Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 855, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266960

RESUMO

Management of molasses-based wastewater generated in yeast and sugar industries is a major environmental concern due to its high chemical oxygen demand and other recalcitrant substances. Several strategies have been used to reduce the inland discharge of wastewater but the results are not satisfactory due to high operating cost. However, reuse of molasses-based wastewater irrigation in agriculture has been a major interest nowadays to reduce the freshwater consumption. Thus, it is crucial to monitor the impacts of molasses-based waste water irrigation on growth, metabolism, yield and nutritional quality of crops for safer consumer's health. In present study, carrot seeds of a local cultivar (T-29) were germinated on filter paper in Petri dishes under controlled conditions. The germinated seeds were then transplanted into pots and irrigated with three different treatments normal water (T0), diluted molasses-based wastewater (T1), and untreated molasses-based wastewater (T2), in six replicates. Results revealed that carrot irrigated with untreated molasses-based waste water had exhibited significant reductions in growth, yield, physiology, metabolism, and nutritional contents. Additionally, accumulation of Cd and Pb contents in carrot roots irrigated with untreated molasses-based waste water exceed the permissible limits suggested by WHO and their consumption may cause health risks. While, diluted molasses-based waste water irrigation positively enhanced the growth, yield of carrot plants without affecting the nutritional quality. This strategy is cost effective, appeared as most appropriate alternative mean to reduce the freshwater consumption in water deficit regions of the world.


Assuntos
Irrigação Agrícola , Daucus carota , Melaço , Águas Residuárias , Daucus carota/crescimento & desenvolvimento , Daucus carota/metabolismo , Águas Residuárias/química , Irrigação Agrícola/métodos , Valor Nutritivo
2.
IUBMB Life ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051846

RESUMO

Heavy metals, a major source of pollution in the environment, pose a substantial threat due to their non-biodegradability and ability to accumulate in living organisms, causing health problems. Recently, researchers have been searching for cost-effective and safe ways to remove heavy metals from polluted waterways using agricultural waste substitutes. The present study focused on the low-cost treatments for the reduction of chromium Cr+6 metal from the effluent, wherein it has been found that chemically and bacterially treated agro-waste had increased heavy metal ion adsorption capabilities. A sequential optimization of the process parameters was attempted using Plackett-Burman design (PBD) and central composite design of response surface methodology (CCD-RSM) for the maximum reduction of the chromium metal from the effluent. A total of eight parameters were screened out using a 12-run PBD experiment. Out of the eight parameters, time, HCl, NaOH, and bacterial treatments were found to be significantly affecting the maximum reduction of Cr+6 from the effluent. To investigate the interactions' effects of the chosen parameters, they were evaluated using CCD-RSM. Maximum 74% Cr+6 reduction was achieved under the optimum treatment to rice husk of HCl 4.52 N, NaOH 3.53 N, bacterial suspension 7.41%, and with an interaction time 14.32 min using 30 run CCD-RSM experiment. A scanning electron microscope was used to confirm the effects of selected variables on the agro-waste for the Cr+6 reductions, as well as a Fourier transform infrared spectrometer.

3.
Philos Trans A Math Phys Eng Sci ; 382(2276): 20230181, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38945163

RESUMO

Intraplate earthquakes induced by anthropogenic fluid injection present unexpected seismic risk to previously quiescent or low seismicity-rate regions. Despite many studies of induced seismicity, there are relatively few with detailed openly accessible constraints on the interaction between seismic sources and subsurface structures. In this study of the Raton Basin, we refine source observations from a dense nodal array and constrain basin structure using teleseismic receiver functions. The cross-correlation-based relocated hypocentres and a new set of focal mechanisms light up active fault segments and show clear spatiotemporal patterns. The geometric complexity of reactivated fault clusters appears greatest near higher rate injection wells. Simpler normal fault structure is found farther from injection wells and near abrupt structural transitions suggested by receiver functions. While less induced seismicity in the crystalline basement is expected when injection is >1 km from the top of the basement (like Raton), our receiver function analysis identified a basin thickness ~3 km beneath the nodal array and lateral variations in sedimentary structures. Our results explain potential fluid connectivity between the injection depths focused at ~1-1.5 km below the surface and basement fault activity that begins at ~3 km and reaches peak activity at ~4-8 km depths. This article is part of the theme issue 'Induced seismicity in coupled subsurface systems'.

4.
Environ Res ; 251(Pt 2): 118728, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492840

RESUMO

Affordable and swiftly available h-BN@SnO2/TiO2 photocatalysts are being developed through an easy hydrothermally approach was used urea as boric acid precursors. With their constructed photo catalysts, the effect of h-BN@SnO2/TiO2 has been investigated under the assessment of Adsorption agents utilizing X-ray diffraction pattern (XRD), Scanning electron microscopy, Energy dispersive spectroscopic analysis (SEM/EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), and Burner Emit Teller (BET) isotherm testing methods, which also indicated that SnO2/TiO2 and h-BN have been tightly bound together. Because turquoise blue (TB) and Methyl orange (MO) fabric dyes can be found in the industrial wastewater being processed, the photo catalytic degradation process happens to be applied. According to the advantageous linkages of h-BN@SnO2/TiO2 photocatalysts, fantastic efficacy in breakdown towards hazardous compounds has been found. For the decomposition of Turquoise blue (TB) and Methyl orange (MO), the h-BN@SnO2/TiO2 catalysts proved the best performance stability (0.0386 min-1 and 1.524min-1) but were significantly 22 times quicker. Optical catalysis has additionally demonstrated extraordinary resilience and durability throughout five reprocessed efforts. On top of that, an approach enabling photocatalytic breakdown of harmful substances upon h-BN@SnO2/TiO2 has been presented.


Assuntos
Corantes , Compostos de Estanho , Titânio , Águas Residuárias , Poluentes Químicos da Água , Titânio/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Corantes/química , Compostos de Estanho/química , Águas Residuárias/química , Catálise , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Têxteis/análise , Fotólise
5.
Appl Microbiol Biotechnol ; 108(1): 15, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170310

RESUMO

Fungal infection has become a major threat to crop loss and affects food safety. The waste water from agar processing industries extraction has a number of active substances, which could be further transformed by microorganisms to synthesize antifungal active substances. In this study, Bacillus subtilis was used to ferment the waste water from agar processing industries extraction to analyze the antifungal activity of the fermentation broth on Alternaria alternata and Alternaria spp. Results showed that 25% of the fermentation broth was the most effective in inhibited A. alternata and Alternaria spp., with fungal inhibition rates of 99.9% and 96.1%, respectively, and a minimum inhibitory concentration (MIC) was 0.156 µg/mL. Metabolomic analysis showed that flavonoid polyphenols such as coniferyl aldehyde, glycycoumarin, glycitin, and procyanidin A1 may enhance the inhibitory activity against the two pathogenic fungal strains. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that polyphenols involved in the biosynthesis pathways of isoflavonoid and phenylpropanoid were upregulated after fermentation. The laser confocal microscopy analyses and cell conductivity showed that the cytoplasm of fungi treated with fermentation broth was destroyed. This study provides a research basis for the development of new natural antifungal agents and rational use of seaweed agar waste. KEY POINTS: • Bacillus subtilis fermented waste water has antifungal activity • Bacillus subtilis could transform active substances in waste water • Waste water is a potential raw material for producing antifungal agents.


Assuntos
Antifúngicos , Bacillus subtilis , Bacillus subtilis/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Ágar , Águas Residuárias , Fermentação , Alternaria
6.
J Environ Manage ; 358: 120890, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640760

RESUMO

Water recovery from waste water has become an essential element of the circular economy in the Baltic Sea region. However, there is little data on the possibility of using water recovered from urban waste water. A survey was conducted to learn the opinions of Poland waste water treatment plant operators. They were asked whether they recovered water for internal or external needs. Respondents indicated opportunities and barriers in this activity. The opinions of 107 operators show that work is underway on closing internal circuits in urban WWTPs. These solutions are technically relatively easy to implement and show measurable benefits (i.e., saving drinking water). However, water recovery for external purposes is rare and is at a very early stage. Despite this, the potential is significant, although many financial, organizational, technical, and mental barriers exist. The most critical challenge is the safe use of reclaimed water and the cost-effectiveness of the solutions. The survey also shows a need for education and involvement of the public.


Assuntos
Águas Residuárias , Polônia , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos
7.
Environ Geochem Health ; 46(10): 386, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167247

RESUMO

In the era dominated by plastic, the widespread use of plastic in our daily lives has led to a growing accumulation of its degraded byproducts, such as microplastics and plastic additives like Bisphenol A (BPA). BPA is recognized as one of the earliest man-made substances that exhibit endocrine-disrupting properties. It is frequently employed in the manufacturing of epoxy resins, polycarbonates, dental fillings, food storage containers, infant bottles, and water containers. BPA is linked to a range of health issues including obesity, diabetes, chronic respiratory illnesses, cardiovascular diseases, and reproductive abnormalities. This study examines the bacterial bioremediation of the BPA, which is found in many sources and is known for its hazardous effects on the environment. The metabolic pathways for the breakdown of BPA in important bacterial strains were hypothesized based on the observed altered intermediate metabolites during the degradation of BPA. This review discusses the enzymes and genes involved in the bacterial degradation of BPA. The utilization of naturally occurring microorganisms is the most efficient and cost-effective method due to their selectivity of strains, ensuring sustainability.


Assuntos
Bactérias , Compostos Benzidrílicos , Biodegradação Ambiental , Fenóis , Compostos Benzidrílicos/metabolismo , Fenóis/metabolismo , Bactérias/metabolismo , Disruptores Endócrinos/metabolismo , Poluentes Ambientais/metabolismo
8.
J Food Sci Technol ; 61(3): 414-428, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327867

RESUMO

Rice is considered the king of cereals. It is the only cereal that is being consumed by half of the population in the world. Rice and rice products have potential health benefits. One such rice aided product is rice washed water which is discussed in this article. Rice-washed water, which is commonly regarded as waste water and discarded, is a rich source of minerals and nutrients. The processing of rice washed water, nutritional analysis; edible fungi productions are detailed in this review. The article goes into detail about rice-washed water, which has been used for various purposes since our ancestors' time. The article provides a comprehensive report on the uses of rice-washed water in plant growth, Ayurveda, food, Cosmetics and a variety of other applications. Rice washed water is being utilized for various ailments since primitive times. The detailed report on the treatment utilizing rice washed water is also provided in this article. There are scarce researches with rice washed water, this article address the conventional uses of rice washed water, which can be taken up by the research community which needs more scientific validation. This review article also includes details about the composition and a variety of other important information about rice-washed water. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05722-2.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36749697

RESUMO

A novel sulphur-reducing bacterium was isolated from a pyrite-forming enrichment culture inoculated with sewage sludge from a wastewater treatment plant. Based on phylogenetic data, strain J.5.4.2-T.3.5.2T could be affiliated with the phylum Synergistota. Among type strains of species with validly published names, the highest 16S rRNA gene sequence identity value was found with Aminiphilus circumscriptus ILE-2T (89.2 %). Cells of the new isolate were Gram-negative, non-spore-forming, straight to slightly curved rods with tapered ends. Motility was conferred by lateral flagella. True branching of cells was frequently observed. The strain had a strictly anaerobic, asaccharolytic, fermentative metabolism with peptides and amino acids as preferred substrates. Sulphur was required as an external electron acceptor during fermentative growth and was reduced to sulphide, whereas it was dispensable during syntrophic growth with a Methanospirillum species. Major fermentation products were acetate and propionate. The cellular fatty acid composition was dominated by unsaturated and branched fatty acids, especially iso-C15 : 0. Its major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and distinct unidentified polar lipids. Respiratory lipoquinones were not detected. Based on the obtained data we propose the novel species and genus Aminithiophilus ramosus, represented by the type strain J.5.4.2-T.3.5.2T (=DSM 107166T=NBRC 114655T) and the novel family Aminithiophilaceae fam. nov. to accommodate the genus Aminithiophilus. In addition, we suggest reclassifying certain members of the Synergistaceae into new families to comply with current standards for the classification of higher taxa. Based on phylogenomic data, the novel families Acetomicrobiaceae fam. nov., Aminiphilaceae fam. nov., Aminobacteriaceae fam. nov., Dethiosulfovibrionaceae fam. nov. and Thermovirgaceae fam. nov. are proposed.


Assuntos
Bactérias , Ácidos Graxos , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise de Sequência de DNA , Bactérias/genética , Esgotos/microbiologia , Sulfetos , Fosfolipídeos/química
10.
Nanotechnology ; 34(24)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36917852

RESUMO

This article addresses the synthesis of Fe3+doped TiO2nanoparticles with variations of molar concentrations of Fe3+and their adequate use as potential photocatalysts for Photocatalysis applications. Synthesized photocatalysts were characterized thoroughly by different analytical techniques in terms of morphological, chemical, structural, crystalline, optical, electronic structure, surface area etc properties. The occurrence of red shift phenomenon of the energy band gap attributes to the transfer of charges and transition between the d electrons of dopant and conduction band (CB) or valence band (VB) of TiO2. The doping of Fe3+ions generates more trap sites for charge carriers with the surface trap sites. Thorough experimental conclusions revealed that the Fe3+ions necessarily regulate the catalytic property of TiO2nanomaterial. The obtained total degradation efficiency rate of Methylene Blue (MB) was 93.3% in the presence of 0.1 M Fe3+in the host material and for Malachite Green Oxalate the efficiency was 100% in the presence of 0.05 M and 0.1 M Fe3+in the host material. In both the cases the total visible light irradiation time was 90 min. The adsorption properties of the photocatalysts have been also performed in a dark for 90 min in the presence of MB dye. However, till now there are hardly reported photocatalysts which shows complete degradation of these toxic organic dyes by visible light driven photocatalysis. of potential values of valence and conduction band shows the production of active oxidizing species for hydrogen yield and the possible mechanism of the Schottky barrier has been proposed. A schematic diagram of visible light driven Photocatalysis has been pictured showing degradation activity of Fe3+-TiO2catalysts sample.

11.
Environ Sci Technol ; 57(48): 19078-19087, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37956995

RESUMO

Successfully addressing the complex global sanitation problem is a massive undertaking. Anaerobic digestion (AD), coupled with post-treatment, has been identified as a promising technology to contribute to meeting this goal. It offers multiple benefits to the end users, such as the potential inactivation of pathogenic microorganisms in waste and the recovery of resources, including renewable energy and nutrients. This feature article provides an overview of the most frequently applied AD systems for decentralized communities and low- and lower-middle-income countries with an emphasis on sanitation, including technologies for which pathogen inactivation was considered during the design. Challenges to AD use are then identified, such as experience, economics, knowledge/training of personnel and users, and stakeholder analysis. Finally, accelerators for AD implementation are noted, such as the inclusion of field studies in academic journals, analysis of emerging contaminants, the use of sanitation toolboxes and life cycle assessment in design, incorporation of artificial intelligence in monitoring, and expansion of undergraduate and graduate curricula focused on Water, Sanitation, and Hygiene (WASH).


Assuntos
Inteligência Artificial , Saneamento , Anaerobiose , Tecnologia , Água , Abastecimento de Água
12.
Environ Sci Technol ; 57(8): 3415-3424, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36786031

RESUMO

Although dissolved inorganic phosphate (DIP) is an important nutrient in the hydrosphere, it is difficult to quantitatively clarify the dynamics of DIP in the hydrosphere using the δ18O value of DIP as a tracer. In this study, we quantified the triple oxygen isotopic compositions (Δ'17O) of DIP relative to VSMOW with the reference line with a slope of 0.528 as an additional tracer to clarify the sources and dynamics of DIP in the hydrosphere. We found significant variation in the Δ'17O values of riverine DIP in urban areas, ranging from -107 × 10-6 to +3 × 10-6, while those of DIP in the effluents from wastewater treatment plants (WWTP) and DIP extracted from the chemical fertilizers showed -56 ± 5 × 10-6 (1SD) and -98 ± 5 × 10-6, respectively. We conclude that both the DIP supplied directly from the artificial loads (the WWTP effluent and chemical fertilizers) showing 17O-depleted Δ'17O values and the DIP turned over via the aquatic biosphere showing 17O-enriched Δ'17O values similar to ambient H2O were the major sources of riverine DIP. High-precision determination of the Δ'17O value of DIP can contribute to quantitative clarification of the dynamics of DIP in the hydrosphere.


Assuntos
Fertilizantes , Fosfatos , Isótopos de Oxigênio/química , Fosfatos/química
13.
Environ Res ; 236(Pt 1): 116731, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517492

RESUMO

Biochar derived from soybean straw with AAEMs (alkali and alkaline earth metals) enrichment could efficiently remove heavy metals from contaminated water. In this study, the influences of pyrolysis temperature on the physicochemical property and adsorption performance of soybean straw biochar were investigated. The contributions of different adsorption mechanisms were analyzed quantitatively. The results show that the soybean straw biochar exhibits excellent Pb2+ adsorption performance (157.2-227.2 mg g-1), with an order of BC800 > BC400 > BC600 > BC700 > BC500. The mechanisms of metal ion exchange (37.49%-72.58%) and precipitation with minerals (22.38%-58.03%) mainly control the Pb2+ adsorption, whereas complexation with organic functional groups (OFGs) and cation-Cπ interaction make the less contribution. The order of cation exchange capacity (CEC) is BC400 > BC800 > BC700 > BC600 > BC500, showing a high correlation (0.965) with the contribution of metal ion exchange with AAEMs. Moreover, Ca exhibits the strongest exchange capacity. The contribution of precipitation is consistent with the variation of soluble CO32- content in biochar. These results suggest that soybean straw biochar rich in AAEMs is a prospective adsorbent for Pb2+ elimination.


Assuntos
Carvão Vegetal , Chumbo , Adsorção , Carvão Vegetal/química , Água , Cátions
14.
J Environ Manage ; 348: 119230, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832302

RESUMO

The study provides a systematic literature review (SLR) encompassing industrial wastewater management research from the past decade, examining enablers, challenges, and prevailing practices. Originating from manufacturing, energy production, and diverse industrial processes, industrial wastewater's handling is critical due to its potential to impact the environment and public health. The research aims to comprehend the current state of industrial wastewater management, pinpoint gaps, and outline future research prospects. The SLR methodology involves scouring the Scopus database, yielding an initial pool of 253 articles. Refinement via search code leaves 101 articles, followed by abstract screening that reduces articles to 79, and finally 66 well-focused articles left for thorough full-text examination. Results underscore the significance of regulatory frameworks, technological innovation, and sustainability considerations as cornerstones for effective wastewater management. However, substantial impediments like; inadequate infrastructure, resource constraints and the necessity for stakeholder collaboration still exist. The study highlights emerging research domains, exemplified by advanced technologies like nanotechnology and bioremediation, alongside the pivotal role of circular economy principles in wastewater management. The SLR offers an exhaustive view of contemporary industrial wastewater management, accentuating the imperative of an all-encompassing approach that integrates regulatory, technological, and sustainability facets. Notably, the research identifies gaps and opportunities for forthcoming exploration, advocating for interdisciplinary research and intensified stakeholder collaboration. The study's insights cater to policymakers, practitioners, and researchers, equipping them to address the challenges and capitalize on prospects in industrial wastewater management effectively.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental
15.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138501

RESUMO

Photocatalysis has emerged as a highly promising, green, and efficient technology for degrading pollutants in wastewater. Among the various photocatalysts, Bismuth tungstate (Bi2WO6) has gained significant attention in the research community due to its potential in environmental remediation and photocatalytic energy conversion. However, the limited light absorption ability and rapid recombination of photogenerated carriers hinder the further improvement of Bi2WO6's photocatalytic performance. This review aims to present recent advancements in the development of Bi2WO6-based photocatalysts. It delves into the photocatalytic mechanism of Bi2WO6 and summarizes the achieved photocatalytic characteristics by controlling its morphology, employing metal and non-metal doping, constructing semiconductor heterojunctions, and implementing defective engineering. Additionally, this review explores the practical applications of these modified Bi2WO6 photocatalysts in wastewater purification. Furthermore, this review addresses existing challenges and suggests prospects for the development of efficient Bi2WO6 photocatalysts. It is hoped that this comprehensive review will serve as a valuable reference and guide for researchers seeking to advance the field of Bi2WO6 photocatalysis.

16.
Environ Geochem Health ; 45(5): 1359-1389, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35972610

RESUMO

Selenium (Se) is an essential metalloid and is categorized as emerging anthropogenic contaminant released to the environment. The rise of Se release into the environment has raised concern about its bioaccumulation, toxicity, and potential to cause serious damages to aquatic and terrestrial ecosystem. Therefore, it is extremely important to monitor Se level in environment on a regular basis. Understanding Se release, anthropogenic sources, and environmental behavior is critical for developing an effective Se containment strategy. The ongoing efforts of Se remediation have mostly emphasized monitoring and remediation as an independent topics of research. However, our paper has integrated both by explaining the attributes of monitoring on effective scale followed by a candid review of widespread technological options available with specific focus on Se removal from environmental media. Another novel approach demonstrated in the article is the presentation of an overwhelming evidence of limitations that various researchers are confronted with to overcome achieving effective remediation. Furthermore, we followed a holistic approach to discuss ways to remediate Se for cleaner environment especially related to introducing weak magnetic field for ZVI reactivity enhancement. We linked this phenomenal process to electrokinetics and presented convincing facts in support of Se remediation, which has led to emerge 'membrane technology', as another viable option for remediation. Hence, an interesting, innovative and future oriented review is presented, which will undoubtedly seek attention from global researchers.


Assuntos
Selênio , Selênio/análise , Ecossistema , Poluição Ambiental
17.
Environ Monit Assess ; 195(11): 1350, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861930

RESUMO

Heavy metal pollution in water bodies is a global concern. The prominent source of metal contamination in aqueous streams and groundwater is wastewater containing heavy metal ions. Elevated concentrations of heavy metals in water bodies can have a negative impact on water quality and public health. The most effective way to remove metal contaminants from drinking water is thought to be adsorption. A deacetylated derivative of chitin, chitosan, has a wide range of commercial uses since it is biocompatible, nontoxic, and biodegradable. Due to its exceptional adsorption behavior toward numerous hazardous heavy metals from aqueous solutions, chitosan and its modifications have drawn a lot of interest in recent years. Due to its remarkable adsorption behavior toward a range of dangerous heavy metals, chitosan is a possible agent for eliminating metals from aqueous solutions. The review has focused on the ideas of biosorption, its kinds, architectures, and characteristics, as well as using modified (physically and chemically modified) chitosan, blends, and composites to remove heavy metals from water. The main objective of the review is to describe the most important aspects of chitosan-based adsorbents that might be beneficial for enhancing the adsorption capabilities of modified chitosan and promoting the usage of this material in the removal of heavy metal pollutants.


Assuntos
Quitosana , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Monitoramento Ambiental , Quitina , Águas Residuárias , Adsorção
18.
Environ Monit Assess ; 195(5): 571, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060475

RESUMO

Textile waste water contains dyes and chemicals that produce harmful vapors and exhaust gases, which is hazardous to the environment and public health. Therefore, it must be carefully treated before discharged. To understand the research evolution in the research area of textile waste water treatment, based on bibliometrics, an in-depth analysis of the publications and hotspots in this area was presented in this paper. For the analysis, totally 6774 papers related to the research area that are published between the year 1964 and 2023 were collected from the Web of Science Core Collection. Using CiteSpace and VOSviewer as bibliometric analysis tools, the collaboration of countries, regions, and organizations was investigated. Besides, an analysis for citation and co-citation of journals, authors, references, and co-occurrence of keywords was performed. The evolution of research hotspots in the three major research directions related to degradation, oxidation, and adsorption is also analyzed in this paper. The analysis results show that researches related to oxidation and adsorption are active in recent years, while nanocomposite adsorbents and graphene oxide are the current research hotspots.


Assuntos
Monitoramento Ambiental , Águas Residuárias , Adsorção , Bibliometria , Gases , Têxteis
19.
Epidemiol Infect ; 150: e21, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35068403

RESUMO

Since the start of the coronavirus disease-2019 (COVID-19) pandemic, there has been interest in using wastewater monitoring as an approach for disease surveillance. A significant uncertainty that would improve the interpretation of wastewater monitoring data is the intensity and timing with which individuals shed RNA from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into wastewater. By combining wastewater and case surveillance data sets from a university campus during a period of heightened surveillance, we inferred that individual shedding of RNA into wastewater peaks on average 6 days (50% uncertainty interval (UI): 6-7; 95% UI: 4-8) following infection, and that wastewater measurements are highly overdispersed [negative binomial dispersion parameter, k = 0.39 (95% credible interval: 0.32-0.48)]. This limits the utility of wastewater surveillance as a leading indicator of secular trends in SARS-CoV-2 transmission during an epidemic, and implies that it could be most useful as an early warning of rising transmission in areas where transmission is low or clinical testing is delayed or of limited capacity.


Assuntos
COVID-19/transmissão , RNA Viral/análise , SARS-CoV-2/isolamento & purificação , Eliminação de Partículas Virais , Águas Residuárias/virologia , Fatores de Tempo
20.
Environ Res ; 214(Pt 3): 114012, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952747

RESUMO

Due to stringent regulatory norms, waste processing faces confrontations and challenges in adapting technology for effective management through a convenient and economical system. At the global level, attempts are underway to achieve a green and sustainable treatment for the valorization of lignocellulosic biomass as well as organic contaminants in wastewater. Enzymatic treatment in the environmental aspect thrived on being the promising rapid strategy that appeased the aforementioned predicament. On that account, coimmobilization of various enzymes on single support enhances the catalytic activity ensuing operational stability with industrial applications. This review pivoted towards the coimmobilization of enzymes on diverse supports and their applications in biomass conversion to industrial value-added products and removal of contaminants in wastewater. The limelight of this study chronicles the unique breakthroughs in biotechnology for the production of reusable biocatalysts, which inculcating various enzymes towards the scope of environment application.


Assuntos
Biotecnologia , Águas Residuárias , Biocatálise , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA