Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 197: 111021, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774014

RESUMO

Neonicotinoids sonochemical oxidation at high-frequency ultrasound (MHz range) has been carried out in ultrapure and natural surface-water matrices (river, reservoir and wastewater treatment plant effluent). To evaluate the influence of the operating variables, that is initial pollutant concentration, ultrasound frequency, ultrasound power, and pulse-stop time a Box-Behnken experimental design was planned. Optimal results were obtained using a frequency of 578 kHz, a power of 40 W L-1, with a pollutant concentration of 1 µM (for each pesticide), and using a pulse-stop time of 100 ms. The experimental data adjustment using the Langmuir-Hinshelwood heterogeneous kinetic model showed that neonicotinoids oxidation was carried out in the bubble-liquid interface by the attack of hydroxyl radicals. Experiments performed in the presence of radical scavengers, that is, methanol, ethanol and tert-butyl alcohol corroborated this reaction mechanism. The influence of some environmental conditions such as pH, presence of soluble inorganic species (Cl-, SO42-, NO3-, HPO42-, HCO3-) and soluble organic species (humic acids content) were established. Finally, the aqueous matrix's influence was investigated for three natural surface water cases, and the results were rationalized according to the main water physicochemical characteristics.


Assuntos
Praguicidas , Poluentes Químicos da Água , Purificação da Água , Substâncias Húmicas , Radical Hidroxila , Neonicotinoides , Oxirredução , Poluentes Químicos da Água/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-37887646

RESUMO

The consumption of packaged water is growing rapidly in both urban and rural centres in Burkina Faso. Bisphenol A (BPA) and trace metals are among the compounds used in the manufacture of plastic packaging, and their presence in water can pose a health risk to consumers due to their alleged toxicity. Therefore, this study explores the transfer of these compounds from plastic packaging to mineral water in Sudano-Sahelian climatic conditions. Ten samples of packaged sachet water commercialised in Ouagadougou were studied. An absence of BPA in the borehole water used to produce packaged water has been shown. The transfer of BPA into mineral water increases with storage temperature. The BPA that appears in packaged water degrades over time. BPA concentrations ranged from 0 to 0.38 mg/L after two weeks of storage, 0 to 0.8 mg/L after four weeks of storage and 0 to 0.35 mg/L after 8 weeks of storage. Analysis of the trace metals showed steadily increasing concentrations from the second to the sixth weeks, with concentrations ranging from 0 to 9.7 µg/L for cadmium and from 0 to 0.13 mg/L for iron in the sachet water samples.


Assuntos
Águas Minerais , Águas Minerais/análise , Burkina Faso , Fenóis/análise , Compostos Benzidrílicos/análise , Embalagem de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA