Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.219
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(13): 3185-3194, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38568233

RESUMO

Iodoacetic acid (IAA) is a halogenated disinfection by-product of growing concern due to its high cytotoxicity, genotoxicity, endocrine disruptor effects, and potential carcinogenicity. However, the data on distribution and excretion of IAA after ingestion by mammals are still scarce. Here, we developed a reliable and validated method for detecting IAA in biological specimens (plasma, urine, feces, liver, kidney, and tissues) based on modified QuEChERS sample preparation combined with gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS/MS). The detection method for IAA exhibited satisfactory recovery rates (62.6-108.0%) with low relative standard deviations (RSD < 12.3%) and a low detection limit for all biological matrices ranging from 0.007 to 0.032 ng/g. The study showed that the proposed method was reliable and reproducible for analyzing IAA in biological specimens. It was successfully used to detect IAA levels in biological samples from rats given gavage administration. The results indicated that IAA was found in various tissues and organs, including plasma, thyroid, the liver, the kidney, the spleen, gastrointestinal tract, and others, 6 h after exposure. This study provides the first data on the in vivo distribution in and excretion of IAA by mammals following oral exposure.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Ácido Iodoacético , Limite de Detecção , Espectrometria de Massas em Tandem , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Ratos , Masculino , Distribuição Tecidual , Reprodutibilidade dos Testes , Ratos Sprague-Dawley , Rim/química , Rim/metabolismo , Fezes/química , Fígado/química , Fígado/metabolismo
2.
Eur Spine J ; 33(5): 2116-2128, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436876

RESUMO

PURPOSE: Vertebral endplate lesions (EPLs) caused by severe disk degeneration are associated with low back pain. However, its pathophysiology remains unclear. In this study, we aimed to develop a vertebral EPL rat model mimicking severe intervertebral disk (IVD) degeneration by injecting monosodium iodoacetate (MIA) into the IVDs and evaluating it by assessing pain-related behavior, micro-computed tomography (CT) findings, and histological changes. METHODS: MIA was injected into the L4-5 and L5-6 IVDs of Sprague-Dawley rats. Their behavior was examined by measuring the total distance traveled and the total number of rearing in an open square arena. Bone alterations and volume around the vertebral endplate were assessed using micro-CT. Safranin-O staining, immunohistochemistry, and tartrate-resistant acid phosphatase (TRAP) staining were performed for histological assessment. RESULTS: The total distance and number of rearing times in the open field were significantly reduced in a time-dependent manner. Micro-CT revealed intervertebral osteophytes and irregularities in the endplates at 12 weeks. The bone volume/tissue volume (BV/TV) around the endplates significantly increased from 6 weeks onward. Safranin-O staining revealed severe degeneration of IVDs and endplate disorders in a dose- and time-dependent manner. Calcitonin gene-related peptide-positive nerve fibers significantly increased from 6 weeks onward. However, the number of osteoclasts decreased over time. CONCLUSION: Our rat EPL model showed progressive morphological vertebral endplate changes in a time- and concentration-dependent manner, similar to the degenerative changes in human IVDs. This model can be used as an animal model of severe IVD degeneration to better understand the pathophysiology of EPL.


Assuntos
Modelos Animais de Doenças , Degeneração do Disco Intervertebral , Vértebras Lombares , Ratos Sprague-Dawley , Animais , Ratos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Degeneração do Disco Intervertebral/induzido quimicamente , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Masculino , Microtomografia por Raio-X , Disco Intervertebral/patologia , Disco Intervertebral/diagnóstico por imagem , Ácido Iodoacético/toxicidade
3.
Mar Drugs ; 22(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38786602

RESUMO

Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and chronic inflammation, accompanied by high oxidative stress. In this study, we utilized the monosodium iodoacetate (MIA)-induced OA model to investigate the efficacy of oligo-fucoidan-based formula (FF) intervention in mitigating OA progression. Through its capacity to alleviate joint bearing function and inflammation, improvements in cartilage integrity following oligo-fucoidan-based formula intervention were observed, highlighting its protective effects against cartilage degeneration and structural damage. Furthermore, the oligo-fucoidan-based formula modulated the p38 signaling pathway, along with downregulating cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, contributing to its beneficial effects. Our study provides valuable insights into targeted interventions for OA management and calls for further clinical investigations to validate these preclinical findings and to explore the translational potential of an oligo-fucoidan-based formula in human OA patients.


Assuntos
Ciclo-Oxigenase 2 , Óxido Nítrico Sintase Tipo II , Osteoartrite , Polissacarídeos , Animais , Camundongos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Iodoacetatos , Ácido Iodoacético , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/farmacologia , Ratos , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia
4.
BMC Musculoskelet Disord ; 25(1): 331, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725009

RESUMO

BACKGROUND: The development of neuropathic pain (NP) is one of the reasons why the pain is difficult to treat, and microglial activation plays an important role in NP. Recently, platelet-rich plasma (PRP) has emerged as a novel therapeutic method for knee osteoarthritis (KOA). However, it's unclarified whether PRP has analgesic effects on NP induced by KOA and the underlying mechanisms unknown. PURPOSE: To observe the analgesic effects of PRP on NP induced by KOA and explore the potential mechanisms of PRP in alleviating NP. METHODS: KOA was induced in male rats with intra-articular injections of monosodium iodoacetate (MIA) on day 0. The rats received PRP or NS (normal saline) treatment at days 15, 17, and 19 after modeling. The Von Frey and Hargreaves tests were applied to assess the pain-related behaviors at different time points. After euthanizing the rats with deep anesthesia at days 28 and 42, the corresponding tissues were taken for subsequent experiments. The expression of activating transcription factor 3 (ATF3) in dorsal root ganglia (DRG) and ionized-calcium-binding adapter molecule-1(Iba-1) in the spinal dorsal horn (SDH) was detected by immunohistochemical staining. In addition, the knee histological assessment was performed by hematoxylin-eosin (HE) staining. RESULTS: The results indicated that injection of MIA induced mechanical allodynia and thermal hyperalgesia, which could be reversed by PRP treatment. PRP downregulated the expression of ATF3 within the DRG and Iba-1 within the SDH. Furthermore, an inhibitory effect on cartilage degeneration was observed in the MIA + PRP group only on day 28. CONCLUSION: These results indicate that PRP intra-articular injection therapy may be a potential therapeutic agent for relieving NP induced by KOA. This effect could be attributed to downregulation of microglial activation and reduction in nerve injury.


Assuntos
Regulação para Baixo , Microglia , Neuralgia , Osteoartrite do Joelho , Plasma Rico em Plaquetas , Ratos Sprague-Dawley , Animais , Masculino , Neuralgia/terapia , Neuralgia/metabolismo , Microglia/metabolismo , Ratos , Osteoartrite do Joelho/terapia , Fator 3 Ativador da Transcrição/metabolismo , Gânglios Espinais/metabolismo , Modelos Animais de Doenças , Injeções Intra-Articulares , Proteínas de Ligação ao Cálcio/metabolismo , Ácido Iodoacético/toxicidade , Proteínas dos Microfilamentos
5.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203768

RESUMO

Osteoarthritis (OA) is common and affected by several factors, such as age, weight, sex, and genetics. The pathogenesis of OA remains unclear. Therefore, using a rat model of monosodium iodoacetate (MIA)-induced OA, we examined genomic-wide DNA methylation using methyl-seq and characterized the transcriptome using RNA-seq in the articular cartilage tissue from a negative control (NC) and MIA-induced rats. We identified 170 genes (100 hypomethylated and upregulated genes and 70 hypermethylated and downregulated genes) regulated by DNA methylation in OA. DNA methylation-regulated genes were enriched in functions related to focal adhesion, extracellular matrix (ECM)-receptor interaction and the PI3K-Akt and Hippo signaling pathways. Functions related to extracellular matrix organization, extracellular matrix proteoglycans, and collagen formation were involved in OA. A molecular and protein-protein network was constructed using methylated expression-correlated genes. Erk1/2 was a downstream target of OA-induced changes in DNA methylation and RNA expression. We found that the integrin subunit alpha 2 (ITGA2) gene is important in focal adhesion, alpha6-beta4 integrin signaling, and the inflammatory response pathway in OA. Overall, gene expression changes because DNA methylation influences OA pathogenesis. ITGA2, whose gene expression changes are regulated by DNA methylation during OA onset, is a candidate gene. Our findings provide insights into the epigenetic targets of OA processes in rats.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Ratos , Metilação de DNA , Transcriptoma , Fosfatidilinositol 3-Quinases , Integrina alfa2 , Ácido Iodoacético , Osteoartrite/induzido quimicamente , Osteoartrite/genética
6.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542192

RESUMO

Osteoarthritis is a widespread chronic degenerative disease marked by the deterioration of articular cartilage, modifications in subchondral bone, and a spectrum of symptoms, including pain, stiffness, and disability. Ultimately, this condition impairs the patient's quality of life. This study aimed to evaluate the therapeutic efficacy of standardized Boswellia serrata gum resin extract (BSRE) in a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis. A total of 60 rats were allocated into six groups: normal control group (NC), osteoarthritis control (injected with MIA, OC), O + B50 (injected with MIA and treated with 50 mg/kg body weight (BW) BSRE), O + B75 (injected with MIA and treated with 75 mg/kg BW BSRE), O + B100 (injected with MIA and treated with 100 mg/kg BW BSRE), and O + M (injected with MIA and treated with 150 mg/kg BW methyl sulfonyl methane). Several parameters, including knee joint swelling, histopathological changes, and the expression of collagen type II alpha 1 (COL2A1) and aggrecan, were comprehensively assessed. Concurrently, the serum levels and mRNA expression of inflammatory mediators, cytokines, and matrix metalloproteinases (MMPs) were analyzed in both the serum and knee joint synovium. The results demonstrated that BSRE significantly mitigated knee joint swelling, cartilage destruction, and tissue deformation. Notably, BSRE administration markedly upregulated the expression of COL2A1 and aggrecan while concurrently reducing levels of nitric oxide, prostaglandin E2, leukotriene B4, interleukin (IL)-6, and tumor necrosis factor (TNF)-α. Furthermore, a substantial decrease was observed in the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, 5-lipoxygenase, IL-6, TNF-α and MMP-3 and -13, thereby indicating promising therapeutic implications for osteoarthritis. In conclusion, BSRE exhibited anti-inflammatory properties and inhibited cartilage matrix degradation in a rat model of MIA-induced osteoarthritis, with the O + B100 group showing significant reductions in swelling and notable improvements in joint cartilage damage. These findings illuminate the preventive and therapeutic potential of BSRE for osteoarthritis treatment, emphasizing the criticality of exhaustive evaluation of novel compounds.


Assuntos
Boswellia , Cartilagem Articular , Osteoartrite , Ratos , Humanos , Animais , Boswellia/metabolismo , Agrecanas/metabolismo , Qualidade de Vida , Modelos Animais de Doenças , Osteoartrite/metabolismo , Inflamação/metabolismo , Articulação do Joelho/patologia , Ácido Iodoacético/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , RNA Mensageiro/metabolismo , Cartilagem Articular/metabolismo
7.
Wei Sheng Yan Jiu ; 53(4): 553-560, 2024 Jul.
Artigo em Zh | MEDLINE | ID: mdl-39155222

RESUMO

OBJECTIVE: To clarify the effect of iodoacetic acid(IAA) on the blood system and electrolyte balance, hence further study the intrinsic relation of blood routine parameters and electrolyte levels, major hematological toxicity effects and their pattern after IAA treatment. METHODS: Forty-eight 21-day-old male SPF grade Sprague-Dawley(SD) rats were gavaged with 0, 6.25, 12.5 and 25 mg/kg IAA for 31 days. After detections of blood routine and plasma inorganic ion levels, Spearman correlation coefficients were performed to evaluate their relationship. Changes in ferritin, transferrin, hepcidin, C-reactive protein and glyceraldehyde-3-phosphate dehydrogenase(GAPDH) were assessed by enzyme-linked immunosorbent assays. The EDock bioinformatics tool was applied to docking model of IAA and GAPDH. RESULTS: Compared to the control, high-dose IAA exposure had obvious inhibition effect on rat leukocytes with the total number declined by 51.12%, and neutrophils were particularly sensitive to IAA with the number reduced by 73.66%(P<0.01), and rat erythrocytes exhibited a small cell low pigment effect with hemoglobin and hematocrit decreased by 8.60% and 8.70%, respectively(P<0.05). But IAA had little effects on the platelet. Plasma iron, phosphorus, zinc and potassium levels were repressed significantly, while chlorine, sodium and magnesium levels were elevated obviously through IAA exposure. However, plasma calcium levels were hardly affected by IAA. In comparison with the control, iron levels declined by 67.09%, whereas magnesium levels increased by 131.82% in the high-dose group(P<0.01). Overall, correlation analyses uncovered that plasma iron metabolism was most strongly and positively correlated with levels of leukocyte, erythrocyte and platelet system parameters after IAA exposure, and the correlation coefficients of leukocyte number, mean hemoglobin content and mean erythrocyte volume were 0.637, 0.410 and 0.365, respectively(P<0.05). Compared to the control, in the high-dose IAA group, the plasma content of C-reactive protein was significantly upregulated by 13.30%(P<0.05), and plasma levels of transferrin and ferromodulin were also respectively elevated by 12.73% and 11.02%(P<0.05). But plasma levels of ferritin and GAPDH did not differ between groups. The docking model exhibited that IAA could bind to the 150 Cys active site of rat GAPDH did. CONCLUSION: IAA not only had toxic effects on rat leukocytes and the plasma electrolyte balance, but also generated inflammation and iron deficiency, leading to smaller erythrocytes and lower pigment.


Assuntos
Ácido Iodoacético , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Ácido Iodoacético/toxicidade , Desinfetantes/toxicidade , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Proteína C-Reativa/metabolismo , Leucócitos/efeitos dos fármacos , Ferritinas/sangue , Desinfecção/métodos , Transferrina , Hepcidinas/sangue
8.
Toxicol Appl Pharmacol ; 459: 116361, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584762

RESUMO

Osteoarthritis (OA) is a chronic debilitating degenerative disorder leading to structural, and functional anomaly of the joint. The present study tests the hypothesis that overexpression of the basic fibroblast growth factor (FGF-2) via direct rAAV-mediated gene transfer suppresses monosodium iodoacetate (MIA)-induced knee OA in rats relative to control (reporter rAAV-lacZ vector) gene transfer by intra-articular injection. Rats were treated with 20 µl rAAV-hFGF-2 on weekly basis; on days 7, 14, and 21 after single intra-articular injection of MIA (3 mg/50 µl saline). FGF-2 reduced knee joint swelling and improved motor performance and muscle coordination as evidenced by increased distance travelled, mean speed, rearing frequency in open field test (OFT) as well as fall-off latency in rotarod test together with reduced immobility time in OFT. Moreover, FGF-2 attenuated MIA-related radiological and histological alterations. Indeed, FGF-2 decreased knee joint inflammatory biomarker as demonstrated by reduced mRNA expression of toll like receptor (TLR)-4 and its downstream mediators such as tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1ß) and high motility group box (HMGB) 1. In parallel, FGF-2 attenuated knee joint degradation biomarkers as reflected by the downregulation of ADAMTS-5 mRNA expression and matrix metalloproteinase 13 (MMP-13) content together with the up-regulation of tissue inhibitor of metalloproteinase (TIMP)-1 mRNA expression. These findings suggest a potential therapeutic role for FGF-2 against MIA-induced knee OA in rats via inhibition of TLR4 signaling and activating TIMP-1, resulting in down-regulation of ADAMTS-5 and MMP-13.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Ratos , Cartilagem Articular/metabolismo , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/efeitos adversos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Injeções Intra-Articulares , Ácido Iodoacético , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Osteoartrite/patologia , RNA Mensageiro/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/uso terapêutico , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Humanos , Proteínas Recombinantes/farmacologia
9.
J Musculoskelet Neuronal Interact ; 23(4): 498-505, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037367

RESUMO

OBJECTIVES: Osteoarthritis (OA) has been the common cause to lead to chronic pain. Transcranial direct current stimulation (tDCS) is effective in the treatment of chronic pain, but its analgesic mechanism is still unclear. This study observed the analgesic effects of tDCS in rats to explore the top-down analgesic modulation mechanism of tDCS. METHODS: Monosodium iodoacetate (MIA) was used to establish OA chronic pain model. After 21 days, the rats received tDCS for 14 consecutive days (20 min/day). We assessed the pain-related behaviors of rats at different time points. Western blot and Immunohistochemistry were performed to observe the expression level of NMDAR2B in the spinal cord after tDCS treatment. RESULTS: After MIA injection, rats developed apparent mechanical hyperalgesia and thermal hyperalgesia. However, the pain-related behaviors of rats were significantly improved after tDCS treatment. In addition, the expression of NMDAR2B and the proportion of positive stained cells of NMDAR2B were reversed by tDCS treatment. CONCLUSIONS: The results demonstrated that tDCS can attenuate OA-induced chronic pain in rats via reducing NMDAR2B expressions in the spinal cord. We believe that this may be the result of tDCS participating in the top-down modulation of pain pathway in the endogenous analgesic system.


Assuntos
Dor Crônica , Osteoartrite , Estimulação Transcraniana por Corrente Contínua , Animais , Ratos , Analgésicos , Dor Crônica/terapia , Hiperalgesia/metabolismo , Hiperalgesia/terapia , Ácido Iodoacético/toxicidade , Ácido Iodoacético/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , Medula Espinal/metabolismo , Estimulação Transcraniana por Corrente Contínua/métodos
10.
Mar Drugs ; 21(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38132938

RESUMO

Progressive articular surface degradation during arthritis causes ongoing pain and hyperalgesia that lead to the development of functional disability. TRPA1 channel significantly contributes to the activation of sensory neurons that initiate neurogenic inflammation and mediates pain signal transduction to the central nervous system. Peptide Ms 9a-1 from the sea anemone Metridium senile is a positive allosteric modulator of TRPA1 and shows significant anti-inflammatory and analgesic activity in different models of pain. We used a model of monosodium iodoacetate (MIA)-induced osteoarthritis to evaluate the anti-inflammatory properties of Ms 9a-1 in comparison with APHC3 (a polypeptide modulator of TRPV1 channel) and non-steroidal anti-inflammatory drugs (NSAIDs) such as meloxicam and ibuprofen. Administration of Ms 9a-1 (0.1 mg/kg, subcutaneously) significantly reversed joint swelling, disability, thermal and mechanical hypersensitivity, and grip strength impairment. The effect of Ms 9a-1 was equal to or better than that of reference drugs. Post-treatment histological analysis revealed that long-term administration of Ms9a-1 could reduce inflammatory changes in joints and prevent the progression of cartilage and bone destruction at the same level as meloxicam. Peptide Ms 9a-1 showed significant analgesic and anti-inflammatory effects in the model of MIA-induced OA, and therefore positive allosteric modulators could be considered for the alleviation of OA symptoms.


Assuntos
Osteoartrite , Anêmonas-do-Mar , Animais , Meloxicam/efeitos adversos , Modelos Animais de Doenças , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Dor , Anti-Inflamatórios/efeitos adversos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Peptídeos/uso terapêutico , Ácido Iodoacético/toxicidade
11.
Ecotoxicol Environ Saf ; 257: 114926, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094483

RESUMO

Iodoacetic acid (IAA) is an emerging and the most genotoxic iodinated disinfection byproduct to date. IAA can disrupt the thyroid endocrine function in vivo and in vitro, but the underlying mechanisms remain unclear. In this work, transcriptome sequencing was used to investigate the effect of IAA on the cellular pathways of human thyroid follicular epithelial cell line Nthy-ori 3-1 and determine the mechanism of IAA on the synthesis and secretion of thyroid hormone (TH) in Nthy-ori 3-1 cells. Results of transcriptome sequencing indicated that IAA affected the TH synthesis pathway in Nthy-ori 3-1 cells. IAA reduced the mRNA expression of thyroid stimulating hormone receptor, sodium iodide symporter, thyroid peroxidase, thyroglobulin, paired box 8 and thyroid transcription factor-2, inhibited the cAMP/PKA pathway and Na+-K+-ATPase, and decreased the iodine intake. The results were confirmed by our previous findings in vivo. Additionally, IAA downregulated glutathione and the mRNA expression of glutathione peroxidase 1, leading to increased reactive oxygen species production. This study is the first to elucidate the mechanisms of IAA on TH synthesis in vitro. The mechanisms are associated with down-regulating the expression of genes related to TH synthesis, inhibiting iodine uptake, and inducing oxidative stress. These findings may improve future health risk assessment of IAA on thyroid in human.


Assuntos
Água Potável , Iodo , Humanos , Glândula Tireoide , Ácido Iodoacético/toxicidade , Ácido Iodoacético/metabolismo , Água Potável/análise , Desinfecção/métodos , Hormônios Tireóideos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Iodo/metabolismo
12.
J Shoulder Elbow Surg ; 32(3): 500-511, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36442828

RESUMO

BACKGROUND: Osteoarthritis (OA) is a disease of joint degeneration and impaired function. Muscle atrophy, fatty infiltration, and fibrosis are degenerative features of muscle injury and predict poor outcomes in some degenerative and exercise-related injuries. Patients with glenohumeral joint OA usually have rotator cuff muscle degeneration, even though the rotator cuff is intact. However, the mechanism and correlation between OA and degeneration of muscles around joints are still unknown. METHODS: Forty-five 12-month-old C57BL/6J mice received a single injection of monoiodoacetic acid into the right glenohumeral joint. The sham group was injected with saline on the same day in the right glenohumeral joint. Three and 6 weeks after the operation, gait analysis was conducted to evaluate the function of the forelimb. Then, the shoulder joint and supraspinatus muscle were collected for histologic staining, reverse transcription quantitative polymerase chain reaction, and biomechanics test. Correlations between fat area fraction in muscle, percentage wet muscle weight change or Osteoarthritis Research Society International score, and gait analysis/muscle mechanics tests were assessed using Pearson's correlation coefficient or Spearman's correlation coefficient. RESULTS: Compared with the sham group, the monoiodoacetic acid group developed significant glenohumeral joint OA and the supraspinatus muscle developed significant fatty infiltration and muscle atrophy. Shoulder function correlated with glenohumeral joint OA/rotator cuff muscle severity, weight loss, and fatty infiltration. CONCLUSION: In mice, glenohumeral joint OA can lead to rotator cuff degeneration and inferior limb function. The small animal model could be a powerful tool to further study the potential mechanisms between glenohumeral OA and rotator cuff muscle degeneration.


Assuntos
Osteoartrite , Lesões do Manguito Rotador , Articulação do Ombro , Animais , Camundongos , Manguito Rotador/cirurgia , Ácido Iodoacético/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Atrofia Muscular/patologia , Osteoartrite/cirurgia , Membro Anterior/patologia
13.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834951

RESUMO

Osteoarthritis (OA) is one of the most prevalent diseases of the osteoarticular system. Progressive destruction of joints is accompanied by development of pathological changes in the muscle tissue, i.e., weakening, atrophy, and remodelling (sarcopenia). The aim of the present study is to assess the impact of physical activity on the musculoskeletal system in an animal model of early degenerative lesions in the knee joint. The study involved 30 male Wistar rats. The animals were allocated to three subgroups of 10 animals each. Each animal from the three subgroups received sodium iodoacetate by injection into the patellar ligament of the right knee joint, whereas saline was administered through the patellar ligament in the left knee joint. The rats in the first group were stimulated to exercise on a treadmill. The animals in the second group were allowed to lead a natural lifestyle (no treadmill stimulation). In the third group, all parts of the right hind limb muscle were injected with Clostridium botulinum toxin type A. The study demonstrated that, compared to the active rats, bone density in the immobilised rats decreased, as indicated by the densitometric assessment of the whole body and the examination of rats' hind limbs and knee joints alone. This clearly evidenced the impact of physical activity on bone mineralisation. The weight of both fat and muscle tissues in the physically inactive rats was reduced. Additionally, the adipose tissue had higher weight in the entire right hind limbs, where monoiodoacetic acid was administered to the knee joint. The animal model clearly showed the importance of physical activity in the early stages of OA, as it slows down the process of joint destruction, bone atrophy, and muscle wasting, whereas physical inactivity contributes to progression of generalised changes in the musculoskeletal system.


Assuntos
Osteoartrite do Joelho , Osteoartrite , Ratos , Masculino , Animais , Ratos Wistar , Articulação do Joelho/patologia , Osteoartrite/patologia , Modelos Animais , Ácido Iodoacético , Atrofia Muscular/patologia , Modelos Animais de Doenças , Osteoartrite do Joelho/patologia
14.
Int J Mol Sci ; 24(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37958960

RESUMO

In present study, icariin (ICA)/tannic acid (TA)-nanodiamonds (NDs) were prepared as follows. ICA was anchored to ND surfaces with absorbed TA (ICA/TA-NDs) and we evaluated their in vitro anti-inflammatory effects on lipopolysaccharide (LPS)-activated macrophages and in vivo cartilage protective effects on a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis (OA). The ICA/TA-NDs showed prolonged release of ICA from the NDs for up to 28 days in a sustained manner. ICA/TA-NDs inhibited the mRNA levels of pro-inflammatory elements, including matrix metalloproteinases-3 (MMP-3), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and increased the mRNA levels of anti-inflammatory factors (i.e., IL-4 and IL-10) in LPS-activated RAW 264.7 macrophages. Animal studies exhibited that intra-articular injection of ICA/TA-NDs notably suppressed levels of IL-6, MMP-3, and TNF-α and induced level of IL-10 in serum of MIA-induced OA rat models in a dose-dependent manner. Furthermore, these noticeable anti-inflammatory effects of ICA/TA-NDs remarkably contributed to the protection of the progression of MIA-induced OA and cartilage degradation, as exhibited by micro-computed tomography (micro-CT), gross findings, and histological investigations. Accordingly, in vitro and in vivo findings suggest that the prolonged ICA delivery of ICA/TA-NDs possesses an excellent latent to improve inflammation as well as defend against cartilage disorder in OA.


Assuntos
Cartilagem Articular , Nanodiamantes , Osteoartrite , Ratos , Animais , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Microtomografia por Raio-X , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Anti-Inflamatórios/farmacologia , Ácido Iodoacético/efeitos adversos , RNA Mensageiro/metabolismo , Modelos Animais de Doenças
15.
Biol Reprod ; 107(2): 650-663, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35470848

RESUMO

Water disinfection can generate water disinfection byproducts (DBPs). Iodoacetic acid (IAA) is one DBP, and it has been shown to be an ovarian toxicant in vitro and in vivo. However, it is unknown if prenatal and lactational exposure to IAA affects reproductive outcomes in female offspring. This study tested the hypothesis that prenatal and lactational exposure to IAA adversely affects reproductive parameters in F1 female offspring. Adult female CD-1 mice were dosed with water (control) or IAA (10, 100, and 500 mg/L) in the drinking water for 35 days and then mated with unexposed males. IAA exposure continued throughout gestation. Dams delivered naturally, and pups were continuously exposed to IAA through lactation until postnatal day (PND) 21. Female pups were euthanized on PND 21 and subjected to measurements of anogenital distance, ovarian weight, and vaginal opening. Ovaries were subjected to histological analysis. In addition, sera were collected to measure reproductive hormone levels. IAA exposure decreased vaginal opening rate, increased the absolute weight of the ovaries, increased anogenital index, and decreased the percentage of atretic follicles in female pups compared to control. IAA exposure caused a borderline decrease in the levels of progesterone and follicle-stimulating hormone (FSH) and increased levels of testosterone in female pups compared to control. Collectively, these data show that prenatal and lactational exposure to IAA in drinking water affects vaginal opening, anogenital index, the weight of the ovaries, the percentage of atretic follicles, and hormone levels in the F1 generation in mice.


Assuntos
Água Potável , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Hormônios/farmacologia , Humanos , Ácido Iodoacético/farmacologia , Lactação , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Reprodução
16.
J Transl Med ; 20(1): 428, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36138477

RESUMO

BACKGROUND: Osteoarthritis (OA) is the most common type of degenerative arthritis and affects the entire joint, causing pain, joint inflammation, and cartilage damage. Various risk factors are implicated in causing OA, and in recent years, a lot of research and interest have been directed toward chronic low-grade inflammation in OA. Monocyte chemoattractant protein-1 (MCP-1; also called CCL2) acts through C-C chemokine receptor type 2 (CCR2) in monocytes and is a chemotactic factor of monocytes that plays an important role in the initiation of inflammation. The targeting of CCL2-CCR2 is being studied as part of various topics including the treatment of OA. METHODS: In this study, we evaluated the potential therapeutic effects the sCCR2 E3 gene may exert on OA. The effects of sCCR2 E3 were investigated in animal experiments consisting of intra-articular injection of sCCR2 E3 in a monosodium iodoacetate (MIA)-induced OA rat model. The effects after intra-articular injection of sCCR2 E3 (fusion protein encoding 20 amino acids of the E3 domain of the CCL2 receptor) in a monosodium iodoacetate-induced OA rat model were compared to those in rats treated with empty vector (mock treatment) and full-length sCCR2. RESULTS: Pain improved with expression of the sCCR2 gene. Improved bone resorption upon sCCR2 E3 gene activation was confirmed via bone analyses using micro-computed tomography. Histologic analyses showed that the sCCR2 E3 gene exerted protective effects against cartilage damage and anti-inflammatory effects on joints and the intestine. CONCLUSIONS: These results show that sCCR2 E3 therapy is effective in reducing pain severity, inhibiting cartilage destruction, and suppressing intestinal damage and inflammation. Thus, sCCR2 E3 may be a potential therapy for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Aminoácidos/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Cartilagem/patologia , Cartilagem Articular/patologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Terapia Genética , Inflamação/metabolismo , Ácido Iodoacético/metabolismo , Ácido Iodoacético/toxicidade , Osteoartrite/diagnóstico por imagem , Osteoartrite/genética , Osteoartrite/terapia , Dor/patologia , Ratos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Quimiocinas/metabolismo , Microtomografia por Raio-X
17.
Osteoarthritis Cartilage ; 30(11): 1468-1481, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030058

RESUMO

OBJECTIVES: Chronic joint pain is common in patients with osteoarthritis (OA). Non-steroidal anti-inflammatory drugs and opioids are used to relieve OA pain, but they are often inadequately effective. Dorsal root ganglion field stimulation (GFS) is a clinically used neuromodulation approach, although it is not commonly employed for patients with OA pain. GFS showed analgesic effectiveness in our previous study using the monosodium iodoacetate (MIA) - induced OA rat pain model. This study was to evaluate the mechanism of GFS analgesia in this model. METHODS: After osteoarthritis was induced by intra-articular injection of MIA, pain behavioral tests were performed. Effects of GFS on the spontaneous activity (SA) were tested with in vivo single-unit recordings from teased fiber saphenous nerve, sural nerve, and dorsal root. RESULTS: Two weeks after intra-articular MIA injection, rats developed pain-like behaviors. In vivo single unit recordings from bundles teased from the saphenous nerve and third lumbar (L3) dorsal root of MIA-OA rats showed a higher incidence of SA than those from saline-injected control rats. GFS at the L3 level blocked L3 dorsal root SA. MIA-OA reduced the punctate mechanical force threshold for inducing AP firing in bundles teased from the L4 dorsal root, which reversed to normal with GFS. After MIA-OA, there was increased retrograde SA (dorsal root reflex), which can be blocked by GFS. CONCLUSIONS: These results indicate that GFS produces analgesia in MIA-OA rats at least in part by producing blockade of afferent inputs, possibly also by blocking efferent activity from the dorsal horn.


Assuntos
Gânglios Espinais , Osteoartrite , Ratos , Animais , Ácido Iodoacético/toxicidade , Analgésicos/uso terapêutico , Osteoartrite/tratamento farmacológico , Dor/etiologia , Células Receptoras Sensoriais , Anti-Inflamatórios não Esteroides/uso terapêutico , Modelos Animais de Doenças
18.
Behav Pharmacol ; 33(1): 23-31, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007233

RESUMO

The monoiodoacetate-induced rat model of osteoarthritis knee pain is widely used. However, there are between-study differences in the pain behavioural endpoints assessed and in the dose of intraarticular monoiodoacetate administered. This study evaluated the robustness of gait analysis as a pain behavioural endpoint in the chronic phase of this model, in comparison with mechanical hyperalgesia in the injected (ipsilateral) joint and development of mechanical allodynia in the ipsilateral hind paws. Groups of Sprague-Dawley rats received a single intraarticular injection of monoiodoacetate at 0.5, 1, 2 or 3 mg or vehicle (saline) into the left (ipsilateral) knee joint. An additional group of rats were not injected (naïve group). The pain behavioural methods used were gait analysis, measurement of pressure algometry thresholds in the ipsilateral knee joints, and assessment of mechanical allodynia in the ipsilateral hind paws using von Frey filaments. These pain behavioural endpoints were assessed premonoiodoacetate injection and for up to 42-days postmonoiodoacetate injection in a blinded manner. Body weights were also assessed as a measure of general health. Good general health was maintained as all rats gained weight at a similar rate for the 42-day study period. In the chronic phase of the model (days 9-42), intraarticular monoiodoacetate at 3 mg evoked robust alterations in multiple gait parameters as well as persistent mechanical allodynia in the ipsilateral hind paws. For the chronic phase of the monoiodoacetate-induced rat model of osteoarthritis knee pain, gait analysis, such as mechanical allodynia in the ipsilateral hind paws, is a robust pain behavioural measure.


Assuntos
Artralgia , Sintomas Comportamentais , Análise da Marcha/métodos , Hiperalgesia , Osteoartrite , Dor , Animais , Artralgia/induzido quimicamente , Artralgia/psicologia , Técnicas de Observação do Comportamento/métodos , Comportamento Animal , Sintomas Comportamentais/diagnóstico , Sintomas Comportamentais/fisiopatologia , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Hiperalgesia/diagnóstico , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Ácido Iodoacético/administração & dosagem , Osteoartrite/fisiopatologia , Osteoartrite/psicologia , Dor/fisiopatologia , Dor/psicologia , Ratos , Ratos Sprague-Dawley
19.
Mediators Inflamm ; 2022: 8353472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578323

RESUMO

Aim: This study is aimed at evaluating the use of curcumin-loaded polylactic-co-glycolic acid nanoparticles (CUR-loaded PLGA NPs) as a treatment against monosodium iodoacetate- (MIA-) induced knee OA. Materials and Methods: Eighteen rats were assigned to three groups (n = 6), namely, normal control group that received intra-articular injections (IAIs) of saline, an OA control group that received an IAIs of MIA (2 mg/50 µL), and a treatment group (MIA+CUR-loaded PLGA NPs) that received IAIs of CUR-loaded PLGA NPs (200 mg/kg b.wt). Results: The CUR NP treatment against knee OA alleviated radiographic alternations and histopathological changes and inhibited the upregulation in the serum levels of interleukin-1ß, tumor necrosis factor-α, interleukin-6, and transforming growth factor-beta and the downregulation in interleukin-10. CUR NP-treated joints also decreased the mRNA expression of nuclear factor-kappa B and inducible nitric oxide synthase and the protein expression of matrix metalloproteinase-13 and caspase-3. Finally, CUR-loaded PLGA NP treatment mitigated the loss of type II collagen, which resulted in a significant reduction in malondialdehyde level and increased the glutathione content and superoxide dismutase activity compared with that of the OA group. Conclusion: This study demonstrated that the administration of CUR NPs could provide effective protection against MIA-induced OA and knee joint histological deteriorated changes due to its anti-inflammatory, antioxidant, and antiapoptotic properties.


Assuntos
Curcumina , Nanopartículas , Osteoartrite do Joelho , Ratos , Animais , Curcumina/uso terapêutico , Curcumina/farmacologia , Ácido Iodoacético/toxicidade , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Nanopartículas/uso terapêutico
20.
BMC Musculoskelet Disord ; 23(1): 494, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614438

RESUMO

BACKGROUND: Monoiodoacetate (MIA)-induced arthritis models are used widely in osteoarthritis (OA) research to develop effective conservative treatments for hip OA, as an alternative to joint replacement surgery. In joint OA models, such as the MIA-induced knee OA model, various doses of MIA are utilized, depending on the purpose of the research. So far, only 2 mg of MIA has been used for MIA-induced hip OA research. We hypothesized that the amount of MIA should be adjusted according to the osteoarthritis model under investigation. We performed radiographic and histological evaluations in rats for hip OA models induced by different doses of MIA. METHODS: One hundred and eighty right hips of six-week-old, male Sprague-Dawley rats (n = 30 rats per group) were treated with either a single intra-articular injection of various doses of MIA (0.25, 0.5, 1.0, 2.0, and 4.0 mg) dissolved in 25 µl of sterile saline (MIA group), or with 25 µl of sterile saline alone (Sham group). Radiographic and histological evaluations of the hip joint were performed at one, two, four, eight, and 12 weeks after administration (n = 6 rats per group per time point). RESULTS: OA changes progressed from 1 week after administration in the 1.0-mg, 2.0-mg, and 4.0-mg MIA groups. The degree of OA changes increased as the dose of MIA increased. The 0.25-mg and 0.5-mg MIA groups presented fewer OA changes than the 2.0-mg and 4.0-mg MIA groups during the entire study period (up to 12 weeks). The administration of 0.25 mg and 0.5 mg of MIA-induced both radiographic and histological OA changes in a time-dependent manner, whereas more than 2 mg of MIA provoked end-stage OA at 8 weeks after injection. Absolute, dose-dependent histopathological OA changes were observed 4 weeks after MIA administration. CONCLUSIONS: Intra-articular MIA injection to the hip joints of rats induced diverse OA changes dose-dependently. Research for developing novel conservative treatments for hip OA and intractable pain should consider the pathological condition when determining the dose of MIA to be employed.


Assuntos
Osteoartrite do Quadril , Osteoartrite do Joelho , Animais , Modelos Animais de Doenças , Humanos , Injeções Intra-Articulares , Ácido Iodoacético/toxicidade , Masculino , Osteoartrite do Quadril/induzido quimicamente , Osteoartrite do Quadril/diagnóstico por imagem , Osteoartrite do Quadril/tratamento farmacológico , Osteoartrite do Joelho/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA