Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nano Lett ; 14(12): 7145-52, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375666

RESUMO

We study nanoindentation and scratching of graphene-covered Pt(111) surfaces in computer simulations and experiments. We find elastic response at low load, plastic deformation of Pt below the graphene at intermediate load, and eventual rupture of the graphene at high load. Friction remains low in the first two regimes, but jumps to values also found for bare Pt(111) surfaces upon graphene rupture. While graphene substantially enhances the load carrying capacity of the Pt substrate, the substrate's intrinsic hardness and friction are recovered upon graphene rupture.

2.
Colloids Surf B Biointerfaces ; 220: 112906, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252540

RESUMO

Camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP) is a joint disease caused by a lack of lubricin, resulting in failed lubrication and abnormal deposition at the cartilage surface. Injection of recombinant lubricin (R-LUB) is a promising approach to improve the symptoms of the disease. However, the antifouling and lubrication properties of R-LUB on cartilage surfaces have not yet been studied. Here, the adsorption and lubrication behavior of a type II collagen (COL II) mimicking the cartilage surface upon R-LUB injection was followed by surface plasmon resonance spectroscopy and surface forces apparatus. The results indicated R-LUB can bind well on a COL II surface and COL II/R-LUB complex layer exhibited ultralow nonspecific adsorption of BSA (3.25 ng/cm2) and LYS (0.26 ng/cm2) compared to those of the COL II layer (32.7 ng/cm2, 7.26 ng/cm2). Normal force measurements indicated there was always a repulsive force between COL II/R-LUB complex and different surfaces with -COO-, -NH3+, and -CH3 groups. Likewise, COL II had a high coefficient of friction (∼0.48) with surface damage at 2 µm/s and a wear pressure of 1.56 MPa, while that of COL II/R-LUB complex was down to ∼0.008-0.13 with surface damage at 13 µm/s and a wear pressure of 11.96 MPa, which was 7.7 times higher than for COL II. Hence, R-LUB may act as an anti-adhesive and lubrication layer adsorbed on COL II surfaces to prevent direct contact. Our findings provide fundamental insights into the adsorption and lubrication behavior for understanding biological lubrication, especially the potential supplementation of R-LUB for treating CACP disease.


Assuntos
Adesivos , Colágeno , Lubrificação , Propriedades de Superfície , Fricção
3.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889635

RESUMO

The high-power impulse magnetron sputtering (HiPIMS) technique was applied to deposit multilayer-like (Cr, Y)Nx coatings on AISI 304L stainless steel, using pendular substrate oscillation and a Cr-Y target and varying the nitrogen flow rate from 10 to 50 sccm. The microstructure, mechanical and tribological properties were investigated by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, instrumented nano-hardness, and wear tests. The columnar grain structure became highly segmented and nanosized due to pendular substrate oscillation and the addition of yttrium. The deposition rate increased continuously with the growing nitrogen flow rate. The increase in nitrogen flow from 10 to 50 sccm increased the hardness of the coatings (Cr, Y)Nx, with a maximum hardness value of 32.7 GPa for the coating (Cr, Y)Nx with a nitrogen flow of 50 sccm, which greatly surpasses the hardness of CrN films with multilayer-like (Cr, Y)Nx coatings architecture. The best mechanical and tribological performance was achieved for a nitrogen flow rate of 50 sccm. This was enabled by more elevated compressive stresses and impact energies of the impinging ions during film growth, owing to an increase of HiPIMS peak voltage with a rising N2/Ar ratio.

4.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365659

RESUMO

This paper presents a method for the formation of composite-polymer-containing coatings on MA8 Mg alloy by plasma electrolytic oxidation (PEO), followed by the deposition of a fluoropolymer from an aqueous suspension of superdispersed polytetrafluoroethylene. The Scanning Electron Microscope(SEM), Energy Dispersive Spectroscopy(EDS), and X-ray Diffraction(XRD) analyses established morphological features as well as elemental and phase composition of composite coatings. The fact that the pores are filled with a fluoropolymer has been experimentally confirmed. An assessment of the corrosion properties of formed composite coatings revealed a decrease in the corrosion current density by more than four orders of magnitude in comparison with the base PEO layer. The highest resistance to the damaging effects of a corrosive environment, according to the results of long-term exposure tests, was demonstrated by coatings after three treatments with polytetrafluoroethylene. The obtained polymer-containing coatings have antifriction properties, reducing the wear of the coatings by more than 27-fold in comparison with the base PEO layer. It was revealed that composite coatings have superhydrophobic properties: the value of the contact angle reaches 154°, and the hysteresis of the contact angle is less than 10°.

5.
Nanomaterials (Basel) ; 11(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578504

RESUMO

The development of alternatives for wear protection in surface engineering can be responsible for a significant decrease in energy waste as a large amount of the energy produced in the world is lost due to tribological contact. Dynamic Glancing Angle Deposition has been recently evaluated as a route to produce coatings with improved wear performance. In this technique, the substrate oscillates along with a determined range in front of the sputtering target during the growth of the film. In this study, five oscillatory ranges (0, ±5°, ±10°, ±15°, ±20°) were probed to manufacture nanostructured Cr-Al-N coatings using direct current magnetron sputtering, and their impact was investigated on the grain morphology, phase formation, chemical composition, and performance of the coatings. FEG-SEM revealed the formation of multilayer-like architecture across the grains of the coatings. The deposition rate and hardness improved, and a more than 2-fold decrease in the material loss was observed in a comparison between the stationary-deposited conventional coating and the sample produced under ±10° oscillatory range. This indicated the potential use of this technique in future surface engineering applications.

6.
Adv Healthc Mater ; 10(4): e2000831, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32940004

RESUMO

Even though medical devices have improved a lot over the past decades, there are still issues regarding their anti-biofouling properties and tribological performance, and both aspects contribute to the short- and long-term failure of these devices. Coating these devices with a biocompatible layer that reduces friction, wear, and biofouling at the same time would be a promising strategy to address these issues. Inspired by the adhesion mechanism employed by mussels, here, dopamine is made use of to immobilize lubricious mucin macromolecules onto both manufactured commercial materials and real medical devices. It is shown that purified mucins successfully adsorb onto a dopamine pre-coated substrate, and that this double-layer is stable toward mechanical challenges and storage in aqueous solutions. Moreover, the results indicate that the dopamine/mucin double-layer decreases friction (especially in the boundary lubrication regime), reduces wear damage, and provides anti-biofouling properties. The results obtained in this study show that such dopamine/mucin double-layer coatings can be powerful candidates for improving the surface properties of medical devices such as catheters, stents, and blood vessel substitutes.


Assuntos
Dopamina , Mucinas , Fricção , Lubrificação , Propriedades de Superfície
7.
ACS Appl Mater Interfaces ; 11(1): 1363-1375, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525414

RESUMO

Polymer-based lubricant additives for friction reduction, wear protection, or viscosity improvement have been widely studied. However, single additives achieving all three functions are rare. To address this need, we have explored the combination of polymer topology with organic-inorganic hybrid chemistry to simultaneously vary the temperature- and shear-dependent properties of polymer additives in solution and at solid surfaces. A topological library of lubricant additives, based on statistical copolymers of stearyl methacrylate and methyl methacrylate, ranging from linear to branched star architectures, was prepared using ruthenium-catalyzed controlled radical polymerization. Control over the polymerization yielded additives with low dispersity and comparable molecular weights, allowing evaluation of the influence of polymer architecture on friction reduction, wear protection, and bulk viscosity improvement in a commercial base oil (Yubase 4). Structure-performance relationships for these functions were assessed by a combination of a high-speed surface force apparatus (HS-SFA) experiments, wear track profilometry, quartz crystal microbalance analysis, and solution viscometry. The custom-built HS-SFA provides a unique experimental environment to measure the boundary lubrication performance under extreme shear rates (≈107 s-1) for prolonged times (24 h), mimicking the extreme conditions of automotive applications. These experiments revealed that the performance of the additives as boundary lubricants and wear protectants scales with the degree of branching. The branched architectures prohibit ordering of the additives in thin films under high-load conditions, leading to a thicker absorbed polymer brush boundary layer and therefore enhanced film fluidity and lubricity. Additionally, star polymers with increasing arm number lead to bulk viscosity modification, reflected by a significant increase in the viscosity index compared to the commercial base oil. Although outperformed by linear polymers for bulk viscosity improvement, the (hybrid) star polymers successfully combine the three distinct lubricant additive functions: friction reduction, wear protection, and bulk viscosity improvement-in a single polymeric structure. It should also be noted that, judging from HS-SFA experiments, hybrid stars carrying a silicate-based core outperform their fully organic analogues as boundary lubricants. The enhanced performance is most likely driven by attractive forces between the silicate cores and the employed metallic surfaces. Combining three function in one minimizes formulation complexity and thus opens a route to fundamentally understand and formulate key design parameters for the development of novel multifunction lubricant additives.

8.
Artigo em Inglês | MEDLINE | ID: mdl-28702455

RESUMO

Lubricin (LUB), a major mucinous glycoprotein of mammalian synovial fluids, is believed to provide excellent lubrication to cartilage surfaces. Consequently, when joint disease or replacement leads to increased friction and surface damage in the joint, robust synthetic LUB alternatives that could be used therapeutically to improve lubrication and surface protection are needed. Here, we report the characterization of a lubricating multiblock bottlebrush polymer whose architecture was inspired by LUB, and we investigate the role of fibronectin (FN), a glycoprotein found in the superficial zone of cartilage, in mediating the tribological properties of the polymer upon shear between mica surfaces. Our surface forces apparatus (SFA) normal force measurements indicate that the lubricin-mimetic (mimLUB) could be kept anchored between mica surfaces, even under high contact pressures, when an intermediate layer of FN was present. Additional SFA friction measurements show that FN would also extend the wearless friction regime of the polymer up to pressures of 3.4 MPa while ensuring stable friction coefficients (µ ≈ 0.28). These results demonstrate synergistic interactions between mimLUB and FN in assisting the lubrication and wear protection of ideal (mica) substrates upon shear. Collectively, these findings suggest that our proposed mimLUB might be a promising alternative to LUB, as similar mechanisms could potentially facilitate the interaction between the polymer and cartilage surfaces in articular joints and prosthetic implants in vivo.

9.
J Biomech ; 48(12): 3052-8, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26294356

RESUMO

The exceptional tribological properties of articular cartilage are still far from being fully understood. Articular cartilage is able to withstand high loads and provide exceptionally low friction. Although the regeneration abilities of the tissue are very limited, it can last for many decades. These biomechanical properties are realized by an interplay of different lubrication and wear protection mechanisms. The deterioration of cartilage due to aging or injury leads to the development of osteoarthritis. A current treatment strategy focuses on supplementing the intra-articular fluid with a saline solution containing hyaluronic acid. In the work presented here, we investigated how changing the lubricating fluid affects friction and wear of articular cartilage, focusing on the boundary and mixed lubrication as well as interstitial fluid pressurization mechanisms. Different length and time scales were probed by atomic force microscopy, tribology and profilometry. We compared aqueous solutions with different NaCl concentrations to a viscosupplement containing hyaluronic acid (HA). In particular, we found that the presence of ions changes the frictional behavior and the wear resistance. In contrast, hyaluronic acid showed no significant impact on the friction coefficient, but considerably reduced wear. This study confirms the previous notion that friction and wear are not necessarily correlated in articular cartilage tribology and that the main role of HA might be to provide wear protection for the articular surface.


Assuntos
Cartilagem Articular , Fricção , Animais , Fenômenos Biomecânicos , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Fricção/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Microscopia de Força Atômica , Ovinos , Líquido Sinovial/efeitos dos fármacos , Líquido Sinovial/metabolismo
10.
ACS Biomater Sci Eng ; 1(11): 1121-1128, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26618194

RESUMO

The role of friction in the functional performance of biomaterial interfaces is widely reckoned to be critical and complicated but poorly understood. To better understand friction forces, we investigated the natural adaptation of the holdfast or byssus of mussels that live in high-energy surf habitats. As the outermost covering of the byssus, the cuticle deserves particular attention for its adaptations to frictional wear under shear. In this study, we coacervated one of three variants of a key cuticular component, mussel foot protein 1, mfp-1 [(1) Mytilus californianus mcfp-1, (2) rmfp-1, and (3) rmfp-1-Dopa], with hyaluronic acid (HA) and investigated the wear protection capabilities of these coacervates to surfaces (mica) during shear. Native mcfp-1/HA coacervates had an intermediate coefficient of friction (µ ∼0.3) but conferred excellent wear protection to mica with no damage from applied loads, F⊥, as high as 300 mN (pressure, P, > 2 MPa). Recombinant rmfp-1/HA coacervates exhibited a comparable coefficient of friction (µ ∼0.3); however, wear protection was significantly inferior (damage at F⊥ > 60 mN) compared with that of native protein coacervates. Wear protection of rmfp-1/HA coacervates increased 5-fold upon addition of the surface adhesive group 3,4-dihydroxyphenylalanine, (Dopa). We propose a Dopa-dependent wear protection mechanism to explain the differences in wear protection between coacervates. Our results reveal a significant untapped potential for coacervates in applications that require adhesion, lubrication, and wear protection. These applications include artificial joints, contact lenses, dental sealants, and hair and skin conditioners.

11.
Acta Biomater ; 10(5): 1817-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24440486

RESUMO

Hyaluronic acid (HA) of different molecular weights (Mw) was grafted onto mica surfaces to study the effects of Mw on the conformation and wear protection properties of a grafted HA (gHA) layer in lubricin (LUB) and bovine synovial fluid (BSF) using a surface forces apparatus. The Mw of gHA had significant effects on the wear pressure (Pw), at which point the wear initiates. Increasing the gHA Mw from 51 to 2590kDa increased Pw from 4 to 8MPa in LUB and from 15 to 31MPa in BSF. The 2590kDa gHA in BSF had the best wear protection (Pw∼31MPa), even though it exhibited the highest friction coefficient (µâˆ¼0.35), indicating that a low µ does not necessarily result in good wear protection, as is often assumed. The normal force profile indicated that BSF confines the gHA structure, making it polymer brush-like, commonly considered as an excellent structure for boundary lubrication.


Assuntos
Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Bovinos , Fricção/efeitos dos fármacos , Glicoproteínas/farmacologia , Humanos , Peso Molecular , Soluções , Líquido Sinovial/química , Líquido Sinovial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA