Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892101

RESUMO

The central dogma treats the ribosome as a molecular machine that reads one mRNA codon at a time as it adds each amino acid to its growing peptide chain. However, this and previous studies suggest that ribosomes actually perceive pairs of adjacent codons as they take three-nucleotide steps along the mRNA. We examined GNN codons, which we find are surprisingly overrepresented in eukaryote protein-coding open reading frames (ORFs), especially immediately after NNU codons. Ribosome profiling experiments in yeast revealed that ribosomes with NNU at their aminoacyl (A) site have particularly elevated densities when NNU is immediately followed (3') by a GNN codon, indicating slower mRNA threading of the NNU codon from the ribosome's A to peptidyl (P) sites. Moreover, if the assessment was limited to ribosomes that have only recently arrived at the next codon, by examining 21-nucleotide ribosome footprints (21-nt RFPs), elevated densities were observed for multiple codon classes when followed by GNN. This striking translation slowdown at adjacent 5'-NNN GNN codon pairs is likely mediated, in part, by the ribosome's CAR surface, which acts as an extension of the A-site tRNA anticodon during ribosome translocation and interacts through hydrogen bonding and pi stacking with the GNN codon. The functional consequences of 5'-NNN GNN codon adjacency are expected to influence the evolution of protein coding sequences.


Assuntos
Códon , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Códon/genética , Ribossomos/metabolismo , Ribossomos/genética , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticódon/genética
2.
Bioessays ; 42(11): e2000051, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32830350

RESUMO

Properties of non-canonical GC base pairs and their relations with mechanochemical cleavage of DNA are analyzed. A hypothesis of the involvement of the transient GC wobble base pairs both in the mechanisms of the mechanochemical cleavage of DNA and epigenetic mechanisms involving of 5-methylcytosine, is proposed. The hypothesis explains the increase in the frequency of the breaks of the sugar-phosphate backbone of DNA after cytosines, the asymmetric character of these breaks, and an increase in break frequency in CpG after cytosine methylation. As an alternative hypothesis, probable implication of GC+ Hoogsteen base pairs is considered, which now exemplify the best-studied non-canonical GC base pairs in the DNA double helix. Also see the video abstract here https://youtu.be/EUunVWL0ptw.


Assuntos
Citosina , DNA , 5-Metilcitosina , Pareamento de Bases/genética , DNA/genética , Epigênese Genética , Conformação de Ácido Nucleico
3.
RNA ; 24(2): 209-218, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29122970

RESUMO

Wobble base pairs are critical in various physiological functions and have been linked to local structural perturbations in double-helical structures of nucleic acids. We report a 1.38-Å resolution crystal structure of an antiparallel octadecamer RNA double helix in overall A conformation, which includes a unique, central stretch of six consecutive wobble base pairs (W helix) with two G·U and four rare C·A+ wobble pairs. Four adenines within the W helix are N1-protonated and wobble-base-paired with the opposing cytosine through two regular hydrogen bonds. Combined with the two G·U pairs, the C·A+ base pairs facilitate formation of a half turn of W-helical RNA flanked by six regular Watson-Crick base pairs in standard A conformation on either side. RNA melting experiments monitored by differential scanning calorimetry, UV and circular dichroism spectroscopy demonstrate that the RNA octadecamer undergoes a pH-induced structural transition which is consistent with the presence of a duplex with C·A+ base pairs at acidic pH. Our crystal structure provides a first glimpse of an RNA double helix based entirely on wobble base pairs with possible applications in RNA or DNA nanotechnology and pH biosensors.


