RESUMO
Aqueous Zn-ion batteries are the ideal candidate for large-scale energy storage systems owing to their high safety and low cost. However, the uncontrolled deposition and parasitic reaction of Zn metal anode hinder their commercial application. Here, the 2D metal-organic-framework (MOF) nanoflakes covered on the surface of Zn are proposed to enable dendrite-free for long lifespan Zn metal batteries. The MOF can facilitate the desolvation process to accelerate reaction kinetic due to its special channel structure. The abundant zincopilicity sites of MOF can realize the homogenous Zn2+ deposition. Consequently, their synergetic effect makes the MOF protected Zn anode good electrochemical performance with a long cycle life of 1400 h at 1 mA cm-2 and a high depth of discharge of 30 mAh cm-2 (DOD ≈ 54%) continued for over 700 h. This work provides a novel strategy for high-performance rechargeable Zn-ion batteries.
RESUMO
Zn-ion energy storage devices will play important roles in the future energy storage field. However, Zn-ion device development suffers significantly from adverse chemical reactions (dendrite formation, corrosion, and deformation) on the Zn anode surface. Zn dendrite formation, hydrogen evolution corrosion, and deformation combine to degrade Zn-ion devices. Zincophile modulation and protection using covalent organic frameworks (COF) inhibited dendritic growth by induced uniform Zn ion deposition, which also prevented chemical corrosion. The Zn@COF anode circulated stably for more than 1800 cycles even at high current density in symmetric cells and maintained a low and stable voltage hysteresis. This work explains the surface state of the Zn anode and provides information for further research.