HBV replication via direct regulation on HBV Enhancer I activities. Our findings may provide a new antiviral strategy for HBV infection. J. Med. Virol. 89:834-844, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Hepatite B/fisiologia , MicroRNAs/metabolismo , Fatores de Transcrição NFI/antagonistas & inibidores , Replicação Viral , Linhagem Celular , Expressão Gênica , Técnicas de Silenciamento de Genes , Hepatócitos/virologia , Humanos
13.
J Invertebr Pathol ; 119: 5-11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24681357

RESUMO

Massive mortality outbreaks have been reported in France since 2008 among Pacific oysters, Crassostrea gigas, with the detection of a particular OsHV-1 variant called µVar. Virus infection can be induced in healthy spat in experimental conditions allowing to better understand the disease process, including viral gene expression. Although gene expression of other herpesviruses has been widely studied, we provide the first study following viral gene expression of OsHV-1 over time. In this context, an in vivo transcriptomic study targeting 39 OsHV-1 genes was carried out during an experimental infection of Pacific oyster spat. For the first time, several OsHV-1 mRNAs were detected by real-time PCR at 0 h, 2 h, 4 h, 18 h, 26 h and 42 h post-injection. Several transcripts were detected at 2h post-infection and at 18 h post-infection for all selected ORFs. Quantification of virus gene expression at different times of infection was also carried out using an oyster housekeeping gene, Elongation factor. Developing an OsHV-1-specific reverse transcriptase real time PCR targeting 39 viral gene appears a new tool in terms of diagnosis and can be used to complement viral DNA detection in order to monitor viral replication.


Assuntos
Crassostrea/virologia , Herpesviridae/genética , Transcriptoma , Animais , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
mSphere ; : e0045424, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315811

RESUMO

Viruses display large variability across all stages of their life cycle, including entry, gene expression, replication, assembly, and egress. We previously reported that the immediate early adenovirus (AdV) E1A transcripts accumulate in human lung epithelial A549 cancer cells with high variability, mostly independent of the number of incoming viral genomes, but somewhat correlated to the cell cycle state at the time of inoculation. Here, we leveraged the classical Luria-Delbrück fluctuation analysis to address whether infection variability primarily arises from the cell state or stochastic noise. The E1A expression was measured by the expression of green fluorescent protein (GFP) from the endogenous E1A promoter in AdV-C5_E1A-FS2A-GFP and found to be highly correlated with the viral plaque formation, indicating reliability of the reporter virus. As an ensemble, randomly picked clonal A549 cell isolates displayed significantly higher coefficients of variation in the E1A expression than technical noise, indicating a phenotypic variability larger than noise. The underlying cell state determining infection variability was maintained for at least 9 weeks of cell cultivation. Our results indicate that preexisting cell states tune adenovirus infection in favor of the cell or the virus. These findings have implications for antiviral strategies and gene therapy applications.IMPORTANCEViral infections are known for their variability. Underlying mechanisms are still incompletely understood but have been associated with particular cell states, for example, the eukaryotic cell division cycle in DNA virus infections. A cell state is the collective of biochemical, morphological, and contextual features owing to particular conditions or at random. It affects how intrinsic or extrinsic cues trigger a response, such as cell division or anti-viral state. Here, we provide evidence that cell states with a built-in memory confer high or low susceptibility of clonal human epithelial cells to adenovirus infection. Results are reminiscent of the Luria-Delbrück fluctuation test with bacteriophage infections back in 1943, which demonstrated that mutations, in the absence of selective pressure prior to infection, cause infection resistance rather than being a consequence of infection. Our findings of dynamic cell states conferring adenovirus infection susceptibility uncover new challenges for the prediction and treatment of viral infections.

15.
Front Immunol ; 15: 1330738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449868

RESUMO

Nucleoporins (NUPs) are cellular effectors of human immunodeficiency virus-1 (HIV-1) replication that support nucleocytoplasmic trafficking of viral components. However, these also non-canonically function as positive effectors, promoting proviral DNA integration into the host genome and viral gene transcription, or as negative effectors by associating with HIV-1 restriction factors, such as MX2, inhibiting the replication of HIV-1. Here, we investigated the regulatory role of NUP98 on HIV-1 as we observed a lowering of its endogenous levels upon HIV-1 infection in CD4+ T cells. Using complementary experiments in NUP98 overexpression and knockdown backgrounds, we deciphered that NUP98 negatively affected HIV-1 long terminal repeat (LTR) promoter activity and lowered released virus levels. The negative effect on promoter activity was independent of HIV-1 Tat, suggesting that NUP98 prevents the basal viral gene expression. ChIP-qPCR showed NUP98 to be associated with HIV-1 LTR, with the negative regulatory element (NRE) of HIV-1 LTR playing a dominant role in NUP98-mediated lowering of viral gene transcription. Truncated mutants of NUP98 showed that the attenuation of HIV-1 LTR-driven transcription is primarily contributed by its N-terminal region. Interestingly, the virus generated from the producer cells transiently expressing NUP98 showed lower infectivity, while the virus generated from NUP98 knockdown CD4+ T cells showed higher infectivity as assayed in TZM-bl cells, corroborating the anti-HIV-1 properties of NUP98. Collectively, we show a new non-canonical function of a nucleoporin adding to the list of moonlighting host factors regulating viral infections. Downregulation of NUP98 in a host cell upon HIV-1 infection supports the concept of evolutionary conflicts between viruses and host antiviral factors.


Assuntos
HIV-1 , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Poro Nuclear/genética , Repetição Terminal Longa de HIV/genética , Expressão Gênica
16.
Dev Comp Immunol ; 154: 105145, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38316233

RESUMO

Spring viremia of carp virus (SVCV) is a globally distributed virus that causes severe clinical symptoms and high mortality in fish belonging to the families Cyprinidae and Siluridae. To protect the host against viral infection, understanding the relatedness between viral susceptibility and antiviral mechanisms must be crucial. Thus, we evaluated the viral suppression efficacy of ribavirin by measuring the transcription levels of viral and immune genes in vitro. The results showed that following ribavirin treatment after SVCV infection (MOI 0.1), ribavirin inhibited SVCV replication in epithelioma papulosum cyprini (EPC) cells and completely inhibited viral gene (G and N) expression at concentrations above 10 µg/mL at 48 h post-infection. Ribavirin does not directly damage SVCV particles but inhibits early viral replication. In the absence of SVCV infection, the immunological dynamics triggered by ribavirin resulted in upregulated pattern recognition receptors and proinflammatory cytokine-related genes (i.e., PI3K, MYD88, IRAK1, RIG-І, MAVS, Mx1, TNF-α, and NF-κB). Furthermore, EPC cells treated with ribavirin following SVCV infection showed upregulation of PI3K, MYD88, IRAK1, RIG-І, TNF-α, and NF-κB genes within 24 h post-SVCV infection, suggesting that ribavirin positively inhibits the SVCV infection in vitro.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Humanos , Animais , Ribavirina/uso terapêutico , Ribavirina/farmacologia , Viremia/tratamento farmacológico , NF-kappa B , Fator de Necrose Tumoral alfa , Fator 88 de Diferenciação Mieloide/genética , Rhabdoviridae/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Fosfatidilinositol 3-Quinases
17.
RNA Biol ; 10(11): 1689-99, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24178438

RESUMO

Simian Virus 40 (SV40) is a polyomavirus found in both monkeys and humans, which causes cancer in some animal models. In humans, SV40 has been reported to be associated with cancers but causality has not been proven yet. The transforming activity of SV40 is mainly due to its 94-kD large T antigen, which binds to the retinoblastoma (pRb) and p53 tumor suppressor proteins, and thereby perturbs their functions. Here we describe a 100 kD super T antigen harboring a duplication of the pRB binding domain that was associated with unusual high cell transformation activity and that was generated by a novel mechanism involving homologous RNA trans-splicing of SV40 early transcripts in transformed rodent cells. Enhanced trans-splice activity was observed in clones carrying a single point mutation in the large T antigen 5' donor splice site (ss). This mutation impaired cis-splicing in favor of an alternative trans-splice reaction via a cryptic 5'ss within a second cis-spliced SV40 pre-mRNA molecule and enabled detectable gene expression. Next to the cryptic 5'ss we identified additional trans-splice helper functions, including putative dimerization domains and a splice enhancer sequence. Our findings suggest RNA trans-splicing as a SV40-intrinsic mechanism that supports the diversification of viral RNA and phenotypes.


Assuntos
Antígenos Virais de Tumores/metabolismo , Sítios de Splice de RNA/genética , RNA Viral/genética , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/imunologia , Trans-Splicing , Processamento Alternativo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Éxons , Fenótipo , Ratos , Vírus 40 dos Símios/metabolismo
18.
Front Mol Biosci ; 9: 1095193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699700

RESUMO

Infections by non-segmented negative-strand RNA viruses (NNSV) are widely thought to entail gradient gene expression from the well-established existence of a single promoter at the 3' end of the viral genome and the assumption of constant transcriptional attenuation between genes. But multiple recent studies show viral mRNA levels in infections by respiratory syncytial virus (RSV), a major human pathogen and member of NNSV, that are inconsistent with a simple gradient. Here we integrate known and newly predicted phenomena into a biophysically reasonable model of NNSV transcription. Our model succeeds in capturing published observations of respiratory syncytial virus and vesicular stomatitis virus (VSV) mRNA levels. We therefore propose a novel understanding of NNSV transcription based on the possibility of ejective polymerase-polymerase collisions and, in the case of RSV, biased polymerase diffusion.

19.
Iran J Microbiol ; 14(6): 901-912, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36721441

RESUMO

Background and Objectives: Among the various factors involved in the development of gastric cancer (GC), infectious agents are one of the most important causative inducers. This study aimed to investigate the possible role of EBV gene expression on SHP1 methylation in co-infection with Helicobacter pylori in patients with GC. Materials and Methods: Formalin-fixed paraffin-embedded samples were obtained from 150 patients with gastrointestinal disorders. The presence of the H. pylori and EBV genome were examined by PCR. The expression level of viral gene transcripts and methylation status of the SHP1 cellular gene was assessed by quantitative real-time PCR and methyl-specific PCR. Results: EBV and H. pylori coinfection were reported in 5.6% of patients. The mean DNA viral load was significant in patients coinfected with cagA-positive H. pylori (P= 0.02). The expression of BZLF1 and EBER was associated with GC. Also, the expression level of BZLF1in GC tissues was significantly higher in coinfection (P = 0.01). SHP1 methylation frequency was higher in the GC group than in the control group (P = 0.04). The correlation between the methylation rate and the H. pylori infection was highly significant (P<0.0001). The strongest positive correlation was observed in GC specimens between SHP1 methylation and H. pylori cagA-positive strains (p= 0.003). Conclusion: Our results suggested that cagA might involve in the elevation of EBV lytic gene expression and SHP1 methylation, and the development of gastric cancer. Understanding the mechanism of EBV H. pylori - cagA + coinfection, as well as host epigenetic changes, can play an important role in diagnosing and preventing gastric cancer.

20.
Viruses ; 14(6)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746704

RESUMO

Potyviral coat protein (CP) and helper component-proteinase (HCPro) play key roles in both the regulation of viral gene expression and the formation of viral particles. We investigated the interplay between CP and HCPro during these viral processes. While the endogenous HCPro and a heterologous viral suppressor of gene silencing both complemented HCPro-less potato virus A (PVA) expression, CP stabilization connected to particle formation could be complemented only by the cognate PVA HCPro. We found that HCPro relieves CP-mediated inhibition of PVA RNA expression likely by enabling HCPro-mediated sequestration of CPs to particles. We addressed the question about the role of replication in formation of PVA particles and gained evidence for encapsidation of non-replicating PVA RNA. The extreme instability of these particles substantiates the need for replication in the formation of stable particles. During replication, viral protein genome linked (VPg) becomes covalently attached to PVA RNA and can attract HCPro, cylindrical inclusion protein and host proteins. Based on the results of the current study and our previous findings we propose a model in which a large ribonucleoprotein complex formed around VPg at one end of PVA particles is essential for their integrity.


Assuntos
Nicotiana , Potyvirus , Doenças das Plantas , Potyvirus/genética , RNA/metabolismo , Vírion/genética , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA