Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542985

RESUMO

Newly synthesized cerium oxide was successfully obtained by the hard templating route. The optimal As(III) and As(V) adsorption onto the studied adsorbent was reached for the initial pH of 4.0 and a contact time of 10 h. The highest static adsorption capacities for As(III) and As(V) were 92 mg g-1 and 66 mg g-1, respectively. The pseudo-second-order model was well fitted to the As(III) and As(V) experimental kinetics data. The Langmuir model described the As(III) and As(V) adsorption isotherms on synthesized material. The adsorption mechanism of the studied ions onto the synthesized cerium oxide was complex and should be further investigated. The optimal solid-liquid ratio during the proposed aqueous extraction of inorganic As from the Fucus vesiculosus algae was 1:50. The optimal dosage of the synthesized cerium oxide (0.06 g L-1) was successfully applied for the first time for inorganic As removal from the aqueous algal extract.

2.
Molecules ; 29(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39064863

RESUMO

Almond shell (AS) represents about 33% of the almond fruit, being a cellulose-rich by-product. The use of greener methods for separating cellulose would contribute to better exploitation of this biomass. Subcritical water extraction (SWE) at 160 and 180 °C has been used as a previous treatment to purify cellulose of AS, followed by a bleaching step with hydrogen peroxide (8%) at pH 12. For comparison purposes, bleaching with sodium chlorite of the extraction residues was also studied. The highest extraction temperature promoted the removal of hemicellulose and the subsequent delignification during the bleaching step. After bleaching with hydrogen peroxide, the AS particles had a cellulose content of 71 and 78%, with crystallinity index of 50 and 62%, respectively, for those treated at 160 and 180 °C. The use of sodium chlorite as bleaching agent improved the cellulose purification and crystallinity index. Nevertheless, cellulose obtained by both bleaching treatments could be useful for different applications. Therefore, SWE represents a promising green technique to improve the bleaching sensitivity of lignocellulosic residues, such as AS, allowing for a great reduction in chemicals in the cellulose purification processes.

3.
Molecules ; 29(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38202840

RESUMO

Most organic pollutants are serious environmental concerns globally due to their resistance to biological, chemical, and photolytic degradation. The vast array of uses of organic compounds in daily life causes a massive annual release of these substances into the air, water, and soil. Typical examples of these substances include pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Since they are persistent and hazardous in the environment, as well as bio-accumulative, sensitive and efficient extraction and detection techniques are required to estimate the level of pollution and assess the ecological consequences. A wide variety of extraction methods, including pressurized liquid extraction, microwave-assisted extraction, supercritical fluid extraction, and subcritical water extraction, have been recently used for the extraction of organic pollutants from the environment. However, subcritical water has proven to be the most effective approach for the extraction of a wide range of organic pollutants from the environment. In this review article, we provide a brief overview of the subcritical water extraction technique and its application to the extraction of PAHs, PCBs, pesticides, pharmaceuticals, and others form environmental matrices. Furthermore, we briefly discuss the influence of key extraction parameters, such as extraction time, pressure, and temperature, on extraction efficiency and recovery.

4.
Food Technol Biotechnol ; 62(2): 254-263, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39045305

RESUMO

Research background: Preparation of medicinal fungi for experimental purposes usually involves the extraction and determination of the quality and quantity of bioactive compounds prior to the biological experiment. Water, a common polar solvent, is usually used for traditional preparations for consumption. The application of high temperatures during water extraction can affect the chemical composition and functional properties of the extracts. Therefore, the aim of this study is to compare the differences in composition between extracts obtained with heat-assisted and cold water extractions of six selected species of fungi (Lignosus rhinocerus, Ophiocordyceps sinensis, Inonotus obliquus, Antrodia camphorata, Phellinus linteus and Monascus purpureus) and their cytotoxicity against human lung and breast cancer cells. Experimental approach: The extracts obtained with heat-assisted and cold water extraction of six species of fungi were analysed to determine their protein, carbohydrate and phenolic contents. Their cytotoxicity was tested against lung (A549) and breast (MCF-7 and MDA-MB-231) cancer cell lines. The most potent extract was further separated into its protein and non-protein fractions to determine their respective cytotoxicity. Results and conclusions: The cytotoxicity of the different extracts obtained with heat-assisted and cold water extraction varied. Comparing the two extractions, the cold water extraction resulted in a significantly higher yield of proteins (except M. purpureus) and phenolic compounds (except A. camphorata), while the extracts of I. obliquus and M. purpureus obtained with heat-assisted extraction had a significantly higher carbohydrate mass fraction. Notably, the cold water extract of I. obliquus showed cytotoxicity (IC50=(701±35) µg/mL), which was one of the highest of the extracts tested against A549 cells. The cold water extract of I. obliquus was selected for further studies. Our results showed that cold water extracts generally have higher cytotoxicity against selected human cancer cell lines, with the exception of O. sinensis and A. camphorata extracts. Novelty and scientific contribution: This study reports the advantage of cold water extracts of fungi over those obtained with heat-assisted extraction in terms of cytotoxicity against human cancer cell lines and emphasises the role of extraction conditions, particularly heat, in influencing chemical composition and cytotoxic effects.

5.
Int J Environ Health Res ; : 1-18, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037127

RESUMO

Allium dictyoprasum C.A. Meyer ex Kunth (A. dictyoprasum) underwent comprehensive analysis, encompassing quantum chemical computations to assess its radical scavenging potential, chemical and elemental composition, total phenolic content, and antimicrobial activity. Experimental and theoretical investigations focused on elucidating the radical scavenging properties of polyhydroxy phenolic compounds present in the plant. Quantum chemical calculations were employed to evaluate the antioxidants employed to evaluate selected polyhydroxy phenolic molecules including flavonoids, hydrocinnamic acid derivatives, and hydroxybenzoic acid derivatives from natural sources. Thermochemical parameters of these compounds were calculated by the B3LYP/6-311 G++(d,p) level in both gas and solvent phases to elucidate the radical scavenging mechanism including hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET). Analysis of A. dictyoprasum extracts obtained via various extraction methods revealed the presence of several major compounds, including dimethyl trisulfide, 3,5-Dihydroxy-6-methyl-2,3-dihydro-4 H-pyran-4-one, 2-Methoxy-4-vinylphenol, Dimethyl phthalate, Methyl palmitate, Methyl oleate, Methyl stearate, (9Z)-9-Octadecenamide. Notably, Malic acid and Quinic acid were identified as major compounds, with concentrations of 43.31 and 17.47 mg kg-1 extract, respectively, based on LC-MS/MS analysis. The total phenolic content of the extract was measured as 17.83 mg gallic acid/mL, while its free radical scavenging activity was 80.89% per mg/mL. Elemental analysis revealed significant levels of Mg, K, Na, Fe, and P, with minor concentrations of elements such as Ti, Tl, B, and Be. Furthermore, A. dictyoprasum exhibited notable antibacterial activity against various bacteria strains, surpassing the efficacy of some commercial antibiotics.


Quantum chemical calculations of radical scavenging analysis were performed.Thermochemical parameters were calculated by the B3LYP/6­311 G++(d,p) level.Radical scavenging mechanism was evaluated based on HAT, SET-PT and SPLET.Chemical composition of Allium dictyoprasum C.A. Meyer ex Kunth was determined.A. dictyoprasum has a greater antibacterial effects than some commercial antibiotics.

6.
Neuroimage ; 268: 119870, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640948

RESUMO

Blood-brain barrier (BBB) plays a critical role in protecting the brain from toxins and pathogens. However, in vivo tools to assess BBB permeability are scarce and often require the use of exogenous contrast agents. In this study, we aimed to develop a non-contrast arterial-spin-labeling (ASL) based MRI technique to estimate BBB permeability to water in mice. By determining the relative fraction of labeled water spins that were exchanged into the brain tissue as opposed to those that remained in the cerebral veins, we estimated indices of global BBB permeability to water including water extraction fraction (E) and permeability surface-area product (PS). First, using multiple post-labeling delay ASL experiments, we estimated the bolus arrival time (BAT) of the labeled spins to reach the great vein of Galen (VG) to be 691.2 ± 14.5 ms (N = 5). Next, we investigated the dependence of the VG ASL signal on labeling duration and identified an optimal imaging protocol with a labeling duration of 1200 ms and a PLD of 100 ms. Quantitative E and PS values in wild-type mice were found to be 59.9 ± 3.2% and 260.9 ± 18.9 ml/100 g/min, respectively. In contrast, mice with Huntington's disease (HD) revealed a significantly higher E (69.7 ± 2.4%, P = 0.026) and PS (318.1 ± 17.1 ml/100 g/min, P = 0.040), suggesting BBB breakdown in this mouse model. Reproducibility studies revealed a coefficient-of-variation (CoV) of 4.9 ± 1.7% and 6.1 ± 1.2% for E and PS, respectively. The proposed method may open new avenues for preclinical research on pathophysiological mechanisms of brain diseases and therapeutic trials in animal models.


Assuntos
Barreira Hematoencefálica , Veias Cerebrais , Camundongos , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/fisiologia , Veias Cerebrais/diagnóstico por imagem , Marcadores de Spin , Água , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Permeabilidade , Circulação Cerebrovascular/fisiologia
7.
Plant Mol Biol ; 113(6): 401-414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37129736

RESUMO

Plant cell walls are complex structures mainly made up of carbohydrate and phenolic polymers. In addition to their structural roles, cell walls function as external barriers against pathogens and are also reservoirs of glycan structures that can be perceived by plant receptors, activating Pattern-Triggered Immunity (PTI). Since these PTI-active glycans are usually released upon plant cell wall degradation, they are classified as Damage Associated Molecular Patterns (DAMPs). Identification of DAMPs imply their extraction from plant cell walls by using multistep methodologies and hazardous chemicals. Subcritical water extraction (SWE) has been shown to be an environmentally sustainable alternative and a simplified methodology for the generation of glycan-enriched fractions from different cell wall sources, since it only involves the use of water. Starting from Equisetum arvense cell walls, we have explored two different SWE sequential extractions (isothermal at 160 ºC and using a ramp of temperature from 100 to 160 ºC) to obtain glycans-enriched fractions, and we have compared them with those generated with a standard chemical-based wall extraction. We obtained SWE fractions enriched in pectins that triggered PTI hallmarks in Arabidopsis thaliana such as calcium influxes, reactive oxygen species production, phosphorylation of mitogen activated protein kinases and overexpression of immune-related genes. Notably, application of selected SWE fractions to pepper plants enhanced their disease resistance against the fungal pathogen Sclerotinia sclerotiorum. These data support the potential of SWE technology in extracting PTI-active fractions from plant cell wall biomass containing DAMPs and the use of SWE fractions in sustainable crop production.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Equisetum , Resistência à Doença , Proteínas de Arabidopsis/genética , Equisetum/metabolismo , Imunidade Vegetal , Biomassa , Arabidopsis/genética , Plantas/metabolismo , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Doenças das Plantas/microbiologia
8.
Plant Biotechnol J ; 21(5): 1005-1021, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36668687

RESUMO

Trees constitute promising renewable feedstocks for biorefinery using biochemical conversion, but their recalcitrance restricts their attractiveness for the industry. To obtain trees with reduced recalcitrance, large-scale genetic engineering experiments were performed in hybrid aspen blindly targeting genes expressed during wood formation and 32 lines representing seven constructs were selected for characterization in the field. Here we report phenotypes of five-year old trees considering 49 traits related to growth and wood properties. The best performing construct considering growth and glucose yield in saccharification with acid pretreatment had suppressed expression of the gene encoding an uncharacterized 2-oxoglutarate-dependent dioxygenase (2OGD). It showed minor changes in wood chemistry but increased nanoporosity and glucose conversion. Suppressed levels of SUCROSE SYNTHASE, (SuSy), CINNAMATE 4-HYDROXYLASE (C4H) and increased levels of GTPase activating protein for ADP-ribosylation factor ZAC led to significant growth reductions and anatomical abnormalities. However, C4H and SuSy constructs greatly improved glucose yields in saccharification without and with pretreatment, respectively. Traits associated with high glucose yields were different for saccharification with and without pretreatment. While carbohydrates, phenolics and tension wood contents positively impacted the yields without pretreatment and growth, lignin content and S/G ratio were negative factors, the yields with pretreatment positively correlated with S lignin and negatively with carbohydrate contents. The genotypes with high glucose yields had increased nanoporosity and mGlcA/Xyl ratio, and some had shorter polymers extractable with subcritical water compared to wild-type. The pilot-scale industrial-like pretreatment of best-performing 2OGD construct confirmed its superior sugar yields, supporting our strategy.


Assuntos
Lignina , Populus , Lignina/metabolismo , Populus/genética , Populus/metabolismo , Madeira/genética , Madeira/metabolismo , Glucose/metabolismo , Engenharia Genética
9.
NMR Biomed ; 36(7): e4908, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36650646

RESUMO

Blood-brain barrier (BBB) dysfunction is associated with a number of central nervous system diseases. This study demonstrates the application of a novel noninvasive technique to measure the BBB permeability in the human brain at 7 T. The technique exploits the fact that, when tissue macromolecules are saturated by off-resonance RF pulse, the intravascular and the extravascular (tissue) water experience different magnetization transfer effects. This principle was combined with arterial spin labeling to distinguish between the intravascular and the tissue water, and was used to calculate perfusion, water extraction fraction (E), and BBB permeability surface area product for water (PS). Simultaneous coregistered magnetization transfer ratio maps were also generated that can provide valuable additional information. Eighteen healthy volunteers (seven females), age = 27 ± 11 years and weight = 65 ± 9 kg, participated in the study. Average perfusion was 67 ± 5 and 29 ± 4 ml/100 g/min (p < 0.05); and E was 0.921 ± 0.025 and 0.962 ± 0.015 (p < 0.05) in the gray matter (GM) and the white matter (WM), respectively. PS was higher in the GM (171 ± 20 ml/100 g/min) compared with the WM (95 ± 18 ml/100 g/min) (p < 0.05). The parameters exhibited good reliability with test re-test experiments. The sensitivity of this technique was demonstrated by 200 mg caffeine intake, which resulted in a decrease in the resting PS by ~31%.


Assuntos
Barreira Hematoencefálica , Imageamento por Ressonância Magnética , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Marcadores de Spin , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Água , Permeabilidade , Circulação Cerebrovascular/fisiologia
10.
Mar Drugs ; 21(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367653

RESUMO

In this study, we characterized the bioactive properties of three important brown seaweed species, Sargassum thunbergii, Undaria pinnatifida, and Saccharina japonica, by subcritical water extraction (SWE), as these species are well known for their beneficial health effects. Their physiochemical properties, including potential antioxidant, antihypertensive, and α-glucosidase inhibitory activity, and the antibacterial activity of the hydroysates were also analyzed. The highest total phlorotannin, total sugar content, and reducing sugar content in the S. thunbergii hydrolysates were 38.82 ± 0.17 mg PGE/g, 116.66 ± 0.19 mg glucose/g dry sample, and 53.27 ± 1.57 mg glucose/g dry sample, respectively. The highest ABTS+ and DPPH antioxidant activities were obtained in the S. japonica hydrolysates (124.77 ± 2.47 and 46.35 ± 0.01 mg Trolox equivalent/g, respectively) and the highest FRAP activity was obtained in the S. thunbergii hydrolysates (34.47 ± 0.49 mg Trolox equivalent/g seaweed). In addition, the seaweed extracts showed antihypertensive (≤59.77 ± 0.14%) and α-glucosidase inhibitory activity (≤68.05 ± 1.15%), as well as activity against foodborne pathogens. The present findings provide evidence of the biological activity of brown seaweed extracts for potential application in the food, pharmaceutical, and cosmetic sectors.


Assuntos
Alga Marinha , Água , Água/química , alfa-Glucosidases , Antioxidantes/química , Anti-Hipertensivos/análise , Alga Marinha/química , Glucose , Extratos Vegetais/farmacologia
11.
Proc Natl Acad Sci U S A ; 117(20): 10681-10687, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366642

RESUMO

Microorganisms, in the most hyperarid deserts around the world, inhabit the inside of rocks as a survival strategy. Water is essential for life, and the ability of a rock substrate to retain water is essential for its habitability. Here we report the mechanism by which gypsum rocks from the Atacama Desert, Chile, provide water for its colonizing microorganisms. We show that the microorganisms can extract water of crystallization (i.e., structurally ordered) from the rock, inducing a phase transformation from gypsum (CaSO4·2H2O) to anhydrite (CaSO4). To investigate and validate the water extraction and phase transformation mechanisms found in the natural geological environment, we cultivated a cyanobacterium isolate on gypsum rock samples under controlled conditions. We found that the cyanobacteria attached onto high surface energy crystal planes ({011}) of gypsum samples generate a thin biofilm that induced mineral dissolution accompanied by water extraction. This process led to a phase transformation to an anhydrous calcium sulfate, anhydrite, which was formed via reprecipitation and subsequent attachment and alignment of nanocrystals. Results in this work not only shed light on how microorganisms can obtain water under severe xeric conditions but also provide insights into potential life in even more extreme environments, such as Mars, as well as offering strategies for advanced water storage methods.


Assuntos
Adaptação Fisiológica , Anidridos/metabolismo , Sulfato de Cálcio/metabolismo , Cianobactérias/metabolismo , Biofilmes , Cianobactérias/fisiologia , Ambientes Extremos , Água/metabolismo
12.
Ecotoxicol Environ Saf ; 256: 114843, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996665

RESUMO

Automatic extraction of surface water is of great significance to the study of the global water cycle and the dynamic management of water resources. At present, the water extraction accuracy of high-resolution multi-spectral remote sensing images has been greatly improved. But it is still affected by the shadow of the mountains and the shadow of the tall buildings inside the city. The spectral information of shadow is basically consistent with the spectral information of water, so the accuracy of any traditional index extraction of water will be questioned by users. Or the user must adjust threshold parameters many times to obtain good extraction results, which is contradictory to fast and large-area remote sensing monitoring. To solve the above problems, this paper firstly introduces the thermal infrared band at the data end for pre-treatment. Then, a lightweight neural network (EDCM) combining the most advanced lightweight image classification model and semantic segmentation model is proposed, which is specially used for fast, large area and automatic water extraction. Multi-scale training of samples using lightweight convolutional networks aims to extract multi-scale context information. The newly constructed model was tested in three highly heterogeneous scenarios, and the results showed that the trained EDCM model achieved the highest accuracy in all selected test areas, reaching more than 95.28%. The EDCM model can be used for the high-precision extraction of surface water in complex areas.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
13.
Chem Biodivers ; 20(5): e202201099, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37096966

RESUMO

Subcritical water extraction was used to extract bioactive phenolic compounds from Vaccinium dunalianum Wight leaves. The optimal extraction conditions were determined as an extraction temperature of 150 °C, an extraction time of 40 min, and a liquid-solid ratio of 35 : 1 mL/g. The total phenolic content reached 21.35 mg gallic acid /g, which was 16 % higher than that by hot water extraction. The subcritical water extraction extract exhibited strong scavenging activity of DPPH free radical and ABTS+ free radical, as well as significant tyrosinase inhibitory activity. The study suggests that subcritical water extraction can alter the composition of the extracts, leading to the production of various phenolic compounds, effective antioxidants, and tyrosinase inhibitors from Vaccinium dulciana Wight leaves. These findings confirm the potential of Vaccinium dunalianum Wight as a natural antioxidant molecule source for the medicine and food industries, and for the therapy of skin pigmentation disorders.


Assuntos
Antioxidantes , Vaccinium , Antioxidantes/química , Água/química , Monofenol Mono-Oxigenase , Vaccinium/química , Extratos Vegetais/química , Fenóis/química , Folhas de Planta/química
14.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049793

RESUMO

There are billions of tea drinkers around the world. However, the optimized tea-brewing temperature and time conditions for achieving a higher concentration of antioxidants in tea drinks have not been thoroughly studied. Finding out the optimized brewing conditions can benefit tea drinkers significantly. In this work, we have studied ten antioxidants from seven different popular green, Oolong, black, and scented teas using hot water extraction followed by HPLC analysis. The antioxidant yield was evaluated at 25-100 °C with 5 to 720 min of brewing time. Our results show that the extraction efficiency was enhanced by increasing the water temperature and the highest yield of antioxidants was achieved at 100 °C. The antioxidant yield increased with prolonged brewing time. However, the degradation of antioxidants occurred when tea leaves were extracted for 120 to 720 min. Caffeine was found in all seven tea samples. At 100 °C, the caffein concentration in the tea extract ranged from 7.04 to 20.4 mg/g in Rizhao green tea. Longjing green tea contained the highest concentration of antioxidants (88 mg/g) in the 100 °C extract. Epigallocatechin and caffeine were the most abundant compounds found in all tea samples studied, ranging from 4.77 to 26.88 mg/g. The antioxidant yield was enhanced by increasing the extraction time to up to 60-120 min for all ten compounds studied.


Assuntos
Antioxidantes , Camellia sinensis , Antioxidantes/análise , Cafeína/análise , Chá , Água , Extratos Vegetais/análise
15.
Molecules ; 28(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36615563

RESUMO

Garlic (Allium sativum L.) is widely used in various food products and traditional medicine. Besides unique taste and flavour, it is well known for its chemical profile and bioactive potential. The aim of this study was to apply subcritical water extraction (SWE) and pressurized liquid extraction (PLE) for the extraction of bioactive compounds from the Ranco genotype of garlic. Moreover, PLE process was optimized using response surface methodology (RSM) in order to determine effects and optimize ethanol concentration (45-75%), number of cycles (1-3), extraction time (1-3 min) and temperature (70-110 °C) for maximized total phenols content (TP) and antioxidant activity evaluated by various in vitro assays. Furthermore, temperature effect in SWE process on all responses was evaluated, while allicin content (AC), as a major organosulphur compound, was determined in all samples. Results indicated that PLE provided tremendous advantage over SWE in terms of improved yield and antioxidant activity of garlic extracts. Therefore, high-pressure processes could be used as clean and green procedures for the isolation of garlic bioactives.


Assuntos
Alho , Água , Água/química , Alho/química , Antioxidantes/química , Fenóis/química , Etanol/química , Extratos Vegetais/química
16.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903642

RESUMO

Microalgae are capable of assimilating nutrients from wastewater (WW), producing clean water and biomass rich in bioactive compounds that need to be recovered from inside the microalgal cell. This work investigated subcritical water (SW) extraction to collect high-value compounds from the microalga Tetradesmus obliquus after treating poultry WW. The treatment efficiency was evaluated in terms of total Kjeldahl nitrogen (TKN), phosphate, chemical oxygen demand (COD) and metals. T. obliquus was able to remove 77% TKN, 50% phosphate, 84% COD, and metals (48-89%) within legislation values. SW extraction was performed at 170 °C and 30 bar for 10 min. SW allowed the extraction of total phenols (1.073 mg GAE/mL extract) and total flavonoids (0.111 mg CAT/mL extract) with high antioxidant activity (IC50 value, 7.18 µg/mL). The microalga was shown to be a source of organic compounds of commercial value (e.g., squalene). Finally, the SW conditions allowed the removal of pathogens and metals in the extracts and residues to values in accordance with legislation, assuring their safety for feed or agriculture applications.


Assuntos
Clorofíceas , Microalgas , Animais , Águas Residuárias , Biomassa , Aves Domésticas , Água , Metais , Tecnologia , Fosfatos , Nitrogênio
17.
Prep Biochem Biotechnol ; : 1-10, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860989

RESUMO

Subcritical water extraction (SWE) is an efficient and eco-friendly technology that rapidly extracts valuable compounds from natural materials. In this study, response surface methodology (RSM) was utilized to determine the optimal extraction conditions for Gastrodiae Rhizoma using SWE (GRP-S). The optimum conditions were found to be 161 °C extraction temperature, 41 min extraction time, and a solid-to-liquid ratio of 1.55 mg/mL. Under these optimal conditions, the experimental yield of GRP-S was 66.32% ± 0.10% (n = 3), demonstrating a significant increase compared to hot water reflux extraction (HWE) in the extraction yield of polysaccharides. Characterization studies employing SEM, FT-IR, and HPAEC-PAD confirmed the differences between GRP-S and GRP-H (GRP obtained by HWE). Furthermore, both GRP-S and GRP-H exhibited a significant ability to protect HepG2 cells from ethanol-induced damage, with GRP-S showcasing a superior effect. The widespread adoption of SWE technology can lead to high GRP content in extracts and promote the green and sustainable development of natural products extraction processes.

18.
Molecules ; 28(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005259

RESUMO

With the increase in the world population, the overexploitation of the planet's natural resources is becoming a worldwide concern. Changes in the way humankind thinks about production and consumption must be undertaken to protect our planet and our way of living. For this change to occur, sustainable development together with a circular economic approach and responsible consumption are key points. Agriculture activities are responsible for more than 10% of the greenhouse gas emissions; moreover, by 2050, it is expected that food production will increase by 60%. The valorization of food waste is therefore of high importance to decrease the environmental footprint of agricultural activities. Fruits and vegetables are wildly consumed worldwide, and grapes are one of the main producers of greenhouse gases. Grape biomass is rich in bioactive compounds that can be used for the food, pharmaceutical and cosmetic industries, and their extraction from this food residue has been the target of several studies. Among the extraction techniques used for the recovery of bioactive compounds from food waste, subcritical water extraction (SWE) has been the least explored. SWE has several advantages over other extraction techniques such as microwave and ultrasound extraction, allowing high yields with the use of only water as the solvent. Therefore, it can be considered a green extraction method following two of the principles of green chemistry: the use of less hazardous synthesis (principle number 3) and the use of safer solvents and auxiliaries (principle number 5). In addition, two of the green extraction principles for natural products are also followed: the use of alternative solvents or water (principle number 2) and the use of a reduced, robust, controlled and safe unit operation (principle number 5). This review is an overview of the extraction process using the SWE of grape biomass in a perspective of the circular economy through valorization of the bioactive compounds extracted. Future perspectives applied to the SWE are also discussed, as well as its ability to be a green extraction technique.


Assuntos
Eliminação de Resíduos , Vitis , Vitis/química , Água , Biomassa , Solventes/química , Frutas
19.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446802

RESUMO

The extraction of bioactive compounds and cellulose saccharification are potential directions for the valorization of spent mushroom substrate (SMS). Therefore, investigating the suitability of different extraction methods for recovering bioactive compounds from SMS and how the extraction affects the enzymatic saccharification is of uppermost relevance. In this work, bioactive compounds were extracted from Pleurotus spp. SMS using four extraction methods. For Soxhlet extraction (SoE), a 40:60 ethanol/water mixture gave the highest extraction efficiency (EE) (69.9-71.1%) among the seven solvent systems assayed. Reflux extraction with 40:60 ethanol/water increased the extraction yield and EE compared to SoE. A shorter reflux time yielded a higher extraction of carbohydrates than SoE, while a longer time was more effective for extracting phenolics. The extracts from 240 min of reflux had comparable antioxidant activity (0.3-0.5 mM GAE) with that achieved for SoE. Ultrasound-assisted extraction (UAE) at 65 °C for 60 min allowed an EE (~82%) higher than that achieved by either reflux for up to 150 min or SoE. Subcritical water extraction (SWE) at 150 °C resulted in the best extraction parameters among all the tested methods. Vanillic acid and chlorogenic acid were the primary phenolic acids identified in the extracts. A good correlation between the concentration of caffeic acid and the antioxidant activity of the extracts was found. Saccharification tests revealed an enhancement of the enzymatic digestibility of SMS cellulose after the extraction of bioactive compounds. The findings of this initial study provide indications on new research directions for maximizing the recovery of bioactive compounds and fermentable sugars from SMS.


Assuntos
Agaricales , Celulose , Antioxidantes/química , Água , Etanol , Extratos Vegetais/química
20.
Environ Sci Technol ; 56(14): 10020-10029, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35759616

RESUMO

The freely dissolved concentration of hydrophobic pollutants in sediment porewater (Cpw) is a critical driver for exposure to aquatic organisms, bioaccumulation, toxicity, and flux across interfaces. In this research, we compared direct porewater extraction and passive sampling for Cpw measurements of a range of PCBs and PAHs in field-collected sediments. The direct water extraction method provided accurate quantification of Cpw for low to moderately hydrophobic PCB and PAH compounds (log Kow < 6.5) that compared well with independent measurements performed using four passive sampling methods. Direct water extraction was adequate to assess narcosis toxicity of PAHs to benthic organisms that is driven by the concentrations of low to moderately hydrophobic PAHs (naphthalene to chrysene), even for a hypothetical sediment that had a tenth of the PAH concentrations of the study sediments and was assessed to be nontoxic. Prediction of PCB bioaccumulation in benthic organisms agreed within 50% for all measurement methods, but it was apparent that for less contaminated sediments, the direct water extraction method would likely have detection limit challenges, especially for the strongly hydrophobic PCBs. To address the uncertainty of the Cpw measurement of the strongly hydrophobic compounds and naphthalene, a new extrapolation approach is demonstrated that can be applicable for both direct water extraction and passive sampling methods.


Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Naftalenos , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA