Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 245: 118026, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38151144

RESUMO

In the context of the circular economy, the development of innovative and low-carbon concrete that incorporates different kinds of waste materials is gaining attention among the research community, regulatory agencies, and policymakers. These materials can be incorporated into concrete mixtures as aggregates or as fillers for improvement of product properties. This study aims to identify reliable designs for biochar-augmented cementitious products and general applications through technical, environmental, and economic assessments. The outcomes demonstrate that 5 wt% biochar addition could enhance the compressive strength of the final products. Using biochar, together with other recycled materials, can enormously reduce the environmental impacts, especially for global warming, enabling biochar-augmented cementitious products and general application as carbon-negative resources. The highest GWP reduction reached -720 kg CO2/tonne, equal to a 200% saving. A high quantity of biochar could be included in several specific applications (up to 60 wt%). The economic assessment highlights that the proposed designs are cost-effective and carbon tax can be significantly reduced. Carbon credits can also be earned for some carbon-negative designs. These findings can serve to mitigate GHG emissions and provide decision-makers with a reliable and holistic framework towards the goal of carbon neutrality.


Assuntos
Carbono , Carvão Vegetal , Análise Custo-Benefício , Aquecimento Global
2.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375145

RESUMO

This paper proposes an easy and sustainable method to prepare high-sorption capacity biobased adsorbents from wood waste. A biomass wood waste (spruce bark) was employed to fabricate a composite doped with Si and Mg and applied to adsorb an emerging contaminant (Omeprezole) from aqueous solutions, as well as synthetic effluents loaded with several emerging contaminants. The effects of Si and Mg doping on the biobased material's physicochemical properties and adsorptive performance were evaluated. Si and Mg did not influence the specific surface area values but impacted the presence of the higher number of mesopores. The kinetic and equilibrium data presented the best fitness by the Avrami Fractional order (AFO) and Liu isotherm models, respectively. The values of Qmax ranged from 72.70 to 110.2 mg g-1 (BP) and from 107.6 to 249.0 mg g-1 (BTM). The kinetic was faster for Si/Mg-doped carbon adsorbent, possibly due to different chemical features provoked by the doping process. The thermodynamic data showed that the adsorption of OME on biobased adsorbents was spontaneous and favorable at four studied temperatures (283, 293, 298, 303, 308, 313, and 318 K), with the magnitude of the adsorption correspondent to a physical adsorption process (ΔH° < 2 kJ mol-1). The adsorbents were applied to treat synthetic hospital effluents and exhibited a high percentage of removal (up to 62%). The results of this work show that the composite between spruce bark biomass and Si/Mg was an efficient adsorbent for OME removal. Therefore, this study can help open new strategies for developing sustainable and effective adsorbents to tackle water pollution.

3.
Molecules ; 28(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37375379

RESUMO

A diverse spectrum of organisms, such as fungi, bacteria, and actinomycetes, can degrade and transform organic matter, including wood, into valuable nutrients. A sustainable economy has the goal of efficiently using waste as raw materials, and in this optic, it uses biological preparations more and more often, supporting the decomposition of lignocellulosic waste. With reference to wood wastes, which are produced in a substantial amount by the forest and wood industry, one of the possibilities to biodegrade such lignocellulosic material is the composting process. In particular, microbiological inoculum containing dedicated fungi can contribute to the biodegradation of wood waste, as well as the biotransformation of substances from the protection of wood, such as pentachlorophenol (PCP), lindane (hexachlorobenzene) and polycyclic aromatic hydrocarbons (PAHs). The purpose of this research was to produce a literature review in terms of the selection of decay fungi that could potentially be used in toxic biotransformation unions. The findings of the literature review highlighted how fungi such as Bjerkandera adusta, Phanerochaete chrysosporium, and Trametes versicolor might be ingredients of biological consortia that can be effectively applied in composting wood waste containing substances such as pentachlorophenol, lindane, and polycyclic aromatic hydrocarbons (PAHs).


Assuntos
Pentaclorofenol , Hidrocarbonetos Policíclicos Aromáticos , Trametes/metabolismo , Pentaclorofenol/metabolismo , Madeira/metabolismo , Hexaclorocicloexano , Biotransformação , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
4.
Waste Manag Res ; 41(4): 828-838, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36404755

RESUMO

With an increase in climate and environmental issues awareness, the use of waste of various types has gained increased visibility, acknowledging that wastes are any and all kinds of unused materials from the production process or after using the final product for its intended purpose. The use of wastes to produce alternative cement materials is an alternative to reduce the use of natural resources. Forestry residues, ash, plastic residues, LDPE/Al composites, and geopolymer materials are some of the possible residues used for the partial replacement of cement materials. The objective of this research is to establish how these materials relate to each other, based on a topic review and how they can contribute towards sustainability. The study was performed on several scientific article search engines, in which the keywords 'Carton Packages', 'Wood Waste' and 'Geopolymers' were inserted, and then a refinement was carried out using the term 'Cement Materials'. Such analysis allowed the generation of information related to publication numbers, countries, research areas, as well as publication types. Co-authorship networks of organization, co-citation of references, co-occurrence of keywords, among others, were also plotted. Through this bibliometric analysis, it was possible to reveal the structure of the research, analyse the developments and predict the future directions for the research regarding the use of residues in the production of sustainable Portland cement composites.


Assuntos
Materiais de Construção
5.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566324

RESUMO

Cedrela odorata L. is a plant species from the Meliaceae family that is cultivated for timber production. Although the C. odorata essential oil (EO) contains mainly sesquiterpenes, its insecticidal potential is unknown. The lipophilic properties and high degradation capacity of EOs have limited their application for use in pest control. However, the currently available knowledge on the nanoemulsification of EOs, in addition to the possibility of improving their dispersion, would allow them to prolong their permanence in the field. The objective of the present work was to develop a nanoemulsion of the C. odorata EO and to evaluate its larvicidal activity against Spodoptera frugiperda. The EO was obtained by the hydrodistillation of C. odorata dehydrated leaves, and the nanoemulsion was prepared with non-ionic surfactants (Tween 80 and Span 80) using a combined method of agitation and dispersion with ultrasound. The stability of the nanoemulsion with a droplet diameter of <200 nm was verified in samples stored at 5 °C and 25 °C for 90 days. Both the C. odorata EO and its corresponding nanoemulsion presented lethal properties against S. frugiperda. The results obtained provide guidelines for the use of wood waste to produce sustainable and effective insecticides in the fight against S. frugiperda. In addition, considering that a phytochemical complex mixture allows the simultaneous activation of different action mechanisms, the development of resistance in insects is slower.


Assuntos
Cedrela , Inseticidas , Meliaceae , Óleos Voláteis , Animais , Inseticidas/química , Inseticidas/farmacologia , Larva , Óleos Voláteis/farmacologia , Spodoptera
6.
Environ Monit Assess ; 193(4): 235, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779861

RESUMO

The Okobaba area of the Lagos Lagoon, Nigeria, is characterised by sawmilling activities which are potential threats to resident aquatic organisms. This study was aimed at evaluating the effect of sawmilling activities on the environmental quality of the Lagos lagoon at Okobaba area, Lagos, Nigeria. Surface water, sediment, macrobenthic invertebrates, and fish species were sampled monthly from six stations for 3 months (July-September 2018). Relevant stakeholders were administered a cross-sectional questionnaire to determine their knowledge of the environmental effects of their activities. Environmental samples were analysed following standard methods. Descriptive and inferential statistics were performed using SPSS 20.0 and PAST 1.97. Results showed that surface water dissolved oxygen and chemical oxygen demand were significantly lower, while sediment total organic matter and nitrates were significantly higher at the test site compared to the reference site. A total of 389 macrobenthic invertebrates comprising eight species and two macrobenthic invertebrates comprising one species as well as 121 fishes comprising nine species and 70 fishes comprising nine (9) species were recorded at the reference and test sites respectively. About 46.3% of respondents alluded to improper waste disposal as the major cause of pollution at the test site among others, 66.7% responded that wastes were disposed of by burning among other disposal methods, and 66.6% agreed that the sawmilling activities contributed to reduction of aquatic animal population. We recommend urgent regulatory intervention to address the indiscriminate discharge of wastes and facilitate adequate environmental risk advocacy to sustain life below water (United Nations Sustainable Development Goal 14).


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Animais , Estudos Transversais , Monitoramento Ambiental , Peixes , Invertebrados , Nigéria , Água , Poluentes Químicos da Água/análise
7.
Anaerobe ; 61: 102096, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31493499

RESUMO

An anaerobic, gram-positive, rod-shaped bacterium strain SP17-B1, isolated from dog saliva, was taxonomically characterized on the basis of phenotypic, chemotaxonomic, and genotypic characteristics. It was cultured in 4% (w/v) NaCl at a pH range of 5.0-8.0 (optimally at pH 7) and at 30°C-40 °C (optimally at 37 °C). Its major cellular fatty acids are C16:0 (36.3%), C17:0 cyclo (9.7%), C16:1ω9c (13.9%), and C18:1ω9c (10.7%), and its DNA guanine-cytosine content is 40.8 mol%. On the basis of the 16S rRNA gene sequence analysis, it was determined that the strain belonged to the genus Clostridium and was closely related to C. amygdalinum BR-10T (97.8%), C. saccharolyticum WM1T (97.8%), and C. celleracrescens DSM 5628T (97.7%). This strain showed a low level of DNA-DNA relatedness with the closely related strains, suggesting that it is a novel species in the genus Clostridium. Recent studies have demonstrated the production of succinic acid using Clostridium strains. Strain SP17-B1 produced 25.1 ±â€¯1.3 and 15.3 ±â€¯1.5 g/L of succinic acid from 40 g/L of glucose and 30 g/L of hevea wood waste hydrolysate (HH), respectively, after 24 h. When detoxified HH was used as a substrate, the lag phase was reduced and cell growth was enhanced by 7 fold (OD660 0.4-3.0) within 12 h. Detoxification using granular activated carbon may have reduced the levels of furfural and HMF without interfering with the amount of sugars in HH.


Assuntos
Clostridium/fisiologia , Fermentação , Hevea , Ácido Succínico/metabolismo , Resíduos , Madeira , Clostridium/química , Clostridium/classificação , Clostridium/isolamento & purificação , Genoma Bacteriano , Genômica/métodos , Genótipo , Técnicas de Genotipagem , Fenótipo , Filogenia
8.
J Environ Manage ; 235: 231-239, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30684808

RESUMO

Rubber wood waste (RW) requires due to its recalcitrance a pretreatment step before efficient biochemical conversion is possible. Non chemical steam explosion pretreatment was adopted to enhance enzymatic hydrolysis and anaerobic digestion with severity from 2.70 to 4.35. RW treated at severity 4.35 (214 °C for 10 min) gave the highest 83.9 L CH4/kgVS effectiveness in anaerobic digestibility together with 45.2% hydrolysability in terms of glucan conversion. The intense pretreatment decreased particle size and degraded most of the hemicellulose, resulting in increased specific surface and better access for enzymes to cellulose. Additionally, the energy yield of steam exploded RW was enhanced by combined enzymatic hydrolysis with anaerobic digestion, in comparison to enzymatic hydrolysis or anaerobic digestion alone. This allowed for an efficient steam explosion pretreatment with co-production of sugar and methane. This study provides a technical approach for efficient biofuel production from RW after steam explosion pretreatment. Valorization of lignin-rich residue generated from the integrated process may increase value of RW, but assessing this requires further study.


Assuntos
Vapor , Madeira , Explosões , Hidrólise , Lignina , Metano
9.
Sci Rep ; 14(1): 3426, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341513

RESUMO

The aim of this study was to systemically evaluate how different pyrolysis temperatures (400, 550, and 700 °C) and particle sizes (1-2 mm and 63-75 µm) were influenced biochar evolution, made from urban pruning waste, during pyrolysis process and to establish their relationships with biochar potential for removal of lead (Pb), cadmium (Cd), and manganese (Mn) from real municipal solid waste landfill leachate. The effects of pH (2-7), contact time (30-300 min) and adsorbent dosage (0.1-5 g L-1) on heavy metals removal were also examined. The results showed that physicochemical properties of biochar were greatly influenced by pyrolysis temperature. Particle size, however, showed little influence on biochar characteristics (p > 0.05). The yield, volatile matter, hydrogen and oxygen contents, and surface functional groups decreased consistently with increasing pyrolysis temperature. An increase in the pH, electrical conductivity, ash, fixed carbon, and specific surface area values was also found. In biochar samples formed at high temperatures (i.e., 550 and 700 °C), Fourier transform infrared spectroscopy-FTIR studies confirmed the increase in aromaticity. Field emission scanning electron microscopy-FESEM images showed differences in the microporous structure and lower size pores at higher temperatures. Biochar pyrolyzed at 700 °C with a particle size of 63-75 µm (i.e., Lv700-63) showed the highest removal efficiency performance. Pb and Cd ions were completely removed (100%) by 0.2 g L-1 Lv700-63 at 7.0 pH and contact times of 120 and 90 min, respectively. The maximum percentage removal of Mn was 86.20% at optimum conditions of 0.2 g L-1 Lv700-63 dosage, 7.0 pH, and 180 min contact time. The findings suggests that the surface complexation, π-electron coordination, and cation exchange were the dominant mechanisms for the Pb, Cd, and Mn removal onto Lv700-63.

10.
Materials (Basel) ; 17(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673107

RESUMO

This study explores the pyrolysis process applied to various non-utilized waste materials, specifically focusing on separated plastics from municipal waste, wood waste (including pallets and window frames), paper rejects, and automotive carpets. Different combinations of these waste materials were subjected to pyrolysis, a process involving high-temperature treatment (600 °C) in a nitrogen atmosphere. The resulting products, including biochar, gas, and liquid fractions, as well as the residual waste materials, underwent comprehensive analysis. The evaluation of pyrolysis products emphasizes their quality, energy content, and potential applications. Notably, the pyrolysis gas derived from the combination of separated municipal plastics and waste wood exhibited the highest calorific value at 49.45 MJ/m3. Additionally, Mixture 2, consisting of plastic and wood waste, demonstrated the highest calorific value for the pyrolysis condensate, reaching 30.62 MJ/kg. Moreover, Mixture 3, benefiting from biochar utilization as a sorbent, displayed the highest iodine value at 90.01 mg/g.

11.
Materials (Basel) ; 17(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39203209

RESUMO

This research addresses a notable gap in understanding the synergistic effects of high carbon wood bottom ash (BA) and silica fly ash (FA) on cement hydration and concrete durability by using them as a supplementary material to reduce the amount of cement in concrete and CO2 emissions during cement production. This study analyses the synergistic effect of FA and BA on cement hydration through X-ray diffraction (XRD), thermal analysis (TG, DTG), scanning electron microscopy (SEM), density, ultrasonic pulse velocity (UPV), compressive strength, and temperature monitoring tests. In addition, it evaluates concrete properties, including compressive strength, UPV, density, water absorption kinetics, porosity parameters, predicted resistance to freezing and thawing cycles, and results of freeze-thawing resistance. The concrete raw materials were supplemented with varying percentages of BA and FA, replacing both cement and fine aggregate at levels of 0%, 2.5%, 5%, 10% and 15%. The results indicate that a 15% substitution of BA and FA delays cement hydration by approximately 5 h and results in only a 6% reduction in compressive strength, with the hardened cement paste showing a strength similar to a 15% replacement with FA. Concrete mixtures with 2.5% BA and 2.5% FA maintained the same maximum hydration temperature and duration as the reference mix. Furthermore, the combined use of both ashes provided adequate resistance to freeze-thaw cycles, with only a 4.7% reduction in compressive strength after 150 cycles. Other properties, such as density, UPV and water absorption, exhibited minimal changes with partial cement replacement by both ashes. This study highlights the potential benefits of using BA and FA together, offering a sustainable alternative that maintains concrete performance while using waste materials.

12.
Materials (Basel) ; 17(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39203265

RESUMO

This research aims to find suitable processing methods that allow the reuse of wood waste to produce wood waste-based engineered wood logs for construction that meet the strength requirements for structural timber for sawn structural softwood. Three types of wood waste were examined: wood packaging waste (W), waste from the construction and furniture industry (PLY), and door manufacturing waste (DW). The wood waste was additionally crushed and sieved, and the granulometric composition and shape of the particles were evaluated. The microstructure of the surface of the wood waste particles was also analysed. A three-component biopolyurethane adhesive was used to bind wood waste particles. An analysis of the contact zones between the particles and biopolyurethane was performed, and the adhesion efficiency of their surfaces was evaluated. Analysis was performed using tensile tests, and the formation of contact zones was analysed with a scanning electron microscope. The wood particles were chemically treated with sodium carbonate, calcium hypochlorite, and peroxide to increase the efficiency of the contact zones between the particles and the biopolyurethane adhesive. Chemical treatment made fillers up to 30% lighter and changed the tensile strength depending on the solution used. The tensile strength of engineered wood prepared from W and treated with sodium carbonate increased from 8331 to 12,702 kPa compared to untreated waste. Additionally, the compressive strength of engineered wood made of untreated and treated wood waste particles was determined to evaluate the influence of the wood particles on the strength characteristics.

13.
Materials (Basel) ; 17(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38730774

RESUMO

The study explores the novel use of oak bark (Quercus cortex) as a bio-filler in elastomeric composites, aligning with the global trend of plant-based biocomposites. Both modified and unmodified oak bark were investigated for their impact on the physicochemical properties of natural rubber (NR) composites. The bio-filler modified with n-octadecyltrimethoxysilane exhibited enhanced dispersion and reduced aggregates in the elastomeric matrix. NR composites containing more than 20 phr of unmodified and modified oak bark demonstrated an increased degree of cross-linking (αc > 0.21). Mechanical properties were optimal at 10-15 phr of oak bark and the sample with modified bio-filler (10 phr) achieved the highest tensile strength (15.8 MPa). Silanization and the addition of the bio-filler increased the hardness of vulcanizates. The incorporation of oak bark improved aging resistance at least two-fold due to phenolic derivatives with antioxidant properties. Hydrophobicity decreased with added bark, but silanization reversed the trend, making samples with a high content of oak bark the most hydrophobic (contact angle: 129°). Overall, oak bark shows promise as an eco-friendly, anti-aging filler in elastomeric composites, with modification enhancing compatibility and hydrophobicity.

14.
Waste Manag ; 170: 75-81, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552928

RESUMO

Wood waste is a valuable material that could constitute an abundant and inexpensive source for the production of new materials the recovery of energy. In Europe, about 46% of wood waste is recycled to particleboard and fiberboard, while the other fraction is incinerated. However, a considerable quantity of wood waste shows potential for its transformation into value-added products due to its compositional quality. In this work, wood waste collected at a mechanical treatment plant underwent organosolv treatment to produce a cellulose pulp suitable for manufacturing containerboard. Three variables (temperature, acid concentration, and ethanol concentration) were investigated to find an optimal solution to produce wood pulp by means of Design of Experiment. Wood waste was microwave-heated at 160 °C for 15 min using an acidified ethanol-water solution (2% w/w H2SO4 and 0.8 w/w ethanol concentration), producing pulp with an average cellulose content of 76% where 93% of initial cellulose was retained. Thanks to a one-pot approach, ethanol was totally recovered, 62% of initial lignin was precipitated, and 20 g/l of hemicellulose-derived sugars solution was obtained. Finally, three wood waste samples collected in different periods of the year yielded comparable outcomes, suggesting a good reproducibility of the organosolv process. ANOVA test with a significance level of 0.01 showed a p-value of 0.029 and 0.235 for cellulose content and cellulose recovery, respectively. This study paves the way for an industrial symbiosis between recycling centers and paper mills located in the same territory.

15.
Bioresour Technol ; 383: 129232, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244303

RESUMO

This study was designed to develop a cellulase-producing bacterial consortium (CBC) from wood-feeding termites that could effectively degrade willow sawdust (WSD) and consequently enhance methane production. The bacterial strains Shewanella sp. SSA-1557, Bacillus cereus SSA-1558, and Pseudomonas mosselii SSA-1568 exhibited significant cellulolytic activity. Their CBC consortium showed positive effects on cellulose bioconversion, resulting in accelerated WSD degradation. After nine days of pretreatment, the WSD had lost 63%, 50%, and 28% of its cellulose, hemicellulose, and lignin, respectively. The hydrolysis rate of treated WSD (352 mg/g) was much higher than that of untreated WSD (15.2 mg/g). The highest biogas production (66.1 NL/kg VS) with 66% methane was observed in the anaerobic digester M-2, which contained a combination of pretreated WSD and cattle dung in a 50/50 ratio. The findings will enrich knowledge for the development of cellulolytic bacterial consortia from termite guts for biological wood pretreatment in lignocellulosic anaerobic digestion biorefineries.


Assuntos
Celulase , Isópteros , Salix , Animais , Bovinos , Isópteros/metabolismo , Salix/metabolismo , Madeira/metabolismo , Celulase/metabolismo , Lignina/metabolismo , Celulose/metabolismo , Bactérias/metabolismo , Biocombustíveis , Metano/metabolismo , Anaerobiose
16.
Environ Sci Pollut Res Int ; 30(23): 64067-64077, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060415

RESUMO

In this study, a sustainable and easily prepared hydrochar from wood waste was studied to adsorb and recover the rare earth element cerium (Ce(III)) from an aqueous solution. The results revealed that the hydrochar contains several surface functional groups (e.g., C-O, C = O, OH, COOH), which largely influenced its adsorption capacity. The effect of pH strongly influenced the Ce(III) removal, achieving its maximum removal efficiency at pH 6.0 and very low adsorption capacity under an acidic solution. The hydrochar proved to be highly efficient in Ce(III) adsorption reaching a maximum adsorption capacity of 327.9 mg g-1 at 298 K. The kinetic and equilibrium process were better fitted by the general order and Liu isotherm model, respectively. Possible mechanisms of Ce(III) adsorption on the hydrochar structure could be explained by electrostatic interactions and chelation between surface functional groups and the Ce(III). Furthermore, the hydrochar exhibited an excellent regeneration capacity upon using 1 mol L-1 of sulfuric acid (H2SO4) as eluent, and it was reused for three cycles without losing its adsorption performance. This research proposes a sustainable approach for developing an efficient adsorbent with excellent physicochemical and adsorption properties for Ce(III) removal.


Assuntos
Metais Terras Raras , Poluentes Químicos da Água , Madeira/química , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Adsorção , Água , Cinética
17.
Materials (Basel) ; 16(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903059

RESUMO

There is an increasing awareness of the negative environmental impact produced by human activity worldwide. The scope of this paper is to analyze the possibilities of the further use of wood waste as a composite building material with magnesium oxychloride cement (MOC), and to identify the environmental benefits offered by this solution. The environmental impact of improper wood waste disposal affects both aquatic and terrestrial ecosystems. Moreover, burning wood waste releases greenhouse gases into the atmosphere, causing various health problems. The interest in studying the possibilities of reusing wood waste increased significantly in recent years. The focus of the researcher shifts from considering wood waste as a burning fuel to generate heat or energy, to considering it as a component of new building materials. Combining MOC cement with wood opens the possibility of creating new composite building materials that can incorporate the environmental benefits offered by the two materials.

18.
Polymers (Basel) ; 15(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37631524

RESUMO

Wood-polymer composites (WPCs) are a class of materials intensively studied and promoted in the context of sustainable development, mainly when aspects related to the increasing awareness of environmental issues and waste management are considered. Feasible opportunities for producing WPCs with value-added properties intended for common applications emerge when polymers, either synthetic or from renewable resources, raw or waste, are employed in re-/up-cycling approaches. In this context, some examples of easily achievable WPCs are presented herein, namely, formulations based on different wood waste and polymer matrices (synthetic: polypropylene and malleated polypropylene as a compatibilizer; natural: plasticized starch). Their level of performance was assessed through different characterization methods (FTIR, WAXD, TGA, DSC, mechanical test, etc.). The benefits and limitations of this approach are also discussed.

19.
Materials (Basel) ; 16(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834634

RESUMO

Wood waste bottom ash (WWBA) is a waste generated in power plants during the burning of forest residues to produce energy and heat. In 2019, approximately 19,800 tons of WWBA was generated only in Lithuania. WWBA is rarely recycled or reused and is mostly landfilled, which is both costly for the industry and unsustainable. This study presents a sustainable solution to replace a part of cement with WWBA at 3%, 6%, 9%, and 12% by weight. Problems are also associated with the use of this material, as WWBA could have a relatively large surface area and a high water demand. For the evaluation of the possibilities of WWBA use for cementitious materials, the calorimetry test for the cement paste as well as X-ray diffraction (XRD), thermography (TG, DTG), and porosity (MIP) for hardened cement paste with the results of physical and mechanical properties, and the freeze-thaw resistance of the concrete was measured and compared. It was found that WWBA with a large quantity of CO2 could be used as a microfiller with weak pozzolanic properties in the manufacture of cementitious materials. As a result, concrete containing 6% WWBA used to substitute cement has higher density, compressive strength at 28 days, and ultrasonic pulse velocity values. In terms of durability, it was verified that concrete modified with 3%, 6%, 9%, and 12% WWBA had a freeze-thaw resistance level of F150. The results show that the use of WWBA to replace cement is a valuable sustainable option for the production of conventional concrete and has a positive effect on durability.

20.
Polymers (Basel) ; 14(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683903

RESUMO

In our study, the effects of wood waste content (0, 2.5, 5, 7.5, and 10 wt.%) on thermal and dry sliding wear properties of poly(lactic acid) (PLA) biocomposites were investigated. The wear of developed composites was examined under dry contact conditions at different operating parameters, such as sliding velocity (1 m/s, 2 m/s, and 3 m/s) and normal load (10 N, 20 N, and 30 N) at a fixed sliding distance of 2000 m. Thermogravimetric analysis demonstrated that the inclusion of wood waste decreased the thermal stability of PLA biocomposites. The experimental results indicate that wear of biocomposites increased with a rise in load and sliding velocity. There was a 26-38% reduction in wear compared with pure PLA when 2.5 wt.% wood waste was added to composites. The Taguchi method with L25 orthogonal array was used to analyze the sliding wear behavior of the developed biocomposites. The results indicate that the wood waste content with 46.82% contribution emerged as the most crucial parameter affecting the wear of PLA biocomposites. The worn surfaces of the biocomposites were examined by scanning electron microscopy to study possible wear mechanisms and correlate them with the obtained wear results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA