Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920347

RESUMO

Bladder cancer (BC) is a common malignancy of the urinary system and a leading cause of death worldwide. In this work, untargeted metabolomic profiling of biological fluids is presented as a non-invasive tool for bladder cancer biomarker discovery as a first step towards developing superior methods for detection, treatment, and prevention well as to further our current understanding of this disease. In this study, urine samples from 24 healthy volunteers and 24 BC patients were subjected to metabolomic profiling using high throughput solid-phase microextraction (SPME) in thin-film format and reversed-phase high-performance liquid chromatography coupled with a Q Exactive Focus Orbitrap mass spectrometer. The chemometric analysis enabled the selection of metabolites contributing to the observed separation of BC patients from the control group. Relevant differences were demonstrated for phenylalanine metabolism compounds, i.e., benzoic acid, hippuric acid, and 4-hydroxycinnamic acid. Furthermore, compounds involved in the metabolism of histidine, beta-alanine, and glycerophospholipids were also identified. Thin-film SPME can be efficiently used as an alternative approach to other traditional urine sample preparation methods, demonstrating the SPME technique as a simple and efficient tool for urinary metabolomics research. Moreover, this study's results may support a better understanding of bladder cancer development and progression mechanisms.


Assuntos
Metaboloma , Metabolômica/métodos , Neoplasias da Bexiga Urinária/urina , Idoso , Ácido Benzoico/urina , Estudos de Casos e Controles , Cromatografia Líquida , Ácidos Cumáricos/urina , Feminino , Glicerofosfolipídeos/urina , Hipuratos/urina , Histidina/urina , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Fenilalanina/metabolismo , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia , beta-Alanina/urina
2.
Anal Bioanal Chem ; 409(14): 3541-3549, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28401287

RESUMO

A solid-phase extraction (SPE) method for the efficient analysis of trace phenolic acids (PAs, caffeic acid, ferulic acid, protocatechuic acid, cinnamic acid) in urine was established. In this work, a graphene oxide (GO) coating was grafted onto pure silica to be investigated as SPE material. The prepared GO surface had a layered and wrinkled structure that was rough and well organized, which could provide more open adsorption sites. Owing to its hydrophilicity and polarity, GO showed higher extraction efficiency toward PAs than reduced GO did, in agreement with the theoretical calculation results performed by Gaussian 09 software. The adsorption mechanism of PAs on GO@Sil was also investigated through static state and kinetic state adsorption experiments, which showed a monolayer surface adsorption. Extraction capacity of the as-prepared material was optimized using the response surface methodology. Under the optimized conditions, the as-established method provided wide linearity range (2-50 µg L-1 for protocatechuic acid and 1-50 µg L-1 for caffeic acid, ferulic acid, and cinnamic acid) and low limits of detection (0.25-1 µg L-1). Finally, the established method was applied for the analysis of urine from two healthy volunteers. The results indicate that the prepared material is a practical, cost-effective medium for the extraction and determination of phenolic acids in complex matrices. Graphical Abstract A graphene oxide coating was grafted onto pure silica as the SPE material for the extraction of phenolic acids in urines and the extraction mechanism was also mainly investigated.


Assuntos
Ácidos Cafeicos/isolamento & purificação , Cinamatos/isolamento & purificação , Ácidos Cumáricos/isolamento & purificação , Grafite/química , Hidroxibenzoatos/isolamento & purificação , Extração em Fase Sólida/métodos , Adsorção , Ácidos Cafeicos/urina , Cromatografia Líquida de Alta Pressão/métodos , Cinamatos/urina , Ácidos Cumáricos/urina , Humanos , Hidroxibenzoatos/urina , Limite de Detecção , Óxidos/química , Dióxido de Silício/química
3.
J Nutr ; 145(2): 239-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25644343

RESUMO

BACKGROUND: Avenanthramides (AVAs), which are found exclusively in oats, may play an important role in anti-inflammation and antiatherogenesis. Although the bioavailability of AVAs has been investigated previously, little is known about their metabolism. OBJECTIVES: The aim of the present study was to investigate the metabolism of avenanthramide-C (2c), one of the major AVAs, in mice and by the human microbiota, as well as to elucidate the bioactivity of its major metabolites with the goal of finding new exposure markers to precisely reflect oat consumption. METHODS: For the mouse study, 10 CF-1 female mice were divided into control (vehicle-treated) and 2c intragastrically treated (200 mg/kg) groups (5 mice/group). Twenty-four-hour urine and fecal samples were collected with use of metabolic cages. For the batch culture incubations, 2c was cultured with fecal slurries obtained from 6 human donors. Incubated samples were collected at various time points (0, 12, 24, 48, 72, 96, and 120 h). Metabolites were identified via HPLC with electrochemical detection and LC with electrospray ionization/mass spectrometry. To investigate whether 2c metabolites retain the biological effects of 2c, we compared their effects on the growth of and induction of apoptosis in HCT-116 human colon cancer cells. RESULTS: Eight metabolites were detected from the 2c-treated mouse urine samples. They were identified as 5-hydroxyanthranilic acid (M1), dihydrocaffeic acid (M2), caffeic acid (M3), dihydroferulic acid (M4), ferulic acid (M5), dihydroavenanthramide-C (M6), dihydroavenanthramide-B (M7), and avenanthramide-B (M8) via analysis of their MS(n) (n = 1-3) spectra. We found that the reduction of 2c's C7'-C8' double bond and the cleavage of its amide bond were the major metabolic routes. In the human microbiota study, 2c was converted into M1-M3 and M6. Moreover, interindividual differences in 2c metabolism were observed among the 6 human subjects. Subjects B, C, E, and F could rapidly metabolize 2c to M6, whereas subject D metabolized little 2c, even up to 120 h. In addition, only subjects A, B, and F could cleave the amide bond of 2c or M6 to form the cleaved metabolites. Furthermore, we showed that 2c and its major metabolite M6 are bioactive compounds against human colon cancer cells. M6 was more active than 2c with the half-inhibitory concentration (IC50) of 158 µM and could induce apoptosis at 200 µM. CONCLUSION: To our knowledge, the current study demonstrates for the first time that avenanthramide-C can be extensively metabolized by mice and the human microbiota to generate bioactive metabolites.


Assuntos
Avena/química , Microbiota , ortoaminobenzoatos/administração & dosagem , ortoaminobenzoatos/farmacocinética , Adulto , Animais , Apoptose/efeitos dos fármacos , Biotransformação , Índice de Massa Corporal , Ácidos Cafeicos/urina , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/urina , Fezes/microbiologia , Feminino , Células HCT116 , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Espectrometria de Massas por Ionização por Electrospray , ortoaminobenzoatos/urina
4.
J Nutr ; 145(6): 1280-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25904735

RESUMO

BACKGROUND: Polyphenols are phytochemicals that possess antioxidant and anti-inflammatory properties and improve glucose metabolism in animal experiments, although data from prospective epidemiologic studies examining polyphenol intakes in relation to type 2 diabetes (T2D) risk are inconsistent. OBJECTIVES: We examined urinary excretion of select flavonoid and phenolic acid metabolites, as biomarkers of intake, in relation to T2D risk. METHODS: Eight polyphenol metabolites (naringenin, hesperetin, quercetin, isorhamnetin, catechin, epicatechin, caffeic acid, and ferulic acid) were quantified in spot urine samples by liquid chromatography/mass spectrometry among 1111 T2D case-control pairs selected from the Nurses' Health Study (NHS) and NHSII. RESULTS: Higher urinary excretion of hesperetin was associated with a lower T2D risk after multivariate adjustment: the OR comparing top vs. bottom quartiles was 0.68 (95% CI: 0.49, 0.96), although a linear trend was lacking (P = 0.30). The other measured polyphenols were not significantly associated with T2D risk after multivariate adjustment. However, during the early follow-up period [≤ 4.6 y (median) since urine sample collection], markers of flavanone intakes (naringenin and hesperetin) and flavonol intakes (quercetin and isorhamnetin) were significantly associated with a lower T2D risk. The ORs (95% CIs) comparing extreme quartiles were 0.61 (0.39, 0.98; P-trend: 0.03) for total flavanones and 0.55 (0.33, 0.92; P-trend: 0.04) for total flavonols (P-interaction with follow-up length: ≤ 0.04). An inverse association was also observed for caffeic acid during early follow-up only: the OR was 0.52 (95% CI: 0.32, 0.84; P-trend: 0.03). None of these markers was associated with T2D risk during later follow-up. Metabolites of flavan-3-ols and ferulic acid were not associated with T2D risk in either period. CONCLUSIONS: These results suggest that specific flavonoid subclasses, including flavanones and flavonols, as well as caffeic acid, are associated with a lower T2D risk in relatively short-term follow-up but not during longer follow-up. Substantial within-person variability of the metabolites in single spot urine samples may limit the ability to capture associations with long-term disease risk.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Polifenóis/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácidos Cafeicos/urina , Estudos de Casos e Controles , Catequina/urina , Ácidos Cumáricos/urina , Feminino , Flavanonas/urina , Seguimentos , Hesperidina/urina , Humanos , Hidroxibenzoatos/urina , Pessoa de Meia-Idade , Avaliação Nutricional , Estudos Prospectivos , Quercetina/análogos & derivados , Quercetina/urina , Fatores de Risco , Inquéritos e Questionários
5.
Anal Bioanal Chem ; 405(26): 8487-503, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23982107

RESUMO

Habitual consumption of medium amounts of coffee over the whole life-span is hypothesized to reduce the risk to develop diabetes type 2 (DM2) and Alzheimer's disease (AD). To identify putative bioactive coffee-derived metabolites, first, pooled urine from coffee drinkers and non-coffee drinkers were screened by UPLC-HDMS. After statistical data analysis, trigonelline, dimethylxanthines and monomethylxanthines, and ferulic acid conjugates were identified as the major metabolites found after coffee consumption. For quantitative analysis of these markers in body fluids, targeted methods based on stable-isotope dilution and UPLC-MS/MS were developed and applied to plasma samples from a coffee intervention study (n = 13 volunteers) who consumed a single cup of caffeinated coffee brew after a 10-day washout period. Chlorogenic acid-derived metabolites were found to be separated into two groups showing different pharmacokinetic properties. The first group comprised, e.g., ferulic acid and feruloyl sulfate and showed early appearance in the plasma (~1 h). The second group contained particularly chlorogenic acid metabolites formed by the intestinal microflora, appearing late and persisting in the plasma (>6 h). Trigonelline appeared early but persisted with calculated half-life times ~5 h. The plasma levels of caffeine metabolites significantly and progressively increased 2-4 h after coffee consumption and did not reach c max within the time frame of the study. The pharmacokinetic profiles suggest that particularly trigonelline, caffeine, its metabolites, as well as late appearing dihydroferulic acid, feruloylglycine and dihydroferulic acid sulfate formed from chlorogenic acid by the intestinal microflora accumulate in the plasma due to their long half-life times during habitual consumption of several cups of coffee distributed over the day. Since some of these metabolites have been reported to show antioxidant effects in vivo, antioxidant-response-element activating potential, and neuroprotective properties, respectively, some of these key metabolites might account for the inflammation- and DM2/AD risk reducing effects reported for habitual life time consumption of coffee.


Assuntos
Alcaloides/metabolismo , Cafeína/metabolismo , Ácido Clorogênico/metabolismo , Café/metabolismo , Ácidos Cumáricos/metabolismo , Xantinas/metabolismo , Adulto , Alcaloides/sangue , Alcaloides/urina , Cafeína/sangue , Cafeína/urina , Ácido Clorogênico/sangue , Ácido Clorogênico/urina , Ácidos Cumáricos/sangue , Ácidos Cumáricos/urina , Feminino , Humanos , Masculino , Espectrometria de Massas em Tandem , Xantinas/sangue , Xantinas/urina , Adulto Jovem
6.
Phytother Res ; 27(7): 1074-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22975930

RESUMO

A rapid, highly sensitive, and selective method was applied in a non-invasive way to investigate the antidepressant action of Xiaoyaosan (XYS) using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) and chemometrics. Many significantly altered metabolites were used to explain the mechanism. Venlafaxine HCl and fluoxetine HCl were used as chemical positive control drugs with a relatively clear mechanism of action to evaluate the efficiency and to predict the mechanism of action of XYS. Urine obtained from rats subjected to chronic unpredictable mild stress (CUMS) was analyzed by UPLC-MS. Distinct changes in the pattern of metabolites in the rat urine after CUMS production and drug intervention were observed using partial least squares-discriminant analysis. The results of behavioral tests and multivariate analysis showed that CUMS was successfully reproduced, and a moderate-dose XYS produced significant therapeutic effects in the rodent model, equivalent to those of the positive control drugs, venlafaxine HCl and fluoxetine HCl. Metabolites with significant changes induced by CUMS were identified, and 17 biomarker candidates for stress and drug intervention were identified. The therapeutic effect of XYS on depression may involve regulation of the dysfunctions of energy metabolism, amino acid metabolism, and gut microflora changes. Metabonomic methods are valuable tools for measuring efficacy and mechanisms of action in the study of traditional Chinese medicines.


Assuntos
Antidepressivos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Trato Gastrointestinal/microbiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Fitoterapia , Animais , Antidepressivos/urina , Benzoatos/urina , Biomarcadores/urina , Hidrocarbonetos Aromáticos com Pontes/urina , Catequina/urina , Chalcona/análogos & derivados , Chalcona/urina , Cromatografia Líquida , Ácido Cítrico/urina , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Cumáricos/urina , Creatina Quinase/efeitos dos fármacos , Creatina Quinase/urina , Creatinina/urina , Cicloexanóis/uso terapêutico , Medicamentos de Ervas Chinesas/análise , Flavanonas/urina , Fluoxetina/uso terapêutico , Ácido Gálico/urina , Glucosídeos/urina , Glicina/análogos & derivados , Glicina/efeitos dos fármacos , Glicina/urina , Hipuratos/urina , Ácidos Cetoglutáricos/urina , Ácido Cinurênico/urina , Masculino , Espectrometria de Massas , Metabolômica , Monoterpenos , Extratos Vegetais/uso terapêutico , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/tratamento farmacológico , Triptofano/efeitos dos fármacos , Triptofano/urina , Tirosina/efeitos dos fármacos , Tirosina/urina , Cloridrato de Venlafaxina
7.
J Dairy Sci ; 95(11): 6563-70, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22921626

RESUMO

Ferulic acid (FRA), a phenolic compound with antioxidant and anticancer activities, naturally occurs in plants as a lignin precursor. Many veins of research have been devoted to releasing FRA from the lignin complex to improve digestibility of ruminant feeds. Thus, the objective of this research was to investigate the transfer of a given dosage of the free form of FRA into the milk of dairy cattle. Six mid- to late-lactation Holstein cows at the Cornell Research Farm (Harford, NY) were given 14-d adaptation to diet and stall position. Ad libitum access to a total mixed ration based on haylage and maize silage (31.1% neutral detergent fiber containing 5.52 mg of FRA/g) was provided during the study. A crossover design was implemented so that each cow alternated weekly between FRA-dosed and control. On d 1, jugular cannulas and urine catheters were placed in all cows. On d 2, FRA-dosed cows received a single dosage of 150 g of pure FRA powder at 0830 h via their fistula (n=4) or a balling gun for nonfistulated cows (n=2). Plasma, urine, feces, feed, orts, milk, and rumen fluid were sampled intensively for the next 36 h and analyzed for FRA concentration. On d 8, the cows crossed over and the experiment was repeated. When compared with the control, FRA administration did not have an effect on dry matter intake, milk yield, milk fat yield, milk protein yield, somatic cell count, or neutral detergent fiber content of orts and feces. The concentration of FRA in the feces did not change as a result of FRA dosage. As expected, FRA concentration increased dramatically upon FRA dosage and decreased over time until returning to basal levels in rumen fluid (4 h after dosage), plasma (5.5 h after dosage), urine (10 h after dosage), and milk (14 h after dosage). Baseline values for FRA in urine and rumen fluid were variable among cows and had an effect on FRA concentration in FRA-dosed cows. From this study, it is observed that orally ingested FRA can be transported into the milk and that the physiological transfer of FRA occurs from rumen to milk within 6.5 h or the first milking after dosage. Ferulic acid may affect the functionality of milk due to its antioxidant, anticancer, and antibacterial activities. Future research will be required to elucidate whether FRA in milk is bioavailable and bioactive, and to evaluate the complete sensory and microbiological effects of increased FRA and FRA degradation products in milk.


Assuntos
Ácidos Cumáricos/farmacocinética , Animais , Bovinos , Ácidos Cumáricos/análise , Ácidos Cumáricos/sangue , Ácidos Cumáricos/urina , Relação Dose-Resposta a Droga , Fezes/química , Feminino , Lactação/metabolismo , Leite/química , Rúmen/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 37(3): 366-72, 2012 Feb.
Artigo em Zh | MEDLINE | ID: mdl-22568242

RESUMO

OBJECTIVE: To study the major metabolites of ferulic acid and gallic acid compatible with Danggui Chishaoyao in rat plasma and urine. METHOD: The metabolites of ferulic acid and gallic acid in rat plasma and urine were analyzed after oral administration of compatible Danggui Chishaoyao using UPLC-Q-TOF-MS. RESULT: On the basis of the mass information, it was inferred that in vivo metabolites of ferulic acid were be in the form of methylation products, sulfate conjugation products and glucuronidation conjugation products and so on; meanwhile, gallic acid was mainly transformed into eduction products and methylation products. CONCLUSION: There are kinds of phase I and phase II metabolites of ferulic acid and gallic acid in rat plasma and urine, which provide a basis for its efficacious materials and action mechanism.


Assuntos
Ácidos Cumáricos/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Ácido Gálico/metabolismo , Interações Ervas-Drogas , Animais , Ácidos Cumáricos/sangue , Ácidos Cumáricos/urina , Ácido Gálico/sangue , Ácido Gálico/urina , Masculino , Metaboloma , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Arch Biochem Biophys ; 501(1): 98-105, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20226754

RESUMO

The intestinal absorption and metabolism of 385 micromol chlorogenic acids following a single intake of 200 mL of instant coffee by human volunteers with an ileostomy was investigated. HPLC-MS(3) analysis of 0-24h post-ingestion ileal effluent revealed the presence of 274+/-28 micromol of chlorogenic acids and their metabolites accounting for 71+/-7% of intake. Of the compounds recovered, 78% comprised parent compounds initially present in the coffee, and 22% were metabolites including free and sulfated caffeic and ferulic acids. Over a 24h period after ingestion of the coffee, excretion of chlorogenic acid metabolites in urine accounted for 8+/-1% of intake, the main compounds being ferulic acid-4-O-sulfate, caffeic acid-3-O-sulfate, isoferulic acid-3-O-glucuronide and dihydrocaffeic acid-3-O-sulfate. In contrast, after drinking a similar coffee, urinary excretion by humans with an intact colon corresponded to 29+/-4% of chlorogenic acid intake. This difference was due to the excretion of higher levels of dihydroferulic acid and feruloylglycine together with sulfate and glucuronide conjugates of dihydrocaffeic and dihydroferulic acids. This highlights the importance of colonic metabolism. Comparison of the data obtained in the current study with that of Stalmach et al. facilitated elucidation of the pathways involved in post-ingestion metabolism of chlorogenic acids and also helped distinguish between compounds absorbed in the small and the large intestine.


Assuntos
Ácido Clorogênico/farmacocinética , Café/química , Ileostomia , Adulto , Disponibilidade Biológica , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacocinética , Ácidos Cafeicos/urina , Ácido Clorogênico/química , Ácido Clorogênico/urina , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacocinética , Ácidos Cumáricos/urina , Feminino , Humanos , Íleo/metabolismo , Absorção Intestinal , Masculino , Pessoa de Meia-Idade , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
10.
Org Biomol Chem ; 8(22): 5199-211, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-20842300

RESUMO

A systematic investigation of the human metabolism of hydroxycinnamic acid conjugates was carried out. A set of 24 potential human metabolites of coffee polyphenols has been chemically prepared, and used as analytical standards for unequivocal identifications. These included glucuronide conjugates and sulfate esters of caffeic, ferulic, isoferulic, m-coumaric and p-coumaric acids as well as their dihydro derivatives. A particular focus has been made on caffeic and 3,4-dihydroxyphenylpropionic acid derivatives, especially the sulfate conjugates, for which regioselective preparation was particularly challenging, and have so far never been identified as human metabolites. Ten out of the 24 synthesized conjugates have been identified in human plasma and/or urine after coffee consumption. A number of these conjugates were synthesized, characterized and detected as hydroxycinnamic acid metabolites for the first time. This was the case of dihydroisoferulic acid 3'-O-glucuronide, caffeic acid 3'-sulfate, as well as the sulfate and glucuronide derivatives of 3,4-dihydroxyphenylpropionic acid.


Assuntos
Líquidos Corporais/metabolismo , Ácidos Cafeicos/sangue , Ácidos Cafeicos/urina , Café/metabolismo , Ácidos Cumáricos/sangue , Ácidos Cumáricos/urina , Comportamento de Ingestão de Líquido , Glucuronídeos/sangue , Glucuronídeos/urina , Ésteres do Ácido Sulfúrico/sangue , Ésteres do Ácido Sulfúrico/urina , Ácidos Cafeicos/química , Ácido Clorogênico/sangue , Ácido Clorogênico/urina , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/química , Glucuronídeos/química , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Ésteres do Ácido Sulfúrico/química
11.
Drug Metab Dispos ; 37(8): 1749-58, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19460943

RESUMO

Human subjects drank coffee containing 412 mumol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (C(max)), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher C(max) values. The short time to reach C(max) (T(max)) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher C(max) values (145-385 nM) with T(max) values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4-37.1 mumol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 mumol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 mumol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee.


Assuntos
Bebidas , Cinamatos/sangue , Cinamatos/urina , Café/metabolismo , Ácidos Cumáricos/sangue , Ácidos Cumáricos/urina , Metabolômica , Biomarcadores/sangue , Biomarcadores/urina , Biotransformação , Ácidos Cafeicos/sangue , Ácidos Cafeicos/urina , Cromatografia Líquida de Alta Pressão , Cinamatos/farmacocinética , Ácidos Cumáricos/farmacocinética , Glucuronatos/sangue , Glucuronatos/urina , Humanos , Hidroxilação , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray , Sulfatos/sangue , Sulfatos/urina
12.
J Nutr ; 138(7): 1282-7, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18567748

RESUMO

Foods of plant origin contain a large number of phytochemicals that may positively affect health. Phytochemicals are largely excreted in urine as metabolites that are formed in host tissues or by the microbiota and constitute a great proportion of the urinary metabolome. The latter can be characterized by a metabolomics approach. In this work, we compared the metabolism of lignins to that of the structurally related ferulic acid (FA) and sinapic acid (SA). Five groups of rats (n = 5) were fed for 2 d a purified diet alone [control (C)] or supplemented with lignin-enriched wheat bran (3% of the diet, wt:wt), poplar wood lignins (0.42%), FA (0.42%), or SA (0.42%). The metabolomes of urine samples collected after 1 and 2 d of supplementation were analyzed by high-resolution MS (liquid chromatography/quadrupole time-of-flight). Comparing metabolic fingerprints by gathering semiquantitative information on several hundreds of metabolites and using multivariate statistical analysis (partial least squares for discriminant analysis) showed the similarity between both lignin-supplemented and C groups and confirmed that lignins are largely inert and not absorbed in the body. One the other hand, metabolic fingerprints of the 2 phenolic acid-supplemented groups were clearly distinct from the C group. Differences between the groups were mainly from nonmetabolized FA and SA and metabolites excreted in urine. Thirteen of them were identified as sulfate esters and glucuronide and glycine conjugates of the same phenolic acids, and of dihydrosinapic, vanillic, and benzoic acids. This study shows that metabolomics allows the identification of new metabolites of phytochemicals and can be used to distinguish individuals fed different phytochemical-containing foods.


Assuntos
Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Animais , Ácidos Cumáricos/urina , Dieta , Flavonoides/metabolismo , Flavonoides/urina , Lignina/urina , Masculino , Metabolismo , Fenóis/metabolismo , Fenóis/urina , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/urina , Polifenóis , Ratos , Ratos Wistar
13.
Mol Nutr Food Res ; 61(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27356494

RESUMO

SCOPE: Phytophenols present in cereals are metabolised to compounds that could be partly responsible for the reduced risk of chronic diseases and all-cause mortality associated with fibre-rich diets. The bioavailability, form and in vivo concentrations of these metabolites require to be established. MATERIALS AND METHODS: Eight healthy volunteers consumed a test meal containing a recommended dose (40 g) and high dose (120 g) of ready-to-eat wheat bran cereal and the systemic and colonic metabolites determined quantitatively by LC-MS. CONCLUSION: Analysis of the systemic metabolomes demonstrated that a wide range of phytophenols were absorbed/excreted (43 metabolites) within 5 h of consumption. These included 16 of the 21 major parent compounds identified in the intervention product and several of these were also found to be significantly increased in the colon. Not all of the metabolites were increased with the higher dose, suggesting some limitation in absorption due to intrinsic factors and/or the food matrix. Many compounds identified (e.g. ferulic acid and major metabolites) exhibit anti-inflammatory activity and impact on redox pathways. The combination of postprandial absorption and delivery to the colon, as well as hepatic recycling of the metabolites at these concentrations, is likely to be beneficial to both systemic and gut health.


Assuntos
Fibras na Dieta , Grão Comestível/química , Fenóis/administração & dosagem , Fenóis/farmacocinética , Adulto , Disponibilidade Biológica , Colo/efeitos dos fármacos , Colo/metabolismo , Ácidos Cumáricos/urina , Relação Dose-Resposta a Droga , Fezes/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenóis/sangue , Fenóis/urina
14.
J Agric Food Chem ; 54(8): 2944-50, 2006 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-16608213

RESUMO

trans-Cinnamic acid (CIN) and p-coumaric acid (COU) are ingested by humans in their diet. While the metabolism and health benefits of CIN have been widely documented, little is known about its absorption sites, and there have been few studies dedicated to COU. The gastrointestinal sac technique demonstrated that CIN and COU are absorbed by all digestive organs in rats and partially transported via MCT-mediated carrier. Absorption was lowest in the stomach. Regardless of the organs that were studied, CIN was more efficiently absorbed than COU. After their individual oral administration to rats, CIN and COU were excreted in 0-24 h urine (0.3% and 23% of ingested CIN and COU, respectively). This suggests that COU was less metabolized than CIN. CIN and COU are absorbed across the digestive epithelium and subsequently interact with target tissues. Despite its lower gastrointestinal absorption, COU may have greater health benefits because it seems to be less metabolized than CIN.


Assuntos
Cinamatos/farmacocinética , Cinamatos/urina , Ácidos Cumáricos/farmacocinética , Ácidos Cumáricos/urina , Absorção Intestinal , Animais , Masculino , Propionatos , Ratos , Ratos Wistar
15.
J Nutr Biochem ; 33: 111-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27155917

RESUMO

Studies on metabolism of polyphenols have revealed extensive transformations in the carbon backbone by colonic microbiota; however, the influence of microbial and hepatic transformations on human urinary metabolites has not been explored. Therefore, the aims of this study were (1) to compare the in vitro microbial phenolic metabolite profile of foods and beverages with that excreted in urine of subjects consuming the same foodstuff and (2) to explore the role of liver on postcolonic metabolism of polyphenols by using in vitro hepatic models. A 24-h urinary phenolic metabolite profile was evaluated in 72 subjects participating in an 8-week clinical trial during which they were randomly assigned to diets differing for polyphenol content. Polyphenol-rich foods and beverages used in the clinical trial were subjected to human fecal microbiota in the in vitro colon model. Metabolites from green tea, one of the main components of the polyphenol-rich diet, were incubated with primary hepatocytes to highlight hepatic conversion of polyphenols. The analyses were performed using targeted gas chromatography with mass spectrometer (GCxGC-TOFMS:colon model; GC-MS: urine and hepatocytes). A significant correlation was found between urinary and colonic metabolites with C1-C3 side chain (P=.040). However, considerably higher amounts of hippuric acid, 3-hydroxybenzoic acid and ferulic acid were detected in urine than in the colon model. The hepatic conversion showed additional amounts of these metabolites complementing the gap between in vitro colon model and the in vivo urinary excretion. Therefore, combining in vitro colon and hepatic models may better elucidate the metabolism of polyphenols from dietary exposure to urinary metabolites.


Assuntos
Colo/microbiologia , Dieta , Microbioma Gastrointestinal , Fígado/metabolismo , Modelos Biológicos , Sobrepeso/metabolismo , Polifenóis/metabolismo , Adulto , Algoritmos , Células Cultivadas , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/urina , Fezes/microbiologia , Manipulação de Alimentos , Hipuratos/metabolismo , Hipuratos/urina , Humanos , Hidroxibenzoatos/metabolismo , Hidroxibenzoatos/urina , Mucosa Intestinal/microbiologia , Fígado/citologia , Obesidade/metabolismo , Obesidade/urina , Sobrepeso/urina , Oxirredução , Polifenóis/administração & dosagem , Polifenóis/urina , Chá/química
16.
Int J Vitam Nutr Res ; 75(2): 119-25, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15929632

RESUMO

The effects of caffeic acid, a major phenolic compound of the diet, on oxidative stress and cholesterolemia are studied in rats submitted to oxidative stress by iron overload. Male Wistar rats were fed semi-synthetic diets containing regular (50 mg/kg diet) or high (2000 mg/kg) doses of iron with and without caffeic acid (6460 mg/kg) for 4 weeks. The high doses of iron induced an increase of lipid oxidation in the liver, as measured by thiobarbituric acid-reactive substances (TBARS), and an increase of cholesterolemia. Caffeic acid fully prevented the pro-oxidant effects of high iron doses (p < 0.001). It also reduced lipid peroxidation in rats fed the low iron dose (p < 0.05). Caffeic acid also increased vitamin E levels in plasma (2.74 micromol/L to 4.09 micromol/L for normal diet; p < 0.001; 2.78 micromol/L to 4.94 micromol/L for iron supplemented diet p < 0.001). Iron-induced hypercholesterolemia was inhibited by caffeic acid (1.07 g/L to 0.82 g/L; p < 0.001). These results demonstrate the antioxidative capacity of caffeic acid, a highly bioavailable polyphenol, in an in vivo model of oxidative stress.


Assuntos
Ácidos Cafeicos/farmacologia , Hipercolesterolemia/tratamento farmacológico , Sobrecarga de Ferro/complicações , Estresse Oxidativo/efeitos dos fármacos , Animais , Ácidos Cafeicos/uso terapêutico , Ácidos Cafeicos/urina , Colesterol/sangue , Ácidos Cumáricos/urina , Hipercolesterolemia/induzido quimicamente , Ferro/administração & dosagem , Ferro/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/química , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Triglicerídeos/sangue , Vitamina E/sangue
17.
Free Radic Biol Med ; 27(3-4): 278-86, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10468199

RESUMO

The urinary recoveries of the hydroxycinnamates, ferulic acid (3-methoxy, 4-hydroxy cinnamic acid), and chlorogenic acid (the quinic acid ester of 3,4-dihydroxycinnamic acid), and three structurally related flavonoids were studied in the rat. For the latter, the aglycone quercetin was compared with its 3-glucoside (isoquercitrin) and 3-rhamnoglucoside (rutin). Doses of 50 mg/kg were administered via the oral and intravenous routes and urine collected over the subsequent 24-h period. Reverse phase HPLC with photo-diode array detection was used to analyze the unchanged compound and their metabolites excreted in the urine. Ferulic acid and isoquercitrin were orally absorbed (5.4 and 0.48% of administered dose, respectively) and are therefore bioavailable. In contrast, neither unchanged chlorogenic acid, rutin, quercetin, nor the conjugated metabolites in the form of glucuronide or sulphate were detected in the urine after oral dosing. All the flavonoids studied produced low total urinary recoveries after intravenous administration, 9.2% for quercetin-3-rhamnoglucoside, 6.7% for the 3-glucoside, and 2.4% for the aglycone, indicating that extensive metabolism to low molecular weight compounds or excretion via other routes may be occurring. Overall it can be stated that renal excretion is not a major pathway of elimination for intact flavonoids and hydroxycinnamates in the rat.


Assuntos
Ácidos Cumáricos/urina , Flavonoides/urina , Administração Oral , Animais , Ácido Clorogênico/urina , Glucuronídeos/urina , Injeções Intravenosas , Masculino , Quercetina/análogos & derivados , Quercetina/urina , Ratos , Ratos Wistar , Rutina/urina
18.
Free Radic Biol Med ; 30(11): 1213-22, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11368919

RESUMO

The purpose of this study was to investigate biomarkers of the bioavailability and metabolism of hydroxycinnamate derivatives through the determination of the pharmacokinetics of their urinary elimination and identification of the metabolites excreted. Coffee was used as a rich source of caffeic acid derivatives and human supplementation was undertaken. The results show a highly significant increase in the excretion of ferulic, isoferulic, dihydroferulic acid (3-(4-hydroxy-3-methoxyphenyl)-propionic acid), and vanillic acid postsupplementation relative to the levels presupplementation. Thus, ferulic, isoferulic, and dihydroferulic acids are specific biomarkers for the bioavailability and metabolism of dietary caffeic acid esters. Isoferulic acid is a unique biomarker as it is not a dietary component, however, dihydroferulic acid may well derive from other flavonoids with a structurally related B-ring. 3-Hydroxyhippuric acid has also been identified as an indicator for bioavailability and metabolism of phenolic compounds, and shows a highly significant excretion increase postsupplementation. The results reveal isoferulic acid (and possibly dihydroferulic acid) as novel markers of caffeoyl quinic acid metabolism.


Assuntos
Biomarcadores/urina , Ácidos Cafeicos/farmacocinética , Adulto , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Cinamatos/urina , Ácidos Cumáricos/urina , Humanos , Masculino , Espectrometria de Massas , Ácido Vanílico/urina
19.
Free Radic Biol Med ; 28(8): 1249-56, 2000 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-10889455

RESUMO

French maritime pine (Pinus maritima) bark extract (PBE) is a polyphenol-rich food supplement patented under the name of Pycnogenol and known to have strong antioxidant activity and different beneficial effects on human health. Although its biological properties have begun to be extensively studied both in vitro, in laboratory animals and more recently in humans, little is known about its bioavailability. The present study investigated the urinary excretion of free and conjugated ferulic acid, present in quantitatively detectable amounts in PBE, after oral PBE administration to human subjects. Eleven healthy adult subjects (4 women and 7men) consumed either a single dose (200 mg PBE) or two doses of PBE (100 and 200 mg, respectively) within a 48-h interval. Two days before the oral administration of PBE and during the urine sample collection period volunteers adhered to a diet low in polyphenols. Aliquots of all urine production were collected over 24 h. Free and conjugated ferulic acid was assessed in urine by HPLC using diode array detection. A close association between the dietary intake of PBE and the urinary excretion of ferulic acid was detected. Moreover, the results indicate that a considerable proportion of ferulic acid is excreted as glucuronide or sulfate after PBE consumption, varying over the range 2 to 20% between individuals. The kinetics of excretion associated with the administration of 100 mg PBE was quite similar to that obtained after 200 mg PBE. A a biphasic trend was evident in a number of subjects. All subjects studied here displayed a significant, although variable level of excretion of ferulic acid after supplementation with PBE, Thus, the data provide evidence that at least a part of the phenolic components of PBE are absorbed, metabolized, and eliminated by humans.


Assuntos
Antioxidantes/farmacocinética , Ácidos Cumáricos/urina , Flavonoides/farmacocinética , Extratos Vegetais/farmacocinética , Árvores , Administração Oral , Adulto , Idoso , Antioxidantes/administração & dosagem , Disponibilidade Biológica , Biomarcadores , Cromatografia Líquida de Alta Pressão , Feminino , Flavonoides/administração & dosagem , França , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/farmacocinética , Humanos , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/administração & dosagem
20.
Free Radic Biol Med ; 30(6): 636-42, 2001 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11295361

RESUMO

Phenolic compounds in red wine can exert antioxidant effects on in vitro lipoprotein oxidation. This has led to speculation that red wine consumption mediates unique anti-atherosclerotic effects compared to other alcoholic beverages. However, studies assessing the effects of red wine consumption on lipoprotein oxidation ex vivo have not been conclusive. The recent identification of the F2-isoprostanes as oxidative products of arachidonic acid has provided a reliable measure of in vivo lipid peroxidation. This randomized trial investigated changes in plasma and urinary F2-isoprostane concentrations following red wine, white wine, or dealcoholized red wine consumption in humans. Eighteen male smokers consumed, in random order, red wine, white wine, or dealcoholized red wine, for two weeks with one week washout between beverages. Plasma and urinary F2-isoprostane concentrations were measured before and after each beverage. Serum gamma-glutamyl transpeptidase (gamma-GT) and urinary 4-O -methylgallic acid were measured as markers of alcohol consumption and phenolic acid absorption, respectively. Plasma F2-isoprostanes (p < .05) decreased significantly with dealcoholized red wine but not with the alcohol-containing beverages. Urinary excretion of F2-isoprostanes showed a similar trend. gamma-GT decreased significantly with dealcoholized red wine and increased with both alcohol-containing beverages (p < .01). Urinary excretion of 4-O-methylgallic acid increased significantly (p < .001) in the 24 h urine samples following red wine or dealcoholized red wine ingestion, but not with white wine. Serum urate increased and beta-carotene decreased with both alcoholic beverages relative to dealcoholized red wine. There was no change in the antioxidants alpha- and gamma-tocopherol or vitamin C with any of the beverages. The results suggest that polyphenols in dealcoholized red wine can reduce in vivo lipid peroxidation as measured by F2-isoprostanes in smoking subjects. However, no reduction in lipid peroxidation was observed following red or white wine consumption, suggesting that any protective effects of wine drinking on cardiovascular disease are unlikely to be related to inhibition of lipid oxidation.


Assuntos
Flavonoides , Ácido Gálico/análogos & derivados , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Polímeros/farmacologia , Fumar/metabolismo , Vinho , Adulto , Idoso , Ácido Araquidônico/sangue , Colesterol/sangue , Cromatografia Líquida de Alta Pressão , Cotinina/urina , Ácidos Cumáricos/urina , Dinoprosta/análogos & derivados , Dinoprosta/sangue , Dinoprosta/urina , F2-Isoprostanos , Ácido Gálico/urina , Humanos , Masculino , Pessoa de Meia-Idade , Fenóis/uso terapêutico , Polímeros/uso terapêutico , Polifenóis , Distribuição Aleatória , Fumar/sangue , Fumar/tratamento farmacológico , Fumar/urina , Triglicerídeos/sangue , Ácido Úrico/sangue , Vitaminas/sangue , gama-Glutamiltransferase/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA