Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Subcell Biochem ; 96: 471-501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252741

RESUMO

Fibrinogen is a large glycoprotein, synthesized primarily in the liver. With a normal plasma concentration of 1.5-3.5 g/L, fibrinogen is the most abundant blood coagulation factor. The final stage of blood clot formation is the conversion of soluble fibrinogen to insoluble fibrin, the polymeric scaffold for blood clots that stop bleeding (a protective reaction called hemostasis) or obstruct blood vessels (pathological thrombosis). Fibrin is a viscoelastic polymer and the structural and mechanical properties of the fibrin scaffold determine its effectiveness in hemostasis and the development and outcome of thrombotic complications. Fibrin polymerization comprises a number of consecutive reactions, each affecting the ultimate 3D porous network structure. The physical properties of fibrin clots are determined by structural features at the individual fibrin molecule, fibrin fiber, network, and whole clot levels and are among the most important functional characteristics, enabling the blood clot to withstand arterial blood flow, platelet-driven clot contraction, and other dynamic forces. This chapter describes the molecular structure of fibrinogen, the conversion of fibrinogen to fibrin, the mechanical properties of fibrin as well as its structural origins and lastly provides evidence for the role of altered fibrin clot properties in both thrombosis and bleeding.


Assuntos
Coagulação Sanguínea , Fibrina , Fibrinogênio , Trombose , Hemostasia , Humanos , Polimerização
2.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555604

RESUMO

Novel poly(dithiophosphate)s (PDTPs) were successfully synthesized under mild conditions without any additive in the presence of THF or toluene diluents at 60 °C by a direct, catalyst-free reaction between the abundant phosphorus pentasulfide (P4S10) and glycols such as ethylene glycol (EG), 1,6-hexanediol (HD) and poly(ethylene glycol) (PEG). GPC, FTIR, 1H and 31P NMR analyses proved the formation of macromolecules with dithiophosphate coupling groups having P=S and P-SH pendant functionalities. Surprisingly, the ring-opening of THF by the P-SH group and its pendant incorporation as a branching point occur during polymerization. This process is absent with toluene, providing conditions to obtain linear chains. 31P NMR measurements indicate long-time partial hydrolysis and esterification, resulting in the formation of a thiophosphoric acid moiety and branching points. Copolymerization, i.e., using mixtures of EG or HD with PEG, results in polymers with broadly varying viscoelastic properties. TGA shows the lower thermal stability of PDTPs than that of PEG due to the relatively low thermal stability of the P-O-C moieties. The low Tgs of these polymers, from -4 to -50 °C, and a lack of PEG crystallites were found by DSC. This polymerization process and the resulting novel PDTPs enable various new routes for polymer synthesis and application possibilities.


Assuntos
Fósforo , Polímeros , Polímeros/química , Polietilenoglicóis/química , Enxofre
3.
Sci Rep ; 14(1): 13964, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886461

RESUMO

Measuring viscosity in volumes smaller than a microliter is a challenging endeavor. A new type of microscopic viscometers is presented to assess the viscosity of Newtonian liquids. Micron-sized flexible polymer cantilevers are created by two-photon polymerization direct laser writing. Because of the low stiffness and high elasticity of the polymer material the microcantilevers exhibit pronounced Brownian motion when submerged in a liquid medium. By imaging the cantilever's spherically shaped end, these fluctuations can be tracked with high accuracy. The hydrodynamic resistance of the microviscometer is determined by fitting the power spectral density of the measured fluctuations with a theoretical frequency dependence. Validation measurements in water-glycerol mixtures with known viscosities reveal excellent linearity of the hydrodynamic resistance to viscosity, allowing for a simple linear calibration. The stand-alone viscometer structures have a characteristic size of a few tens of microns and only require a very basic external instrumentation in the form of microscopic imaging at moderate framerates (~ 100 fps). Thus, our results point to a practical and simple to use ultra-low volume viscometer that can be integrated into lab-on-a-chip devices.

4.
Polymers (Basel) ; 16(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39339080

RESUMO

The aim of this study was to develop a material capable of rapidly absorbing bodily fluids and forming a resilient, adhesive, viscoelastic hydrogel in situ to prevent post-surgical adhesions. This material was formulated using O-carboxymethyl chitosan (O-CMCS), oxidized hyaluronic acid (OHA), and a crosslinking pigment derived from genipin and glutamic acid (G/GluP). Both crosslinked (O-CMCS/OHA-G/GluP) and non-crosslinked hydrogels (O-CMCS/OHA) were evaluated using a HAAKE™ MARS™ rheometer for their potential as post-surgical barriers. A rheological analysis, including dynamic oscillatory measurements, revealed that the crosslinked hydrogels exhibited significantly higher elastic moduli (G'), indicating superior gel formation and mechanical stability compared to non-crosslinked hydrogels. The G/GluP crosslinker enhanced gel stability by increasing the separation between G' and G″ and achieving a lower loss tangent (tan δ < 1.0), indicating robustness under dynamic physiological conditions. The rapid hydration and gelation properties of the hydrogels underscore their effectiveness as physical barriers. Furthermore, the O-CMCS/OHA-G/GluP hydrogel demonstrated rapid self-healing and efficient application via spraying or spreading, with tissue adherence and viscoelasticity to facilitate movement between tissues and organs, effectively preventing adhesions. Additionally, the hydrogel proved to be both cost effective and scalable, highlighting its potential for clinical applications aimed at preventing post-surgical adhesions.

5.
ISA Trans ; 134: 442-450, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36123190

RESUMO

The precision of micro-force measurement depends on the force sensor sensitivity and the environmental disturbance magnitude. However, micro-force sensors generally have the poor anti-disturbance ability. Inspired by the shadow formed by water striders walking on water surface under sunlight, a viscoelastic-polymer micro-force (VPMF) sensor based on the shadow method was proposed, which could suppress disturbances effectively due to the high damping ratio of 0.22. The shadow diameter change and the applied force were proportional. The experimental results indicated that the sensitivity could reach 2.15 µN/pixel with a good linear performance. Furthermore, compared with the cantilever, it was capable of the reduction of the disturbance influence by approximately 96.35%. Therefore, the VPMF sensor can be applied to reliable micro-force measurement in complex environments such as industrial sites.

6.
Materials (Basel) ; 17(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38204086

RESUMO

This analysis investigated the impact wave response and propagation on a composite sandwich shell when subjected to a low-velocity external shock, considering hygrothermal effects. The sandwich shell was crafted using face layers composed of functional gradient metal-ceramic matrix material and a core layer reinforced with negative Poisson's honeycomb. The honeycomb layer consisted of a combination of viscoelastic polymer material and elastic material. The equivalent parameters for the functional gradient material in the face layers were determined using the Mori-Tanaka and Voigt models, and the parameters for the negative Poisson's ratio honeycomb reinforcement core layer were obtained through Gibson's unit cell model. Parameters relevant to a low-velocity impact were derived using a modified Hertz contact law. The internal deformations, strains, and stress of the composite sandwich shell were described based on the higher-order shear deformation theory. The dynamic equilibrium equations were established using Hamilton's principle, and the Galerkin method along with the Newmark direct integration scheme was employed to calculate the shell's response to impact. The validity of the analysis was confirmed through a comparison with published literature. This investigation showed that a multilayer negative Poisson's ratio viscoelastic polymer material honeycomb-cored structure can dissipate impact wave energy swiftly and suppress shock effectively.

7.
Polymers (Basel) ; 14(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145982

RESUMO

The article discusses the effects of thermal-force on the Panda-type optical fiber. The studies used a wide temperature range. The research used two thermal cycles with exposures to temperatures of 23, 60 and -60 °C. The field of residual stresses in the fiber formed during the drawing process was determined and applied. Panda was considered taking into account a two-layer viscoelastic polymer coating under conditions of tension winding on an aluminum coil in the framework of a contact problem. The paper investigated three variants of coil radius to analyze the effect of bending on fiber behavior. The effect of the coating thickness ratio on the system deformation and optical characteristics was analyzed. Qualitative and quantitative patterns of the effect of temperature, bending, thickness of individual polymer coating layers and relaxation transitions of their materials on the Panda optical fiber deformation and optical characteristics were established. Assessment of approaches to the calculation of optical characteristics (values of the refractive indices and fiber birefringence) are given in the framework of the study. The patterns of deformation and optical behavior of the Panda-type fiber with a protective coating, taking into account the nonlinear behavior of the system materials, were original results.

8.
Heliyon ; 7(5): e06967, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34027172

RESUMO

Precast concrete system has been widely used in modern day constructions due to its high efficiency in both production time and cost. However, because of the way it is constructed (with flat and dense surface), problems with sound reflection and transmission often exist. It is known that increasing of damping property of materials can reduce the transmission of impact sound and vibration which could lead to an improvement in sound insulation performance. In this study, a type of Viscoelastic Polymer Sheet (VPS) was introduced and attached to concrete precast panels with an aim to improve damping property of precast concrete panels. Seven precast concrete specimens with various patterns and attachment position of VPS were prepared. Effect of patterns and locations of attaching VPS on damping property are investigated and discussed.

9.
ACS Appl Mater Interfaces ; 11(1): 1579-1586, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525400

RESUMO

Two-dimensional (2D) van der Waals (vdW) heterostructures exhibit novel physical and chemical properties, allowing the development of unprecedented electronic, optical, and electrochemical devices. However, the construction of wafer-scale vdW heterostructures for practical applications is still limited due to the lack of well-established growth and transfer techniques. Herein, we report a method for the fabrication of wafer-scale 2D vdW heterostructures with an ultraclean interface between layers via the aid of a freestanding viscoelastic polymer support layer (VEPSL). The low glass transition temperature ( Tg) and viscoelastic nature of the VEPSL ensure absolute conformal contact between 2D layers, enabling the easy pick-up of layers and attaching to other 2D layers. This eventually leads to the construction of random sequence 2D vdW heterostructures such as molybdenum disulfide/tungsten disulfide/molybdenum diselenide/tungsten diselenide/hexagonal boron nitride. Furthermore, the VEPSL allows the conformal transfer of 2D vdW heterostructures onto arbitrary substrates, irrespective of surface roughness. To demonstrate the significance of the ultraclean interface, the fabricated molybdenum disulfide/graphene heterostructure employed as an electrocatalyst yielded excellent results of 73.1 mV·dec-1 for the Tafel slope and 0.12 kΩ of charge transfer resistance, which are almost twice as low as that of the impurity-trapped heterostructure.

10.
Ultrasonics ; 74: 233-240, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27863341

RESUMO

BACKGROUND: Normalized absorption coefficients for the longitudinal and shear waves in viscoelastic (polymer-type) materials, extracted from non-fictional experimental data showed anomalous effects, such as the generation of a negative radiation force (NRF) in plane progressive waves, negative energy absorption and extinction efficiencies and a scattering enhancement, not in agreement with energy conservation. OBJECTIVE: The objective of this work is directed towards analyzing those anomalies from the standpoint of energy conservation. Physical conditions which demonstrate that the ratio of the normalized absorption coefficients cannot be of arbitrary value but depends on the ratio of the square of the compressional and shear wave speeds, are established and discussed. METHOD: The necessary physical condition for the validity of the linear viscoelastic (VE) model for any passive (i.e. that does not generate energy) polymeric cylinder with an ultrasonic absorption of hysteresis-type submerged in a non-viscous fluid requires that the absorption efficiency be positive (Qabs>0) since there are no active radiating sources inside the core material. This condition imposes restrictions on the values attributed to the normalized absorption coefficients for the compressional and shear-wave wavenumbers for each partial-wave mode n. The forbidden values produce anomalous/unphysical NRF, negative absorption and extinction efficiencies, as well as an enhancement of the scattering efficiency using plane progressive waves, not in agreement with energy conservation. RESULTS: Based on the partial wave series expansion method in cylindrical coordinates, numerical results for the radiation force, extinction, absorption and scattering energy efficiencies assuming plane progressive wave incidence are performed for three VE polymer cylinders immersed in a non-viscous host liquid (i.e. water) with particular emphasis on the shear-wave absorption coefficient, the dimensionless size parameter ka (where k is the wavenumber and a is the radius of the cylinder) and the partial-wave mode number n. Physical and mathematical conditions are established for the non-dimensional absorption coefficients of the longitudinal and shear waves for a cylinder (i.e. the 2D case) in terms of the sound velocities in the VE material. The physical condition for the spherical 3D case is also noted. CONCLUSION: For passive materials, the physical conditions must be always satisfied to allow accurate computations of the acoustic radiation force, torque, and energy absorption, extinction and scattering efficiencies for VE cylinders having a hysteresis type of absorption (such as polymers and plastics), and submerged in a non-viscous fluid. The physical conditions must be always satisfied regardless of the shape of the incident field. They also serve to validate and verify experimental data for VE materials and test the accuracy of related numerical computations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA