RESUMO
When a water drop is placed on a hot solid surface, it either undergoes explosive contact boiling or exhibits a stable state. In the latter case, the drop floats over an insulating layer of vapor generated by rapid vaporization of water at the surface/drop interface; this is known as the Leidenfrost state. Here, we discuss a previously unrecognized steady state in which a water drop "stands" on a hot smooth surface. In this state, the drop stabilizes itself with partial adhesion on the hot surface, leading to unique deformation and rotation behavior reminiscent of Sufi whirling-a form of spinning dance. Our analysis of this standing Leidenfrost state reveals the underlying mechanisms that drive the drop's stable partial adhesion and subsequent deformation with rotation. The heat-transfer efficiency of this standing state is up to 390% greater than that of the traditional floating Leidenfrost state.
RESUMO
Low-grade wind with airspeed Vwind < 5 m/s, while distributed far more abundantly, is still challenging to extract because current turbine-based technologies require particular geography (e.g., wide-open land or off-shore regions) with year-round Vwind > 5 m/s to effectively rotate the blades. Here, we report that low-speed airflow can sensitively enable directional flow within nanowire-anchored ionic liquid (IL) drops. Specifically, wind-induced air/liquid friction continuously raises directional leeward fluid transport in the upper portion, whereas three-phase contact line (TCL) pinning blocks further movement of IL. To remove excessive accumulation of IL near TCL, fluid dives, and headwind flow forms in the lower portion, as confirmed by microscope observation. Such stratified circulating flow within single drop can generate voltage output up to ~0.84 V, which we further scale up to ~60 V using drop "wind farms". Our results demonstrate a technology to tap the widespread low-grade wind as a reliable energy resource.
RESUMO
Various forms of ecological monitoring and disease diagnosis rely upon the detection of amphiphiles, including lipids, lipopolysaccharides, and lipoproteins, at ultralow concentrations in small droplets. Although assays based on droplets' wettability provide promising options in some cases, their reliance on the measurements of surface and bulk properties of whole droplets (e.g., contact angles, surface tensions) makes it difficult to monitor trace amounts of these amphiphiles within small-volume samples. Here, we report a design principle in which self-assembled monolayer-functionalized microstructured surfaces coated with silicone oil create locally disordered regions within a droplet's contact lines to effectively concentrate amphiphiles within the areas that dominate the droplet static friction. Remarkably, such surfaces enable the ultrasensitive, naked-eye detection of amphiphiles through changes in the droplets' sliding angles, even when the concentration is four to five orders of magnitude below their critical micelle concentration. We develop a thermodynamic model to explain the partitioning of amphiphiles at the contact line by their cooperative association within the disordered, loosely packed regions of the self-assembled monolayer. Based on this local analyte concentrating effect, we showcase laboratory-on-a-chip surfaces with positionally dependent pinning forces capable of both detecting industrially and biologically relevant amphiphiles (e.g., bacterial endotoxins), as well as sorting aqueous droplets into discrete groups based on their amphiphile concentrations. Furthermore, we demonstrate that the sliding behavior of amphiphile-laden aqueous droplets provides insight into the amphiphile's effective length, thereby allowing these surfaces to discriminate between analytes with highly disparate molecular sizes.
Assuntos
Micelas , Óleos de Silicone , Lipopolissacarídeos , Tensão Superficial , Água , MolhabilidadeRESUMO
Liquid mobility is ubiquitous in nature, with droplets emerging at all size scales, and artificial surfaces have been designed to mimic such mobility over the past few decades. Meanwhile, millimeter-sized droplets are frequently used for wettability characterization, even with facial mask applications, although these applications have a droplet-size target range that spans from millimeters to aerosols measuring less than a few micrometers. Unlike large droplets, microdroplets can interact sensitively with the fibers they contact with and are prone to evaporation. However, wetting behaviors at the single-microfiber level remain poorly understood. Herein, we characterized the wettability of fibrous layers, which revealed that a multiscale landscape of droplets ranged from the millimeter to the micrometer scale. The contact angle (CA) values of small droplets on pristine fibrous media showed sudden decrements, especially on a single microfiber, owing to the lack of air cushions for the tiny droplets. Moreover, droplets easily adhered to the pristine layer during droplet impact tests and then yielding widespread areas of contamination on the microfibers. To resolve this, we carved nanowalls on the pristine fibers by plasma etching, which effectively suppressed such wetting phenomena. Significantly, the resulting topographies of the microfibers managed the dynamic wettability of droplets at the multiscale, which reduced the probability of contamination with impact droplets and suppressed the wetting transition upon evaporation. These findings for the dynamic wettability of fibrous media will be useful in the fight against infectious droplets.
Assuntos
Máscaras , Molhabilidade , Fenômenos FísicosRESUMO
Biomimetic engineering surfaces featuring heterogeneous wettability are vital for atmospheric water harvesting applications. Existing research predominantly focuses on the coordinated regulation of surface wettability through structural and chemical modifications, often overlooking the prevalent triboelectric charge effect at the liquid-solid interface. In this work, we designed a heterogeneous wettability surface by strategic masking and activated its latent triboelectric charge using triboelectric brushes, thereby enhancing the removal and renewal of surface droplets. By examining the dynamic evolution of droplets, the mechanism of triboelectric enhancement in the water collection efficiency is elucidated. Leveraging this inherent triboelectric charge interaction, fog collection capacity can be augmented by 29% by activating the system for 5 s every 60 s. Consequently, the advancement of triboelectric charge-enhanced fog collection technology holds both theoretical and practical significance for overcoming the limitations of traditional surface wettability regulation.
RESUMO
Various methods to solve water scarcity have attracted increasing attention. However, most existing water harvesting schemes have a high demand for preparation methods and costs. Here, a multi-biomimetic double interlaced wetting Janus surface (DIWJS) was prepared by laser for effective fog collection. The as-prepared surfaces are composed of superhydrophilic points/hydrophobic substrates on the A-side and superhydrophilic stripes/hydrophobic substrates on the B-side. The interlaced wettability and superhydrophilic points on the A side are conducive to capture and permeation of droplets. The superhydrophilic stripes and interlaced wettability on the B-side are conducive to transportation and shedding of droplets. Therefore, the overall fog collection process is accelerated. The proposal of smart farm model validates broad application prospects of DIWJS. This work provides an advanced and multi-biomimetic surface and provides important insights for green, low-cost, and versatile strategies to solve water scarcity issues.
RESUMO
Achieving timely, reversible, and long-range remote tunability over surface wettability is highly demanded across diverse fields, including nanofluidic systems, drug delivery, and heterogeneous catalysis. Herein, using molecular dynamic simulations, we show, for the first time, a theoretical design of electrowetting to achieve remotely controllable surface wettability via using a terahertz wave. The key idea driving the design is the unique terahertz collective vibration identified in the vicinal subnanoscale water layer, which is absent in bulk water, enabling efficient energy transfer from the terahertz wave to the rotational motion of the vicinal subnanoscale water layer. Consequently, a frequency-specific alternating terahertz electric field near the critical strength can significantly affect the local hydrogen-bonding network of the contact water layer on the solid surface, thereby achieving tunable surface wettability.
RESUMO
Porous polymer membranes as separator plays important roles in separating cathode and anode, storing electrolytes, and transporting ions in energy storage devices. Here, an effective strategy is reported to prepare an electrolyte superwetting membrane, which shows good Li+ transport rate and uniformity, as well as electrode-friendly properties to afford the reduction and oxidation of electrodes. It thereby improves the cycle stability and safety of Li metal batteries. With the arrayed capillaries technique, a thin layer of polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN) composite is uniformly coated on the surface and pores of polypropylene (PP) membrane with a total thickness of 30 µm. After treating it with n-butyllithium and LiNO3 in turn, a chemically inert membrane with efficient and uniform ion transport is prepared, and the cycle stability of Li||Li symmetric cells is up to 1500 h, 4 times higher than that of PP membrane. Moreover, the Li||LiFePO4 with as-prepared membranes achieve a higher capacity retention rate of 92% after 190 cycles at a current density of 3.6 mA cm-2 and a capacity of 3.6 mAh cm-2, and the Li||NCM721 batteries achieve a capacity retention rate of 71% after 600 cycles at a current density of 1.8 mA cm-2.
RESUMO
Heterogeneous membranes play a crucial role in osmotic energy conversion by effectively reducing concentration polarization. However, most heterogeneous membranes mitigate concentration polarization through an asymmetric charge distribution, resulting in compromised ion selectivity. Herein, hetero-nanochannels with asymmetric wettability composed of 2D mesoporous carbon and graphene oxide are constructed. The asymmetric wettability of the membrane endows it with the ability to suppress the concentration polarization without degrading the ion selectivity, as well as achieving a diode-like ion transport feature. As a result, enhanced osmotic energy harvesting is achieved with a power density of 6.41 W m-2 . This represents a substantial enhancement of 102.80-137.85% when compared to homogeneous 2D membranes, surpassing the performance of the majority of reported 2D membranes. Importantly, the membrane can be further used for high-performance ionic power harvesting by regulating ion transport, exceeding previously reported data by 89.1%.
RESUMO
Liquid metal batteries (LMBs) are promising candidates for grid-scale energy storage due to their exceptional kinetics, scalability, and long lifespan derived from the distinctive three-liquid-layer structure. However, the positive electrode (such as Bi) suffers from insufficient wettability on the current collector, resulting in excess electrical resistance and uneven current distribution, thus deteriorating the cycling stability. Here the incorporation of 4 mol% Se into Bi-based metal is proposed producing an interface layer with highly surface-active property that decreases the electrode's contact angle with the 304 stainless-steel (SUS304) from 144.7° to 74.3°, so as to improve the wettability. The as-prepared 20 Ah Li || Bi-Se4 (the content of Se is 4 mol% of Bi) cell cycled 1200 times with capacity fade rate of merely 0.00174% per cycle. This facile and effective approach provides a pathway toward the production of stable cells with an extended lifespan and boosts the practical implementation of LMBs.
RESUMO
Soft-lithography is widely used to fabricate microstructured surfaces on plastics and elastomers for designable physical properties such as wetting and adhesions. However, it remains a big challenge to construct high-aspect-ratio microstructures on the surface of hydrogels due to the difficulty in demolding from the gel with low strength and stiffness. Demonstrated here is the engineering of tough hydrogels by soft-lithography to form well-defined micropillars. The mechanical properties of poly(acrylamide-co-methacrylic acid) hydrogels with dense hydrogen-bond associations severely depend on temperature, with Young's modulus increasing from 8.1 MPa at 15 °C to 821.8 MPa at -30 °C, enabling easy demolding at low temperatures. Arrays of micropillars are maintained on the surface of the gel, and can be used at room temperature when the gel restores soft and stretchable. The hydrogel also exhibits good shape-memory property, favoring tailoring the morphology with a switchable tilt angle of micropillars. Consequently, the hydrogel shows tunable wetting and adhesion properties, as manifested by varying contact angles and adhesion strengths. These surface properties can also be tuned by geometry and arrangement of micropillars. This facile strategy by harnessing tunable viscoelasticity of supramolecular hydrogels should be applicable to other soft materials, and broaden their applications in biomedical and engineering fields.
RESUMO
The urgent need for sustainable energy storage drives the fast development of diverse hydrogen production based on clean water resources. Herein, a unique type of multi-bioinspired functional device (MFD) is reported with asymmetric wettability that combines the curvature gradient of cactus spines, the wetting gradient of lotus, and the slippery surface of Nepenthes alata for efficient fog harvesting. The precisely printed MFDs with microscale features, spanning dimensions, and a thin wall are endowed with asymmetric wettability to enable the Janus effects on their surfaces. Fog condenses on the superhydrophobic surface of the MFDs in the form of microdroplets and unidirectionally penetrates its interior due to the Janus effects, and drops onto the designated area with a better fog harvesting rate of 10.64 g cm-2 h-1. Most significantly, the collected clean water can be used for hydrogen production with excellent stability and durability. The findings demonstrate that safe, large-scale, high-performance water splitting and gas separation and collection with fog collection based on MFDs are possible.
RESUMO
Both the physicochemical properties of catalytic material and the structure of loaded catalyst layer (CL) on gas diffusion electrode (GDE) are of crucial importance in determining the conversion efficiency and product selectivity of carbon dioxide reduction reaction (CO2RR). However, the highly reducing reaction condition of CO2RR will lead to the uncontrollable structural and compositional changes of catalysts, making it difficult to tailor surface properties and microstructure of the real active species for favored products. Herein, the interlayer microenvironment of copper-based layered double hydroxides (LDHs) is rationally tuned by a facile ink solvent engineering, which affects both the surface characters and microstructure of CL on GDE, leading to distinct catalytic activity and product selectivity. According to series of in situ and ex situ techniques, the appropriate surface wettability and thickness of porous CL are found to play critical roles in controlling the local CO2 concentration and water dissociation steps that are key for hydrogenation during CO2RR, leading to a high Faradaic efficiency of 75.3% for C2+ products and a partial current density of 275 mA cm-2 at -0.8 V versus RHE. This work provides insights into rational design of efficient electrocatalysts toward CO2RR for multi-carbon generation.
RESUMO
With the development of industry and global warming, passive radiative cooling textiles have recently drawn great interest owing to saving energy consumption and preventing heat-related illnesses. Nevertheless, existing cooling textiles often lack efficient sweat management capacity and wearable comfort under many practical conditions. Herein, a hierarchical cooling metafabric that integrates passive radiation, thermal conduction, sweat evaporation, and excellent wearable comfort is reported through an electrospinning strategy. The metafabric presents excellent solar reflectivity (99.7%, 0.3-2.5 µm) and selective infrared radiation (92.4%, 8-13 µm), given that the unique optical nature of materials and wettability gradient/micro-nano hierarchical structure design. The strong moisture-wicking effect (water vapor transmission (WVT) of 2985 g m-2 d-1 and directional water transport index (R) of 1029.8%) and high heat-conduction capacity can synergistically enhance the radiative cooling efficiency of the metafabric. The outdoor experiment reveals that the metafabric can obtain cooling temperatures of 13.8 °C and 19.3 °C in the dry and sweating state, respectively. Meanwhile, the metafabric saves ≈19.3% of annual energy consumption compared with the buildings with HAVC systems in Shanghai. The metafabric also demonstrates desirable breathability, mechanical strength, and washability. The cost-effective and high-performance metafabric may offer a novel avenue for developing next-generation personal cooling textiles.
RESUMO
Sweat passive-cooling textiles with asymmetric wettabilities on different sides offer an effective and low-energy consumption solution to personal thermal management in extreme thermal environments. However, the sweat-wicking and the cooling abilities decrease when the textile is contaminated by low-surface tension oily liquid fouling. The integration of anti-oily liquid fouling and sweat-wicking abilities on textile involves resolving the contradiction between hydrophilic and oleophobic properties and seeking eco-friendly short-chain fluorides to reduce the surface energy. Herein, a sustainable oily liquid-proof passive cooling (SOC) textile for personal thermal management is proposed. The SOC textile is obtained by applying a fluoride-free hydrophobic coating layer to one side of the high thermal conductive superoleophobic/superhydrophilic basal textile, which is fabricated using eco-friendly short-chain fluoride. The SOC textile preserves the anti-oily liquid fouling property even after 2000 abrasion cycles. Experimental test revealed that the SOC textile exhibits a cooling effect of ≈5 °C compared with the cotton textile, and the up to 70% reduction in sweating rate under the constant metabolic heat production rates. The configuration of the SOC textile would inspire the future design of intelligent textiles for personal thermal management, and the proposed strategy have implications for fabrication of eco-friendly oil-water separation materials.
RESUMO
Developing Janus fabrics with excellent one-way sweat transport capacity is an attractive way for providing comfort sensation and protecting the health during exercise. In this work, a 3D wetting gradient Janus fabric (3DWGJF) is first proposed to address the issue of excessive sweat accumulation in women's breasts, followed by integration with a sponge pad to form a 3D wetting gradient Janus sports bra (3DWGJSB). The 3D wetting gradient enables the prepared fabric to control the horizontal migration of sweat in one-way mode (x/y directions) and then unidirectionally penetrate downward (z direction), finally keeping the water content on the inner side of 3DWGJF (skin side) at ≈0%. In addition, the prepared 3DWGJF has good water vapor transmittance rate (WVTR: 0.0409 g cm-2 h-1) and an excellent water evaporation rate (0.4704 g h-1). Due to the high adhesion of transfer prints to the fabrics and their excellent mechanical properties, the 3DWGJF is remarkably durable and capable of withstanding over 500 laundering cycles and 400 abrasion cycles. This work may inspire the design and fabrication of next-generation moisture management fabrics with an effective sweat-removal function for women's health.
Assuntos
Esportes , Suor , Molhabilidade , Humanos , Feminino , Suor/química , TêxteisRESUMO
Hydathodes are usually associated with water exudation in plants. However, foliar water uptake (FWU) through the hydathodes has long been suspected in the leaf-succulent genus Crassula (Crassulaceae), a highly diverse group in southern Africa, and, to our knowledge, no empirical observations exist in the literature that unequivocally link FWU to hydathodes in this genus. FWU is expected to be particularly beneficial on the arid western side of southern Africa, where up to 50% of Crassula species occur and where periodically high air humidity leads to fog and/or dew formation. To investigate if hydathode-mediated FWU is operational in different Crassula species, we used the apoplastic fluorescent tracer Lucifer Yellow in combination with different imaging techniques. Our images of dye-treated leaves confirm that hydathode-mediated FWU does indeed occur in Crassula and that it might be widespread across the genus. Hydathodes in Crassula serve as moisture-harvesting structures, besides their more common purpose of guttation, an adaptation that has likely played an important role in the evolutionary history of the genus. Our observations suggest that ability for FWU is independent of geographical distribution and not restricted to arid environments under fog influence, as FWU is also operational in Crassula species from the rather humid eastern side of southern Africa. Our observations point towards no apparent link between FWU ability and overall leaf surface wettability in Crassula. Instead, the hierarchically sculptured leaf surfaces of several Crassula species may facilitate FWU due to hydrophilic leaf surface microdomains, even in seemingly hydrophobic species. Overall, these results confirm the ecophysiological relevance of hydathode-mediated FWU in Crassula and reassert the importance of atmospheric humidity for some arid-adapted plant groups.
Assuntos
Crassulaceae , Água , Água/fisiologia , Folhas de Planta/fisiologia , Evolução Biológica , África AustralRESUMO
Green nanostructured fluids (GNFs), specifically water-in-oil nanoemulsions (w/o NEs), were investigated as professional "brush on, wipe off" nanodetergents for the effective removal of various challenging graffiti coatings. The efficacy of the advanced nanodetergents in eradicating resilient graffiti coatings was evaluated using various methods to assess the surface properties of forming graffiti coatings. The surface properties of these coatings were examined by assessing their wettability by water, surface free energy, and topography to obtain information on the intermolecular interactions with the nanodetergent during the wetting and graffiti removal process. Our findings revealed significant variations in the coating removal rate and efficacy of green nanostructured fluids, which are stabilized using surfactants derived from saccharides or amino acids. A water-in-oil nanoemulsion, stabilized by caprylyl/capryl glucoside, demonstrated exceptional efficiency at cleaning graffiti paints based on alkyd resin and containing various additives such as nitrocellulose or bitumen, from any hard surface within a short time period. However, a w/o NE, stabilized by sodium cocoyl glycinate, also showed effective removal of graffiti paints containing durable bitumen, albeit at a slower rate on. These green nanostructured fluids can be used as specific nanodetergents for the comprehensive removal of various graffiti coatings, but require a specified action time to prevent damage to the original substrate beneath the paint coating.
RESUMO
The development of large number of two-dimensional (2D) nanostructured materials that followed the success of graphene and the need for their handling and manipulation e.g in inks, brought to the fore the study of solvents and substances that contribute to the stabilization of 2D nanomaterials in the liquid phase. The successful dispersion of 2D materials in solvents is combined with one of the most widespread preparation methods, that of liquid phase exfoliation. In this article, a review for the role of water in the preparation of different 2D nanostructures and their stable dispersions in the liquid phase is discussed. The use of water as a solvent or dispersant is instrumental in promoting materials with an ecological footprint, low cost, and sustainability.
RESUMO
Changing the wettability and surface texturing have a significant impact on lubrication. In this study, the researchers used the molecular dynamics method to investigate how adjusting the interaction between alkanes and the wall affects oil film morphology and frictional properties under boundary lubrication. The findings revealed that the bearing capacity was influenced by both the morphology of the oil film and the strength of solid-liquid adsorption. In cases where the walls had weak wettability, the alkanes formed clusters to effectively separate the walls, while in cases where the walls had strong wettability, the oil film spread and formed a strong adsorption film. The super oleophilic textured surface could enhance the oil film adsorption capacity and replenish the oil film to the friction area in time, and the super oleophobic smooth surface could further reduce the friction coefficient. Therefore, a composite surface consisting of a super oleophilic textured surface and a super oleophobic smooth surface can be designed to enhance the bearing capacity of the oil film and reduce friction.