Assuntos
RNA de Cadeia Dupla/química , Adenina/química , Pareamento de Bases , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Modelos Moleculares , Desnaturação de Ácido Nucleico , Prótons , Termodinâmica
4.
RNA Biol ; 17(3): 325-334, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31852354

RESUMO

Retinoic acid-inducible gene I (RIG-I) is responsible for innate immunity via the recognition of short double-stranded RNAs in the cytosol. With the clue that G-U wobble base pairs in the influenza A virus's RNA promoter region are responsible for RIG-I activation, we determined the complex structure of RIG-I ΔCARD and a short hairpin RNA with G-U wobble base pairs by X-ray crystallography. Interestingly, the overall helical backbone trace was not affected by the presence of the wobble base pairs; however, the base pair inclination and helical axis angle changed upon RIG-I binding. NMR spectroscopy revealed that RIG-I binding renders the flexible base pair of the influenza A virus's RNA promoter region between the two G-U wobble base pairs even more flexible. Binding to RNA with wobble base pairs resulted in a more flexible RIG-I complex. This flexible complex formation correlates with the entropy-favoured binding of RIG-I and RNA, which results in tighter binding affinity and RIG-I activation. This study suggests that the structure and dynamics of RIG-I are tailored to the binding of specific RNA sequences with different flexibility.


Assuntos
Proteína DEAD-box 58/química , Proteína DEAD-box 58/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Pareamento de Bases , Cristalografia por Raios X , Entropia , Células HEK293 , Humanos , Hidrogênio/química , Interferon gama/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Prótons
5.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326096

RESUMO

5-Substituted 2-selenouridines (R5Se2U) are post-transcriptional modifications present in the first anticodon position of transfer RNA. Their functional role in the regulation of gene expression is elusive. Here, we present efficient syntheses of 5-methylaminomethyl-2-selenouridine (1, mnm5Se2U), 5-carboxymethylaminomethyl-2-selenouridine (2, cmnm5Se2U), and Se2U (3) alongside the crystal structure of the latter nucleoside. By using pH-dependent potentiometric titration, pKa values for the N3H groups of 1-3 were assessed to be significantly lower compared to their 2-thio- and 2-oxo-congeners. At physiological conditions (pH 7.4), Se2-uridines 1 and 2 preferentially adopted the zwitterionic form (ZI, ca. 90%), with the positive charge located at the amino alkyl side chain and the negative charge at the Se2-N3-O4 edge. As shown by density functional theory (DFT) calculations, this ZI form efficiently bound to guanine, forming the so-called "new wobble base pair", which was accepted by the ribosome architecture. These data suggest that the tRNA anticodons with wobble R5Se2Us may preferentially read the 5'-NNG-3' synonymous codons, unlike their 2-thio- and 2-oxo-precursors, which preferentially read the 5'-NNA-3' codons. Thus, the interplay between the levels of U-, S2U- and Se2U-tRNA may have a dominant role in the epitranscriptomic regulation of gene expression via reading of the synonymous 3'-A- and 3'-G-ending codons.


Assuntos
Pareamento de Bases , Códon , Guanosina/metabolismo , Compostos Organosselênicos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Uridina/análogos & derivados , Fenômenos Químicos , Guanosina/química , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Compostos Organosselênicos/química , Soluções , Eletricidade Estática , Uridina/química , Uridina/metabolismo
6.
Mol Biol (Mosk) ; 54(3): 450-456, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32492007

RESUMO

Boric acid is essential for plants and has many vital roles in animals and microorganisms. However, its high doses are toxic to all organisms. We previously screened yeast deletion collections to identify boric acid-resistant and susceptible mutants to identify genes that play a role in boron tolerance. Here, we analyzed boron resistant mutants (elplΔ, elp3Δ, elp6Δ, ncs2Δ, ncs6Δ and ktil2Δ) for their abilities to modulate the general amino acid control system (GAAC) and to induce boron efflux pump ATR1. The mutants analyzed in this study lack the genes that play roles in tRNA Wobble base modifications. We found that all of the boron resistant mutants activated Gcn4-dependent reporter gene activity and increased the transcript level of the ATR1 gene. Additionally, boron resistant cells accumulated less boric acid in their cytoplasm compared to the wild type cells upon boron exposure. Thus, our findings suggested that loss of wobble base modifications in tRNA leads to GAAC activation and ATR1 induction, which in turn reduced intracellular boron levels and caused boron resistance.


Assuntos
Ácidos Bóricos/farmacologia , Proteínas de Membrana Transportadoras/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , Aminoácidos , Animais , Boro , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
7.
J Theor Biol ; 441: 28-43, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29305181

RESUMO

The GA codon box incorporates the two-fold degeneracy of aspartic acid and of glutamic acid. Using the molecular mechanics approach of the AMBER suite, the four codons of the GA box are paired via H-bonding with two aspartic acid anticodons and two glutamic acid anticodons to yield 8 cognate and 11 non-cognate codon-anticodon duplexes. In addition four select non-cognate duplexes between the GA box codons and three alanine anticodons are also studied. These 23 duplexes display a variety of base-pairing possibilities at the wobble position. Cognate duplexes are differentiated from non-cognate duplexes on the grounds of structure and stability (chiefly the former). The results are in line with Crick's wobble hypothesis, and corroborate the observed reading properties of the aspartic acid anticodons GUC and QUC and of the glutamic acid anticodons CUC and SmnUC.


Assuntos
Anticódon/genética , Pareamento de Bases/genética , Códon/genética , Código Genético/genética , Ácido Aspártico/genética , Sequência de Bases , Ácido Glutâmico/genética , Ligação de Hidrogênio , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico
8.
RNA Biol ; 14(9): 1209-1222, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28277930

RESUMO

Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but are not required for viability in fungi. In this review, we provide an overview on the types of modifications and how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery required to introduce these modifications into tRNA posttranscriptionally and discuss how posttranslational regulation may affect the activity of the modifying enzymes. We highlight the activity of anticodon specific RNases that target U34 containing tRNA. Finally, we discuss how defects in wobble uridine modifications lead to phenotypes in different species. Importantly, this review will mainly focus on the cytoplasmic tRNAs of eukaryotes. A recent review has extensively covered their bacterial and mitochondrial counterparts. 1.


Assuntos
Uridina/genética , Uridina/metabolismo , Evolução Biológica , Fenômenos Químicos , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , Redes e Vias Metabólicas , Fosforilação , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Relação Estrutura-Atividade , Uridina/química
9.
Chembiochem ; 16(8): 1212-8, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25881991

RESUMO

DNA transcription depends upon the highly efficient and selective function of RNA polymerases (RNAPs). Modifications in the template DNA can impact the progression of RNA synthesis, and a number of DNA adducts, as well as abasic sites, arrest or stall transcription. Nonetheless, data are needed to understand why certain modifications to the structure of DNA bases stall RNA polymerases while others are efficiently bypassed. In this study, we evaluate the impact that alterations in dNTP/rNTP base-pair geometry have on transcription. T7 RNA polymerase was used to study transcription over modified purines and pyrimidines with altered H-bonding capacities. The results suggest that introducing wobble base-pairs into the DNA:RNA heteroduplex interferes with transcriptional elongation and stalls RNA polymerase. However, transcriptional stalling is not observed if mismatched base-pairs do not H-bond. Together, these studies show that RNAP is able to discriminate mismatches resulting in wobble base-pairs, and suggest that, in cases of modifications with minor steric impact, DNA:RNA heteroduplex geometry could serve as a controlling factor for initiating transcription-coupled DNA repair.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , DNA/química , DNA/genética , Elongação da Transcrição Genética , Proteínas Virais/metabolismo , Pareamento de Bases , Sequência de Bases , Ligação de Hidrogênio , Modelos Moleculares , RNA/química , RNA/genética , Estabilidade de RNA
10.
RNA Biol ; 12(8): 900-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106808

RESUMO

Post-transcriptional modifications bring chemical diversity to tRNAs, especially at positions 34 and 37 of the anticodon stem-loop (ASL). TrmL is the prokaryotic methyltransferase that catalyzes the transfer of the methyl group from S-adenosyl-L-methionine to the wobble base of tRNA(Leu)CAA and tRNA(Leu)UAA isoacceptors. This Cm34/Um34 modification affects codon-anticodon interactions and is essential for translational fidelity. TrmL-catalyzed 2'-O-methylation requires its homodimerization; however, understanding of the tRNA recognition mechanism by TrmL remains elusive. In the current study, by measuring tRNA methylation by TrmL and performing kinetic analysis of tRNA mutants, we found that TrmL exhibits a fine-tuned tRNA substrate recognition mechanism. Anticodon stem-loop minihelices with an extension of 2 base pairs are the minimal substrate for EcTrmL methylation. A35 is a key residue for TrmL recognition, while A36-A37-A38 are important either via direct interaction with TrmL or due to the necessity for prior isopentenylation (i(6)) at A37. In addition, TrmL only methylates pyrimidines but not purine residues at the wobble position, and the 2'-O-methylation relies on prior N(6)-isopentenyladenosine modification at position 37.


Assuntos
Anticódon/genética , Códon/genética , Proteínas de Escherichia coli/genética , Metiltransferases/genética , RNA de Transferência de Leucina/genética , Alcenos/metabolismo , Anticódon/química , Anticódon/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Biocatálise , Códon/química , Códon/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Metilação , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Multimerização Proteica , Pirimidinas/metabolismo , RNA de Transferência de Leucina/química , RNA de Transferência de Leucina/metabolismo , S-Adenosilmetionina/metabolismo , Especificidade por Substrato
11.
Front Chem ; 8: 574454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330362

RESUMO

For the first time, at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory, a comprehensive quantum-mechanical investigation of the physico-chemical mechanism of the tautomeric wobblization of the four biologically-important G·C nucleobase pairs by the participation of the monomers in rare, in particular mutagenic, tautomeric forms (marked with an asterisk) was provided. These novel tautomeric transformations (wobblization or shifting of the bases within the pair) are intrinsically inherent properties of the G·C nucleobase pairs. In this study, we have obtained intriguing results, lying far beyond the existing representations. Thus, it was shown that Löwdin's G*·C*(WC) base pair does not tautomerize according to the wobblization mechanism. Tautomeric wobblization of the G*·C*(rWC) (relative Gibbs free energy ΔG = 0.00/relative electronic energy ΔE = 0.00 kcal·mol-1) ("r"-means the configuration of the base pair in reverse position; "WC"-the classic Watson-Crick configuration) and G*t·C*(H) (ΔG = -0.19/ΔE = 0.29 kcal·mol-1) ("H"-Hoogsteen configuration;"t" denotes the O6H hydroxyl group in the trans position) base pairs are preceded by the stages of the base pairs tautomerization by the single proton transfer (SPT). It was established that the G*t·C*(rH) (ΔG = 2.21/ΔE = 2.81 kcal·mol-1) base pair can be wobbled through two different pathways via the traditional one-stage mechanism through the TSs, which are tight G+·C- ion pairs, stabilized by the participation of only two intermolecular H-bonds. It was found out that the G·C base pair is most likely incorporated into the DNA/RNA double helix with parallel strands in the G*·C*(rWC), G·C*(rwwc), and G*·C(rwwc) ("w"-wobble configuration of the pair) tautomeric forms, which are in rapid tautomeric equilibrium with each other. It was proven that the G*·C*(rWC) nucleobase pair is also in rapid tautomeric equilibrium with the eight tautomeric forms of the so-called Levitt base pair. It was revealed that a few cases of tautomerization via the DPT of the nucleobase pairs by the participation of the C8H group of the guanine had occurred. The biological role of the obtained results was also made apparent.

12.
Int J Mol Sci ; 9(12): 2424-2446, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19330085

RESUMO

The 3x redundancy of the Genetic Code is usually explained as a necessity to increase the mutation-resistance of the genetic information. However recent bioinformatical observations indicate that the redundant Genetic Code contains more biological information than previously known and which is additional to the 64/20 definition of amino acids. It might define the physico-chemical and structural properties of amino acids, the codon boundaries, the amino acid co-locations (interactions) in the coded proteins and the free folding energy of mRNAs. This additional information, which seems to be necessary to determine the 3D structure of coding nucleic acids as well as the coded proteins, is known as the Proteomic Code and mRNA Assisted Protein Folding.

13.
Biomolecules ; 8(3)2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149595

RESUMO

RNA modifications have been implicated in diverse and important roles in all kingdoms of life with over 100 of them present on tRNAs. A prominent modification at the wobble base of four tRNAs is the 7-deaza-guanine derivative queuine which substitutes the guanine at position 34. This exchange is catalyzed by members of the enzyme class of tRNA guanine transglycosylases (TGTs). These enzymes incorporate guanine substituents into tRNAAsp, tRNAAsn tRNAHis, and tRNATyr in all kingdoms of life. In contrast to the homodimeric bacterial TGT, the active eukaryotic TGT is a heterodimer in solution, comprised of a catalytic QTRT1 subunit and a noncatalytic QTRT2 subunit. Bacterial TGT enzymes, that incorporate a queuine precursor, have been identified or proposed as virulence factors for infections by pathogens in humans and therefore are valuable targets for drug design. To date no structure of a eukaryotic catalytic subunit is reported, and differences to its bacterial counterpart have to be deducted from sequence analysis and models. Here we report the first crystal structure of a eukaryotic QTRT1 subunit and compare it to known structures of the bacterial TGT and murine QTRT2. Furthermore, we were able to determine the crystal structure of QTRT1 in complex with the queuine substrate.


Assuntos
Domínio Catalítico , Pentosiltransferases/química , Apoenzimas/química , Apoenzimas/metabolismo , Cristalografia por Raios X , Guanina/metabolismo , Humanos , Modelos Moleculares , Pentosiltransferases/metabolismo
14.
J Biomol Struct Dyn ; 36(4): 1029-1049, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28393624

RESUMO

Alanine is encoded by the four codons of the GC box (GCA, GCG, GCU, and GCC). Known alanine anticodons include the UGC, IGC, and VGC triplets (I = inosine; V = uridine-5-oxyacetic acid). The energy-minimized structures of all possible codon-anticodon combinations involving all the alanine codons GCA, GCG, GCU, and GCC with the alanine anticodons UGC, IGC, and VGC are studied using the AMBER software. Fifteen H-bonded duplex structures arising out of these combinations are studied here, all having Watson-Crick-type base pairs at the first and second codon positions, and a variety of base pairing possibilities at the third (or wobble) position. Structural and stability considerations suggest that some codon-anticodon duplexes would be more favored than others for accommodation during the translation process. The UGC anticodon is predicted to favor the GCA codon for reading, while the GCC codon is least favored. The IGC anticodon would prefer to read the GCC codon, the GCG codon being least favored, while a syn conformer for A in the GCA codon could allow for it to be read. For the VGC anticodon, the GCA codon is predicted to be read most favorably, and the GCC codon least favorably, while a syn conformer for V in the anticodon would allow for the codon GCU to be read through a wobble pair which involves the exocyclic 5-oxyacetate group of V in H-bonding.


Assuntos
Alanina/química , Anticódon/genética , Códon/genética , Conformação de Ácido Nucleico , Alanina/genética , Anticódon/química , Pareamento de Bases , Códon/química , Biologia Computacional , Ligação de Hidrogênio
15.
J Biomol Struct Dyn ; 32(9): 1500-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23968386

RESUMO

Degeneracy of the genetic code was attributed by Crick to imprecise hydrogen-bonded base-pairing at the wobble position during codon-anticodon pairing. The Crick wobble rules define but do not explain the RNA base pair combinations allowed at this position. We select six pyrimidine bases functioning as anticodon wobble bases (AWBs) to study their H-bonded pairing properties with the four major RNA bases using density functional theory at the B3LYP/6-31G(d,p) level. This is done to assess the extent to which the configuration of a solitary RNA wobble base pair may in itself determine specificity and degeneracy of the genetic code by allowing or disallowing the given base pair during codon-anticodon pairing. Calculated values of select configuration markers for the base pairs screen well between allowed and disallowed base pairs for most cases examined here, where the base pair width emerges as an important factor. A few allowed wobble pairs invoke the involvement of RNA nucleoside conformation, as well as involvement of the exocyclic substituent in H-bonding. This study, however, cannot explain the disallowed status of the Ura⋯Gua wobble pair on the basis of configuration alone. Explanation of the allowed status of the V⋯Ura pair requires further study on the mediatory role of water molecules. Apart from these two cases, these computational results are sufficient, on the basis of base pair configuration alone, to account for the specificity and degeneracy of the genetic code for all known cases of codon-anticodon pairing which involve the pyrimidine AWBs studied here.


Assuntos
Anticódon/química , Pareamento de Bases , Códon , Pirimidinas/química , Ligação de Hidrogênio , Modelos Moleculares , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA