Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39293445

RESUMO

Filoviruses, including the Ebola and Marburg viruses, cause hemorrhagic fevers with up to 90% lethality. The viral nucleocapsid is assembled by polymerization of the nucleoprotein (NP) along the viral genome, together with the viral proteins VP24 and VP35. We employed cryo-electron tomography of cells transfected with viral proteins and infected with model Ebola virus to illuminate assembly intermediates, as well as a 9 Å map of the complete intracellular assembly. This structure reveals a previously unresolved third and outer layer of NP complexed with VP35. The intrinsically disordered region, together with the C-terminal domain of this outer layer of NP, provides the constant width between intracellular nucleocapsid bundles and likely functions as a flexible tether to the viral matrix protein in the virion. A comparison of intracellular nucleocapsids with prior in-virion nucleocapsid structures reveals that the nucleocapsid further condenses vertically in the virion. The interfaces responsible for nucleocapsid assembly are highly conserved and offer targets for broadly effective antivirals.

2.
Cell ; 183(3): 730-738.e13, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32979942

RESUMO

SARS-CoV-2 is an enveloped virus responsible for the COVID-19 pandemic. Despite recent advances in the structural elucidation of SARS-CoV-2 proteins, the detailed architecture of the intact virus remains to be unveiled. Here we report the molecular assembly of the authentic SARS-CoV-2 virus using cryoelectron tomography (cryo-ET) and subtomogram averaging (STA). Native structures of the S proteins in pre- and postfusion conformations were determined to average resolutions of 8.7-11 Å. Compositions of the N-linked glycans from the native spikes were analyzed by mass spectrometry, which revealed overall processing states of the native glycans highly similar to that of the recombinant glycoprotein glycans. The native conformation of the ribonucleoproteins (RNPs) and their higher-order assemblies were revealed. Overall, these characterizations revealed the architecture of the SARS-CoV-2 virus in exceptional detail and shed light on how the virus packs its ∼30-kb-long single-segmented RNA in the ∼80-nm-diameter lumen.


Assuntos
Betacoronavirus/fisiologia , Betacoronavirus/ultraestrutura , Montagem de Vírus , Animais , Chlorocebus aethiops , Microscopia Crioeletrônica , Humanos , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica , SARS-CoV-2 , Células Vero , Proteínas Virais/química , Proteínas Virais/ultraestrutura , Cultura de Vírus
3.
Cell ; 183(2): 442-456.e16, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937107

RESUMO

Hantaviruses are rodent-borne viruses causing serious zoonotic outbreaks worldwide for which no treatment is available. Hantavirus particles are pleomorphic and display a characteristic square surface lattice. The envelope glycoproteins Gn and Gc form heterodimers that further assemble into tetrameric spikes, the lattice building blocks. The glycoproteins, which are the sole targets of neutralizing antibodies, drive virus entry via receptor-mediated endocytosis and endosomal membrane fusion. Here we describe the high-resolution X-ray structures of the heterodimer of Gc and the Gn head and of the homotetrameric Gn base. Docking them into an 11.4-Å-resolution cryoelectron tomography map of the hantavirus surface accounted for the complete extramembrane portion of the viral glycoprotein shell and allowed a detailed description of the surface organization of these pleomorphic virions. Our results, which further revealed a built-in mechanism controlling Gc membrane insertion for fusion, pave the way for immunogen design to protect against pathogenic hantaviruses.


Assuntos
Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestrutura , Orthohantavírus/química , Glicoproteínas/química , Glicoproteínas/ultraestrutura , Orthohantavírus/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/fisiologia , Conformação Proteica , Vírus de RNA , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/ultraestrutura , Vírion , Internalização do Vírus
4.
Proc Natl Acad Sci U S A ; 121(33): e2406138121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116131

RESUMO

DNA recognition is critical for assembly of double-stranded DNA viruses, particularly for the initiation of packaging the viral genome into the capsid. The key component that recognizes viral DNA is the small terminase protein. Despite prior studies, the molecular mechanism for DNA recognition remained elusive. Here, we address this question by identifying the minimal site in the bacteriophage HK97 genome specifically recognized by the small terminase and determining the structure of this complex by cryoEM. The circular small terminase employs an entirely unexpected mechanism in which DNA transits through the central tunnel, and sequence-specific recognition takes place as it emerges. This recognition stems from a substructure formed by the N- and C-terminal segments of two adjacent protomers which are unstructured when DNA is absent. Such interaction ensures continuous engagement of the small terminase with DNA, enabling it to slide along the DNA while simultaneously monitoring its sequence. This mechanism allows locating and instigating packaging initiation and termination precisely at the specific cos sequence.


Assuntos
DNA Viral , Genoma Viral , DNA Viral/genética , DNA Viral/metabolismo , DNA Viral/química , Microscopia Crioeletrônica , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Modelos Moleculares , Empacotamento do DNA , Montagem de Vírus/genética , Bacteriófagos/genética , Empacotamento do Genoma Viral
5.
J Biol Chem ; 300(8): 107456, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866325

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a lipid-enveloped virus that acquires its lipid bilayer from the host cell it infects. SARS-CoV-2 can spread from cell to cell or from patient to patient by undergoing assembly and budding to form new virions. The assembly and budding of SARS-CoV-2 is mediated by several structural proteins known as envelope (E), membrane (M), nucleoprotein (N), and spike (S), which can form virus-like particles (VLPs) when co-expressed in mammalian cells. Assembly and budding of SARS-CoV-2 from the host ER-Golgi intermediate compartment is a critical step in the virus acquiring its lipid bilayer. To date, little information is available on how SARS-CoV-2 assembles and forms new viral particles from host membranes. In this study, we used several lipid binding assays and found the N protein can strongly associate with anionic lipids including phosphoinositides and phosphatidylserine. Moreover, we show lipid binding occurs in the N protein C-terminal domain, which is supported by extensive in silico analysis. We demonstrate anionic lipid binding occurs for both the free and the N oligomeric forms, suggesting N can associate with membranes in the nucleocapsid form. Based on these results, we present a lipid-dependent model based on in vitro, cellular, and in silico data for the recruitment of N to assembly sites in the lifecycle of SARS-CoV-2.


Assuntos
SARS-CoV-2 , SARS-CoV-2/metabolismo , Humanos , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , COVID-19/metabolismo , COVID-19/virologia , Lipídeos de Membrana/metabolismo , Montagem de Vírus , Nucleoproteínas/metabolismo , Nucleoproteínas/química , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Ânions/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Membrana Celular/metabolismo , Betacoronavirus/metabolismo
6.
J Biol Chem ; 300(5): 107213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522519

RESUMO

Ebola virus (EBOV) is a filamentous negative-sense RNA virus, which causes severe hemorrhagic fever. There are limited vaccines or therapeutics for prevention and treatment of EBOV, so it is important to get a detailed understanding of the virus lifecycle to illuminate new drug targets. EBOV encodes for the matrix protein, VP40, which regulates assembly and budding of new virions from the inner leaflet of the host cell plasma membrane (PM). In this work, we determine the effects of VP40 mutations altering electrostatics on PM interactions and subsequent budding. VP40 mutations that modify surface electrostatics affect viral assembly and budding by altering VP40 membrane-binding capabilities. Mutations that increase VP40 net positive charge by one (e.g., Gly to Arg or Asp to Ala) increase VP40 affinity for phosphatidylserine and phosphatidylinositol 4,5-bisphosphate in the host cell PM. This increased affinity enhances PM association and budding efficiency leading to more effective formation of virus-like particles. In contrast, mutations that decrease net positive charge by one (e.g., Gly to Asp) lead to a decrease in assembly and budding because of decreased interactions with the anionic PM. Taken together, our results highlight the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding. Understanding the effects of single amino acid substitutions on viral budding and assembly will be useful for explaining changes in the infectivity and virulence of different EBOV strains, VP40 variants that occur in nature, and for long-term drug discovery endeavors aimed at EBOV assembly and budding.


Assuntos
Membrana Celular , Ebolavirus , Montagem de Vírus , Liberação de Vírus , Humanos , Substituição de Aminoácidos , Membrana Celular/metabolismo , Ebolavirus/metabolismo , Ebolavirus/genética , Células HEK293 , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Mutação , Nucleoproteínas , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Ligação Proteica , Eletricidade Estática , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/química , Vírion/metabolismo , Vírion/genética
7.
J Virol ; : e0111123, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291975

RESUMO

Cryo-electron microscopy and tomography have allowed us to unveil the remarkable structure of icosahedral viruses. However, in the past few years, the idea that these viruses must have perfectly symmetric virions, but in some cases, it might not be true. This has opened the door to challenging paradigms in structural virology and raised new questions about the biological implications of "unusual" or "defective" symmetries and structures. Also, the continual improvement of these technologies, coupled with more rigorous sample purification protocols, improvements in data processing, and the use of artificial intelligence, has allowed solving the structure of sub-viral particles in highly heterogeneous samples and finding novel symmetries or structural defects. In this review, I initially analyzed the case of the symmetry and composition of hepatitis B virus-produced spherical sub-viral particles. Then, I focused on Alphaviruses as an example of "imperfect" icosahedrons and analyzed how structural biology has changed our understanding of the Alphavirus assembly and some biological implications arising from these discoveries.

8.
J Virol ; 98(2): e0139823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38179944

RESUMO

Antibodies are frontline defenders against influenza virus infection, providing protection through multiple complementary mechanisms. Although a subset of monoclonal antibodies (mAbs) has been shown to restrict replication at the level of virus assembly and release, it remains unclear how potent and pervasive this mechanism of protection is, due in part to the challenge of separating this effect from other aspects of antibody function. To address this question, we developed imaging-based assays to determine how effectively a broad range of mAbs against the IAV surface proteins can specifically restrict viral egress. We find that classically neutralizing antibodies against hemagglutinin are broadly multifunctional, inhibiting virus assembly and release at concentrations 1-20-fold higher than the concentrations at which they inhibit viral entry. These antibodies are also capable of altering the morphological features of shed virions, reducing the proportion of filamentous particles. We find that antibodies against neuraminidase and M2 also restrict viral egress and that inhibition by anti-neuraminidase mAbs is only partly attributable to a loss in enzymatic activity. In all cases, antigen crosslinking-either on the surface of the infected cell, between the viral and cell membrane, or both-plays a critical role in inhibition, and we are able to distinguish between these modes experimentally and through a structure-based computational model. Together, these results provide a framework for dissecting antibody multifunctionality that could help guide the development of improved therapeutic antibodies or vaccines and that can be extended to other viral families and antibody isotypes.IMPORTANCEAntibodies against influenza A virus provide multifaceted protection against infection. Although sensitive and quantitative assays are widely used to measure inhibition of viral attachment and entry, the ability of diverse antibodies to inhibit viral egress is less clear. We address this challenge by developing an imaging-based approach to measure antibody inhibition of virus release across a panel of monoclonal antibodies targeting the influenza A virus surface proteins. Using this approach, we find that inhibition of viral egress is common and can have similar potency to the ability of an antibody to inhibit viral entry. Insights into this understudied aspect of antibody function may help guide the development of improved countermeasures.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Vírus da Influenza A , Influenza Humana , Montagem de Vírus , Humanos , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A/efeitos dos fármacos , Vacinas contra Influenza , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Proteínas de Membrana , Neuraminidase/metabolismo , Montagem de Vírus/efeitos dos fármacos
9.
Methods ; 229: 147-155, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002735

RESUMO

This article reviews tried-and-tested methodologies that have been employed in the first studies on phase separating properties of structural, RNA-binding and catalytic proteins of HIV-1. These are described here to stimulate interest for any who may want to initiate similar studies on virus-mediated liquid-liquid phase separation. Such studies serve to better understand the life cycle and pathogenesis of viruses and open the door to new therapeutics.


Assuntos
HIV-1 , Replicação Viral , Humanos , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Separação de Fases , RNA Viral/genética
10.
Proc Natl Acad Sci U S A ; 119(40): e2203272119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161892

RESUMO

Many icosahedral viruses assemble proteinaceous precursors called proheads or procapsids. Proheads are metastable structures that undergo a profound structural transition known as expansion that transforms an immature unexpanded head into a mature genome-packaging head. Bacteriophage T4 is a model virus, well studied genetically and biochemically, but its structure determination has been challenging because of its large size and unusually prolate-shaped, ∼1,200-Å-long and ∼860-Å-wide capsid. Here, we report the cryogenic electron microscopy (cryo-EM) structures of T4 capsid in both of its major conformational states: unexpanded at a resolution of 5.1 Å and expanded at a resolution of 3.4 Å. These are among the largest structures deposited in Protein Data Bank to date and provide insights into virus assembly, head length determination, and shell expansion. First, the structures illustrate major domain movements and ∼70% additional gain in inner capsid volume, an essential transformation to contain the entire viral genome. Second, intricate intracapsomer interactions involving a unique insertion domain dramatically change, allowing the capsid subunits to rotate and twist while the capsomers remain fastened at quasi-threefold axes. Third, high-affinity binding sites emerge for a capsid decoration protein that clamps adjacent capsomers, imparting extraordinary structural stability. Fourth, subtle conformational changes at capsomers' periphery modulate intercapsomer angles between capsomer planes that control capsid length. Finally, conformational changes were observed at the symmetry-mismatched portal vertex, which might be involved in triggering head expansion. These analyses illustrate how small changes in local capsid subunit interactions lead to profound shifts in viral capsid morphology, stability, and volume.


Assuntos
Bacteriófago T4 , Capsídeo , Vírion , Bacteriófago T4/química , Bacteriófago T4/fisiologia , Capsídeo/química , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Domínios Proteicos , Vírion/química , Montagem de Vírus
11.
J Lipid Res ; 65(3): 100512, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295986

RESUMO

Ebola virus (EBOV) causes severe hemorrhagic fever in humans and is lethal in a large percentage of those infected. The EBOV matrix protein viral protein 40 kDa (VP40) is a peripheral binding protein that forms a shell beneath the lipid bilayer in virions and virus-like particles (VLPs). VP40 is required for virus assembly and budding from the host cell plasma membrane. VP40 is a dimer that can rearrange into oligomers at the plasma membrane interface, but it is unclear how these structures form and how they are stabilized. We therefore investigated the ability of VP40 to form stable oligomers using in vitro and cellular assays. We characterized two lysine-rich regions in the VP40 C-terminal domain (CTD) that bind phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and play distinct roles in lipid binding and the assembly of the EBOV matrix layer. The extensive analysis of VP40 with and without lipids by hydrogen deuterium exchange mass spectrometry revealed that VP40 oligomers become extremely stable when VP40 binds PI(4,5)P2. The PI(4,5)P2-induced stability of VP40 dimers and oligomers is a critical factor in VP40 oligomerization and release of VLPs from the plasma membrane. The two lysine-rich regions of the VP40 CTD have different roles with respect to interactions with plasma membrane phosphatidylserine (PS) and PI(4,5)P2. CTD region 1 (Lys221, Lys224, and Lys225) interacts with PI(4,5)P2 more favorably than PS and is important for VP40 extent of oligomerization. In contrast, region 2 (Lys270, Lys274, Lys275, and Lys279) mediates VP40 oligomer stability via lipid interactions and has a more prominent role in release of VLPs.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Lisina/metabolismo , Sítios de Ligação , Lipídeos , Ligação Proteica
12.
J Biol Chem ; 299(3): 103021, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791911

RESUMO

Tail tube assembly is an essential step in the lifecycle of long-tailed bacteriophages. Limited structural and biophysical information has impeded an understanding of assembly and stability of their long, flexible tail tubes. The hyperthermophilic phage P74-26 is particularly intriguing as it has the longest tail of any known virus (nearly 1 µm) and is the most thermostable known phage. Here, we use structures of the P74-26 tail tube along with an in vitro system for studying tube assembly kinetics to propose the first molecular model for the tail tube assembly of long-tailed phages. Our high-resolution cryo-EM structure provides insight into how the P74-26 phage assembles through flexible loops that fit into neighboring rings through tight "ball-and-socket"-like interactions. Guided by this structure, and in combination with mutational, light scattering, and molecular dynamics simulations data, we propose a model for the assembly of conserved tube-like structures across phage and other entities possessing tail tube-like proteins. We propose that formation of a full ring promotes the adoption of a tube elongation-competent conformation among the flexible loops and their corresponding sockets, which is further stabilized by an adjacent ring. Tail assembly is controlled by the cooperative interaction of dynamic intraring and interring contacts. Given the structural conservation among tail tube proteins and tail-like structures, our model can explain the mechanism of high-fidelity assembly of long, stable tubes.


Assuntos
Bacteriófagos , Caudovirales , Bacteriófagos/metabolismo , Caudovirales/metabolismo , Conformação Molecular , Modelos Moleculares , Proteínas da Cauda Viral/química
13.
J Biol Chem ; 299(2): 102824, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36567016

RESUMO

N-terminal acetylation is a conserved protein modification among eukaryotes. The yeast Saccharomyces cerevisiae is a valuable model system for studying this modification. The bulk of protein N-terminal acetylation in S. cerevisiae is catalyzed by the N-terminal acetyltransferases NatA, NatB, and NatC. Thus far, proteome-wide identification of the in vivo protein substrates of yeast NatA and NatB has been performed by N-terminomics. Here, we used S. cerevisiae deleted for the NatC catalytic subunit Naa30 and identified 57 yeast NatC substrates by N-terminal combined fractional diagonal chromatography analysis. Interestingly, in addition to the canonical N-termini starting with ML, MI, MF, and MW, yeast NatC substrates also included MY, MK, MM, MA, MV, and MS. However, for some of these substrate types, such as MY, MK, MV, and MS, we also uncovered (residual) non-NatC NAT activity, most likely due to the previously established redundancy between yeast NatC and NatE/Naa50. Thus, we have revealed a complex interplay between different NATs in targeting methionine-starting N-termini in yeast. Furthermore, our results showed that ectopic expression of human NAA30 rescued known NatC phenotypes in naa30Δ yeast, as well as partially restored the yeast NatC Nt-acetylome. Thus, we demonstrate an evolutionary conservation of NatC from yeast to human thereby underpinning future disease models to study pathogenic NAA30 variants. Overall, this work offers increased biochemical and functional insights into NatC-mediated N-terminal acetylation and provides a basis for future work to pinpoint the specific molecular mechanisms that link the lack of NatC-mediated N-terminal acetylation to phenotypes of NatC deletion yeast.


Assuntos
Acetiltransferases N-Terminal , Saccharomyces cerevisiae , Humanos , Acetilação , Cromatografia Líquida , Sequência Conservada , Teste de Complementação Genética , Metionina/metabolismo , Acetiltransferase N-Terminal C/genética , Acetiltransferase N-Terminal C/metabolismo , Acetiltransferase N-Terminal E , Acetiltransferases N-Terminal/deficiência , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Fenótipo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
14.
Subcell Biochem ; 106: 227-249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159230

RESUMO

During respiratory syncytial virus (RSV) particle assembly, the mature RSV particles form as filamentous projections on the surface of RSV-infected cells. The RSV assembly process occurs at the / on the cell surface that is modified by a virus infection, involving a combination of several different host cell factors and cellular processes. This induces changes in the lipid composition and properties of these lipid microdomains, and the virus-induced activation of associated Rho GTPase signaling networks drives the remodeling of the underlying filamentous actin (F-actin) cytoskeleton network. The modified sites that form on the surface of the infected cells form the nexus point for RSV assembly, and in this review chapter, they are referred to as the RSV assembleome. This is to distinguish these unique membrane microdomains that are formed during virus infection from the corresponding membrane microdomains that are present at the cell surface prior to infection. In this article, an overview of the current understanding of the processes that drive the formation of the assembleome during RSV particle assembly is given.


Assuntos
Vírus Sincicial Respiratório Humano , Viroses , Humanos , Montagem de Vírus/fisiologia , Vírus Sincicial Respiratório Humano/fisiologia , Membrana Celular/metabolismo , Viroses/metabolismo , Lipídeos
15.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836586

RESUMO

Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.


Assuntos
Proteínas do Capsídeo/metabolismo , Chaperonina com TCP-1/metabolismo , Chaperonas Moleculares/metabolismo , Reoviridae/metabolismo , Proteínas do Capsídeo/química , Chaperonina com TCP-1/química , Microscopia Crioeletrônica , Espectrometria de Massas , Chaperonas Moleculares/química , Conformação Proteica , Dobramento de Proteína , Proteostase
16.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33397805

RESUMO

The CA (capsid) domain of immature HIV-1 Gag and the adjacent spacer peptide 1 (SP1) play a key role in viral assembly by forming a lattice of CA hexamers, which adapts to viral envelope curvature by incorporating small lattice defects and a large gap at the site of budding. This lattice is stabilized by intrahexameric and interhexameric CA-CA interactions, which are important in regulating viral assembly and maturation. We applied subtomogram averaging and classification to determine the oligomerization state of CA at lattice edges and found that CA forms partial hexamers. These structures reveal the network of interactions formed by CA-SP1 at the lattice edge. We also performed atomistic molecular dynamics simulations of CA-CA interactions stabilizing the immature lattice and partial CA-SP1 helical bundles. Free energy calculations reveal increased propensity for helix-to-coil transitions in partial hexamers compared to complete six-helix bundles. Taken together, these results suggest that the CA dimer is the basic unit of lattice assembly, partial hexamers exist at lattice edges, these are in a helix-coil dynamic equilibrium, and partial helical bundles are more likely to unfold, representing potential sites for HIV-1 maturation initiation.


Assuntos
Proteínas do Capsídeo/ultraestrutura , Infecções por HIV/genética , HIV-1/genética , Fator de Transcrição Sp1/ultraestrutura , Produtos do Gene gag do Vírus da Imunodeficiência Humana/ultraestrutura , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Cristalografia por Raios X , Infecções por HIV/virologia , Soropositividade para HIV , HIV-1/patogenicidade , HIV-1/ultraestrutura , Humanos , Simulação de Dinâmica Molecular , Multimerização Proteica/genética , Proteólise , Fator de Transcrição Sp1/química , Fator de Transcrição Sp1/genética , Vírion/genética , Vírion/patogenicidade , Montagem de Vírus/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
17.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244425

RESUMO

Virus infection causes major rearrangements in the subcellular architecture of eukaryotes, but its impact in prokaryotic cells was much less characterized. Here, we show that infection of the bacterium Bacillus subtilis by bacteriophage SPP1 leads to a hijacking of host replication proteins to assemble hybrid viral-bacterial replisomes for SPP1 genome replication. Their biosynthetic activity doubles the cell total DNA content within 15 min. Replisomes operate at several independent locations within a single viral DNA focus positioned asymmetrically in the cell. This large nucleoprotein complex is a self-contained compartment whose boundaries are delimited neither by a membrane nor by a protein cage. Later during infection, SPP1 procapsids localize at the periphery of the viral DNA compartment for genome packaging. The resulting DNA-filled capsids do not remain associated to the DNA transactions compartment. They bind to phage tails to build infectious particles that are stored in warehouse compartments spatially independent from the viral DNA. Free SPP1 structural proteins are recruited to the dynamic phage-induced compartments following an order that recapitulates the viral particle assembly pathway. These findings show that bacteriophages restructure the crowded host cytoplasm to confine at different cellular locations the sequential processes that are essential for their multiplication.


Assuntos
Bacillus subtilis/virologia , Compartimento Celular , Viroses/patologia , Bacillus subtilis/ultraestrutura , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Capsídeo/metabolismo , Replicação do DNA , DNA Viral/biossíntese , DNA Polimerase Dirigida por DNA , Interações Hospedeiro-Patógeno , Complexos Multienzimáticos , Fatores de Tempo , Vírion/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341107

RESUMO

The majority of viruses infecting hyperthermophilic archaea display unique virion architectures and are evolutionarily unrelated to viruses of bacteria and eukaryotes. The lack of relationships to other known viruses suggests that the mechanisms of virus-host interaction in Archaea are also likely to be distinct. To gain insights into archaeal virus-host interactions, we studied the life cycle of the enveloped, ∼2-µm-long Sulfolobus islandicus filamentous virus (SIFV), a member of the family Lipothrixviridae infecting a hyperthermophilic and acidophilic archaeon Saccharolobus islandicus LAL14/1. Using dual-axis electron tomography and convolutional neural network analysis, we characterize the life cycle of SIFV and show that the virions, which are nearly two times longer than the host cell diameter, are assembled in the cell cytoplasm, forming twisted virion bundles organized on a nonperfect hexagonal lattice. Remarkably, our results indicate that envelopment of the helical nucleocapsids takes place inside the cell rather than by budding as in the case of most other known enveloped viruses. The mature virions are released from the cell through large (up to 220 nm in diameter), six-sided pyramidal portals, which are built from multiple copies of a single 89-amino-acid-long viral protein gp43. The overexpression of this protein in Escherichia coli leads to pyramid formation in the bacterial membrane. Collectively, our results provide insights into the assembly and release of enveloped filamentous viruses and illuminate the evolution of virus-host interactions in Archaea.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Lipothrixviridae/fisiologia , Lipothrixviridae/patogenicidade , Sulfolobus/virologia , Citoplasma/virologia , Tomografia com Microscopia Eletrônica , Escherichia coli/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/metabolismo , Vírion/patogenicidade
19.
Semin Cell Dev Biol ; 111: 108-118, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32921578

RESUMO

RNA is a central molecule in RNA virus biology due to its dual function as messenger and genome. However, the small number of proteins encoded by viral genomes is insufficient to enable virus infection. Hence, viruses hijack cellular RNA-binding proteins (RBPs) to aid replication and spread. In this review we discuss the 'knowns' and 'unknowns' regarding the contribution of host RBPs to the formation of viral particles and the initial steps of infection in the newly infected cell. Through comparison of the virion proteomes of ten different human RNA viruses, we confirm that a pool of cellular RBPs are typically incorporated into viral particles. We describe here illustrative examples supporting the important functions of these RBPs in viral particle formation and infectivity and we propose that the role of host RBPs in these steps can be broader than previously anticipated. Understanding how cellular RBPs regulate virus infection can lead to the discovery of novel therapeutic targets against viruses.


Assuntos
RNA Mensageiro/genética , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas Virais/genética , Vírion/genética , Viroses/genética , Vírus/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transdução de Sinais , Proteínas Virais/metabolismo , Vírion/crescimento & desenvolvimento , Vírion/metabolismo , Montagem de Vírus , Viroses/metabolismo , Viroses/patologia , Viroses/virologia , Replicação Viral , Vírus/classificação , Vírus/crescimento & desenvolvimento , Vírus/patogenicidade
20.
J Struct Biol ; 215(3): 108000, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37467823

RESUMO

Cryo-electron tomography and subtomogram averaging are rising and fast-evolving imaging techniques to study biological events, providing structural information at an unprecedented resolution while preserving spatial correlation in their native contexts. The latest technology and methodology development ranging from sample preparation to data collection and data processing, has enabled significant advancement in its applications to various biological systems. This review provides an overview of the current technology development enabling high-resolution structural study in situ, highlighting the use of a priori information of biological samples to assess the quality of subtomogram averaging pipeline. We exemplify the applications of this technique to understanding viruses and principles of macromolecule assembly using different biological systems, ranging from in vitro to in situ samples, which provide structural information at different resolutions and contexts.


Assuntos
Processamento de Imagem Assistida por Computador , Vírus , Processamento de Imagem Assistida por Computador/métodos , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA