Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.739
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Chemistry ; 30(46): e202401724, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38853639

RESUMO

The clinical use of many potent anticancer agents is limited by their non-selective toxicity to healthy tissue. One of these examples is vorinostat (SAHA), a pan histone deacetylase inhibitor, which shows high cytotoxicity with limited discrimination for cancerous over healthy cells. In an attempt to improve tumor selectivity, we exploited the properties of cobalt(III) as a redox-active metal center through stabilization with cyclen and cyclam tetraazamacrocycles, masking the anticancer activity of SAHA and other hydroxamic acid derivatives to allow for the complex to reach the hypoxic microenvironment of the tumor. Biological assays demonstrated the desired low in vitro anticancer activity of the complexes, suggesting effective masking of the activity of SAHA. Once in the tumor, the bioactive moiety may be released through the reduction of the CoIII center. Investigations revealed long-term stability of the complexes, with cyclic voltammetry and chemical reduction experiments supporting the design hypothesis of SAHA release through the reduction of the CoIII prodrug. The results highlight the potential for further developing this complex class as novel anticancer agents by masking the high cytotoxicity of a given drug, however, the cellular uptake needs to be improved.


Assuntos
Antineoplásicos , Cobalto , Complexos de Coordenação , Ácidos Hidroxâmicos , Oxirredução , Vorinostat , Cobalto/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Vorinostat/química , Vorinostat/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia
2.
Nat Chem Biol ; 18(8): 812-820, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35484434

RESUMO

Drugs that target histone deacetylase (HDAC) entered the pharmacopoeia in the 2000s. However, some enigmatic phenotypes suggest off-target engagement. Here, we developed a quantitative chemical proteomics assay using immobilized HDAC inhibitors and mass spectrometry that we deployed to establish the target landscape of 53 drugs. The assay covers 9 of the 11 human zinc-dependent HDACs, questions the reported selectivity of some widely-used molecules (notably for HDAC6) and delineates how the composition of HDAC complexes influences drug potency. Unexpectedly, metallo-ß-lactamase domain-containing protein 2 (MBLAC2) featured as a frequent off-target of hydroxamate drugs. This poorly characterized palmitoyl-CoA hydrolase is inhibited by 24 HDAC inhibitors at low nanomolar potency. MBLAC2 enzymatic inhibition and knockdown led to the accumulation of extracellular vesicles. Given the importance of extracellular vesicle biology in neurological diseases and cancer, this HDAC-independent drug effect may qualify MBLAC2 as a target for drug discovery.


Assuntos
Histona Desacetilases , Neoplasias , Descoberta de Drogas , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química
3.
Cell Commun Signal ; 22(1): 361, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010083

RESUMO

BACKGROUND: Breast cancer is one of the most lethal cancers in women. Despite significant advances in the diagnosis and treatment of breast cancer, many patients still succumb to this disease, and thus, novel effective treatments are urgently needed. Natural product coumarin has been broadly investigated since it reveals various biological properties in the medicinal field. Accumulating evidence indicates that histone deacetylase inhibitors (HDACIs) are promising novel anti-breast cancer agents. However, most current HDACIs exhibit only moderate effects against solid tumors and are associated with severe side effects. Thus, to develop more effective HDACIs for breast cancer therapy, hydroxamate of HDACIs was linked to coumarin core, and coumarin-hydroxamate hybrids were designed and synthesized. METHODS: A substituted coumarin moiety was incorporated into the classic hydroxamate HDACIs by the pharmacophore fusion strategy. ZN444B was identified by using the HDACI screening kit and cell viability assay. Molecular docking was performed to explore the binding mode of ZN444B with HDAC1. Western blot, immunofluorescent staining, cell viability, colony formation and cell migration and flow cytometry assays were used to analyze the anti-breast cancer effects of ZN444B in vitro. Orthotopic studies in mouse models were applied for preclinical evaluation of efficacy and toxicity in vivo. Proteomic analysis, dual-luciferase reporter assay, chromatin immunoprecipitation, co-immunoprecipitation, immunofluorescent staining assays along with immunohistochemical (IHC) analysis were used to elucidate the molecular basis of the actions of ZN444B. RESULTS: We synthesized and identified a novel coumarin-hydroxamate conjugate, ZN444B which possesses promising anti-breast cancer activity both in vitro and in vivo. A molecular docking model showed that ZN444B binds to HDAC1 with high affinity. Further mechanistic studies revealed that ZN444B specifically decreases FOS-like antigen 2 (FOSL2) mRNA levels by inhibiting the deacetylase activity of HDAC1 on Sp1 at K703 and abrogates the binding ability of Sp1 to the FOSL2 promoter. Furthermore, FOSL2 expression positively correlates with breast cancer progression and metastasis. Silencing FOSL2 expression decreases the sensitivity of breast cancer cells to ZN444B treatment. In addition, ZN444B shows no systemic toxicity in mice. CONCLUSIONS: Our findings highlight the potential of FOSL2 as a new biomarker and therapeutic target for breast cancer and that targeting the HDAC1-Sp1-FOSL2 signaling axis with ZN444B may be a promising therapeutic strategy for breast cancer.


Assuntos
Neoplasias da Mama , Cumarínicos , Histona Desacetilase 1 , Ácidos Hidroxâmicos , Transdução de Sinais , Cumarínicos/química , Cumarínicos/farmacologia , Humanos , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Animais , Transdução de Sinais/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/uso terapêutico , Fator de Transcrição Sp1/metabolismo , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Descoberta de Drogas
4.
J Org Chem ; 89(19): 14601-14605, 2024 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-39310999

RESUMO

Chalaniline A, an aminofulveno[1,2-b]chromone derivative previously isolated from a vorinostat-treated ascomycete Chalara sp., was prepared in nine steps from orcinol (3,5-dihydroxytoluene). In a key transformation, the tricyclic ring system of the target was generated by a pyrrolidine-catalyzed double annulation between α-(methylsulfinyl)-2,6-dihydroxy-4-methylacetophenone and the ketaldoester, methyl 2,5-dioxopentanoate. The resulting tertiary alcohol (coniochaetone H) was further converted to chalaniline A by operations including dehydration (to yield a hydroxyfulvene), Vilsmeier reaction, and enamine exchange.


Assuntos
Ascomicetos , Cromonas , Vorinostat , Cromonas/química , Cromonas/síntese química , Cromonas/farmacologia , Vorinostat/química , Vorinostat/farmacologia , Ascomicetos/química , Estrutura Molecular , Ácidos Hidroxâmicos/química
5.
Bioorg Med Chem Lett ; 108: 129810, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38782078

RESUMO

PCI-34051 is a valuable tool to interrogate the therapeutic effects of selective inhibition of HDAC8. However, it has not advanced to clinical trials, perhaps due to poor PK or off-target effects. We hypothesized that the presence of a hydroxamic acid (HA) group in PCI-34051 contributed to its lack of advancement. Therefore, we replaced the HA in the PCI-34051 scaffold with a series of moieties that have the potential to bind to Zn and evaluated their activity in a HDAC8 assay. Surprisingly, none of the replacements effectively mimicked the HA, and analogs lost significant potency. Evaluation of the analogs' affinity to Zn indicated that none had affinity for Zn within the same range as the HA. These studies point to the difficulty in the application of bioisosteric replacements for Zn binding motifs.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Ácidos Hidroxâmicos , Proteínas Repressoras , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/síntese química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Humanos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Zinco/química , Zinco/farmacologia , Estrutura Molecular , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Relação Dose-Resposta a Droga , Indóis
6.
Bioorg Chem ; 146: 107247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493635

RESUMO

The current investigation encompasses the structural planning, synthesis, and evaluation of the urease inhibitory activity of a series of molecular hybrids of hydroxamic acids and Michael acceptors, delineated from the structure of cinnamic acids. The synthesized compounds exhibited potent urease inhibitory effects, with IC50 values ranging from 3.8 to 12.8 µM. Kinetic experiments unveiled that the majority of the synthesized hybrids display characteristics of mixed inhibitors. Generally, derivatives containing electron-withdrawing groups on the aromatic ring demonstrate heightened activity, indicating that the increased electrophilicity of the beta carbon in the Michael Acceptor moiety positively influences the antiureolytic properties of this compounds class. Biophysical and theoretical investigations further corroborated the findings obtained from kinetic assays. These studies suggest that the hydroxamic acid core interacts with the urease active site, while the Michael acceptor moiety binds to one or more allosteric sites adjacent to the active site.


Assuntos
Ácidos Hidroxâmicos , Urease , Sítio Alostérico , Domínio Catalítico , Inibidores Enzimáticos/química , Ácidos Hidroxâmicos/química , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Cinamatos/química
7.
Bioorg Chem ; 147: 107421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714118

RESUMO

Targeting the homeostasis of anions and iron has emerged as a promising therapeutic approach for the treatment of cancers. However, single-targeted agents often fall short of achieving optimal treatment efficacy. Herein we designed and synthesized a series of novel dual-functional squaramide-hydroxamic acid conjugates that are capable of synergistically modulating the homeostasis of anions and iron. Among them, compound 16 exhibited the most potent antiproliferative activity against a panel of selected cancer cell lines, and strong in vivo anti-tumor efficacy. This compound effectively elevated lysosomal pH through anion transport, and reduced the levels of intracellular iron. Compound 16 could disturb autophagy in A549 cells and trigger robust apoptosis. This compound caused cell cycle arrest at the G1/S phase, altered the mitochondrial function and elevated ROS levels. The present findings clearly demonstrated that synergistic modulation of anion and iron homeostasis has high potentials in the development of promising chemotherapeutic agents with dual action against cancers.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Homeostase , Ácidos Hidroxâmicos , Ferro , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ferro/metabolismo , Ferro/química , Proliferação de Células/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Relação Estrutura-Atividade , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/síntese química , Estrutura Molecular , Apoptose/efeitos dos fármacos , Ânions/química , Ânions/farmacologia , Relação Dose-Resposta a Droga , Animais , Linhagem Celular Tumoral , Camundongos , Quinina/análogos & derivados
8.
Mol Divers ; 28(4): 2229-2244, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020133

RESUMO

Helicobacter pylori is the main causative agent of gastric cancer, especially non-cardiac gastric cancers. This bacterium relies on urease producing much ammonia to colonize the host. Herein, the study provides valuable insights into structural patterns driving urease inhibition for high-activity molecules designed via exploring known inhibitors. Firstly, an ensemble model was devised to predict the inhibitory activity of novel compounds in an automated workflow (R2 = 0.761) that combines four machine learning approaches. The dataset was characterized in terms of chemical space, including molecular scaffolds, clustering analysis, distribution for physicochemical properties, and activity cliffs. Through these analyses, the hydroxamic acid group and the benzene ring responsible for distinct activity were highlighted. Activity cliff pairs uncovered substituents of the benzene ring on hydroxamic acid derivatives are key structures for substantial activity enhancement. Moreover, 11 hydroxamic acid derivatives were designed, named mol1-11. Results of molecular dynamic simulations showed that the mol9 exhibited stabilization of the active site flap's closed conformation and are expected to be promising drug candidates for Helicobacter pylori infection and further in vitro, in vivo, and clinical trials to demonstrate in future.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Helicobacter pylori , Ácidos Hidroxâmicos , Simulação de Dinâmica Molecular , Urease , Helicobacter pylori/enzimologia , Helicobacter pylori/efeitos dos fármacos , Urease/antagonistas & inibidores , Urease/química , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/química
9.
J Enzyme Inhib Med Chem ; 39(1): 2406025, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39316378

RESUMO

Class IIa histone deacetylases (HDACs) have been linked to tumorigenesis in various cancers. Previously, we designed phenylhydroxamic acid LH4f as a potent class IIa HDAC inhibitor. However, it also unselectively inhibited class I and class IIb HDACs. To enhance the compound's selectivity towards class IIa HDACs, the ortho-phenyl group from the selective HDAC7 inhibitor 1 is incorporated into ortho position of the phenylhydroxamic acid in LH4f. Compared to LH4f, most resulting compounds displayed substantially improved selectivity towards the class IIa HDACs. Notably, compound 7 g exhibited the strongest HDAC9 inhibition with an IC50 value of 40 nM. Molecular modelling further identified the key interactions of compound 7 g bound to HDAC9. Compound 7 g significantly inhibited several human cancer cells, induced apoptosis, modulated caspase-related proteins as well as p38, and caused DNA damage. These findings suggest the potential of class IIa HDAC inhibitors as lead compounds for the development of cancer therapeutics.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases , Histona Desacetilases , Ácidos Hidroxâmicos , Fenotiazinas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Relação Estrutura-Atividade , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/síntese química , Histona Desacetilases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Fenotiazinas/farmacologia , Fenotiazinas/química , Fenotiazinas/síntese química , Apoptose/efeitos dos fármacos , Modelos Moleculares , Linhagem Celular Tumoral
10.
Mar Drugs ; 22(10)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39452862

RESUMO

The first total synthesis of the Australian marine tunicate fungus-derived cyclic peptide talarolide A (1) has confirmed the structure previously proposed on the basis of spectroscopic and chemical analyses and re-affirmed the importance of the unique hydroxamate H-bond bridge in ring conformer stabilization. The unexpected co-synthesis of atrop-talarolide A (8) revealed, for the first time, that hydroxamate H-bond bridging in the talarolide framework invokes non-canonical atropisomerism and that talarolides A (1), C (3), and D (4) all exist naturally as atropisomers. These discoveries raise the intriguing prospect that comparable functionalisation of other cyclic peptides, including those with commercial value, could provide ready access to new "unnatural atropisomeric" chemical space, with new and/or improved chemical and biological properties.


Assuntos
Ligação de Hidrogênio , Ácidos Hidroxâmicos , Peptídeos Cíclicos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Ácidos Hidroxâmicos/química , Estereoisomerismo , Urocordados/química , Animais , Austrália
11.
Chem Pharm Bull (Tokyo) ; 72(2): 173-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296560

RESUMO

Histone deacetylase 8 (HDAC8) is a zinc-dependent HDAC that catalyzes the deacetylation of nonhistone proteins. It is involved in cancer development and HDAC8 inhibitors are promising candidates as anticancer agents. However, most reported HDAC8 inhibitors contain a hydroxamic acid moiety, which often causes mutagenicity. Therefore, we used machine learning for drug screening and attempted to identify non-hydroxamic acids as HDAC8 inhibitors. In this study, we established a prediction model based on the random forest (RF) algorithm for screening HDAC8 inhibitors because it exhibited the best predictive accuracy in the training dataset, including data generated by the synthetic minority over-sampling technique (SMOTE). Using the trained RF-SMOTE model, we screened the Osaka University library for compounds and selected 50 virtual hits. However, the 50 hits in the first screening did not show HDAC8-inhibitory activity. In the second screening, using the RF-SMOTE model, which was established by retraining the dataset including 50 inactive compounds, we identified non-hydroxamic acid 12 as an HDAC8 inhibitor with an IC50 of 842 nM. Interestingly, its IC50 values for HDAC1 and HDAC3-inhibitory activity were 38 and 12 µM, respectively, showing that compound 12 has high HDAC8 selectivity. Using machine learning, we expanded the chemical space for HDAC8 inhibitors and identified non-hydroxamic acid 12 as a novel HDAC8 selective inhibitor.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Avaliação Pré-Clínica de Medicamentos , Histona Desacetilases/metabolismo , Antineoplásicos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Aprendizado de Máquina , Proteínas Repressoras
12.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062759

RESUMO

Because of synergism between tubulin and HDAC inhibitors, we used the pharmacophore fusion strategy to generate potential tubulin-HDAC dual inhibitors. Drug design was based on the introduction of a N-hydroxyacrylamide or a N-hydroxypropiolamide at the 5-position of the 2-aroylbenzo[b]furan skeleton, to produce compounds 6a-i and 11a-h, respectively. Among the synthesized compounds, derivatives 6a, 6c, 6e, 6g, 11a, and 11c showed excellent antiproliferative activity, with IC50 values at single- or double-digit nanomolar levels, against the A549, HT-29, and MCF-7 cells resistant towards the control compound combretastatin A-4 (CA-4). Compounds 11a and 6g were also 10-fold more active than CA-4 against the Hela cell line. When comparing the inhibition of tubulin polymerization versus the HDAC6 inhibitory activity, we found that 6a-g, 6i, 11a, 11c, and 11e, although very potent as inhibitors of tubulin assembly, did not have significant inhibitory activity against HDAC6.


Assuntos
Antineoplásicos , Benzofuranos , Proliferação de Células , Ácidos Hidroxâmicos , Moduladores de Tubulina , Tubulina (Proteína) , Humanos , Benzofuranos/farmacologia , Benzofuranos/química , Benzofuranos/síntese química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/síntese química , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Células HeLa , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Linhagem Celular Tumoral , Células MCF-7 , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29
13.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999054

RESUMO

Gastrin-releasing peptide receptor (GRPR), overexpressed in many solid tumors, is a promising imaging marker and therapeutic target. Most reported GRPR-targeted radioligands contain a C-terminal amide. Based on the reported potent antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH, we synthesized C-terminal hydroxamate-derived [68Ga]Ga-LW02075 ([68Ga]Ga-DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH) and [68Ga]Ga-LW02050 ([68Ga]Ga-DOTA-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH), and compared them with the closely related and clinically validated [68Ga]Ga-SB3 ([68Ga]Ga-DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt). Binding affinities (Ki) of Ga-SB3, Ga-LW02075, and Ga-LW02050 were 1.20 ± 0.31, 1.39 ± 0.54, and 8.53 ± 1.52 nM, respectively. Both Ga-LW02075 and Ga-LW02050 were confirmed to be GRPR antagonists by calcium release assay. Imaging studies showed that PC-3 prostate cancer tumor xenografts were clearly visualized at 1 h post injection by [68Ga]Ga-SB3 and [68Ga]Ga-LW02050 in PET images, but not by [68Ga]Ga-LW02075. Ex vivo biodistribution studies conducted at 1 h post injection showed that the tumor uptake of [68Ga]Ga-LW02050 was comparable to that of [68Ga]Ga-SB3 (5.38 ± 1.00 vs. 6.98 ± 1.36 %ID/g), followed by [68Ga]Ga-LW02075 (3.97 ± 1.71 %ID/g). [68Ga]Ga-SB3 had the highest pancreas uptake (37.3 ± 6.90 %ID/g) followed by [68Ga]Ga-LW02075 (17.8 ± 5.24 %ID/g), while the pancreas uptake of [68Ga]Ga-LW02050 was only 0.53 ± 0.11 %ID/g. Our data suggest that [68Ga]Ga-LW02050 is a promising PET tracer for detecting GRPR-expressing cancer lesions.


Assuntos
Radioisótopos de Gálio , Ácidos Hidroxâmicos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptores da Bombesina , Receptores da Bombesina/metabolismo , Receptores da Bombesina/antagonistas & inibidores , Radioisótopos de Gálio/química , Animais , Humanos , Tomografia por Emissão de Pósitrons/métodos , Camundongos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacocinética , Ácidos Hidroxâmicos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Linhagem Celular Tumoral , Distribuição Tecidual , Masculino , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo
14.
Biochemistry ; 62(12): 1833-1837, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37167424

RESUMO

The hydroxyamidotransferase TsnB9 catalyzes hydroxylamine transfer from l-glutamic acid γ-monohydroxamate to the carboxyl group of trichostatic acid to produce the terminal hydroxamic acid group of trichostatin A, which is a potent inhibitor of histone deacetylase (HDAC). The reaction catalyzed by TsnB9 is similar to that catalyzed by glutamine-dependent asparagine synthetase, but the trichostatic acid recognition mechanism remains unclear. Here, we determine the crystal structure of TsnB9 composed of the N-terminal glutaminase domain and the C-terminal synthetase domain. Two consecutive phenylalanine residues, which are not found in glutamine-dependent asparagine synthetase, in the N-terminal glutaminase domain structurally form the bottom of the hydrophobic pocket in the C-terminal synthetase domain. Mutational and computational analyses of TsnB9 suggest five aromatic residues, including the two consecutive phenylalanine residues, in the hydrophobic pocket are important for the recognition of the dimethylaniline moiety of trichostatic acid. These insights lead us to the discovery of hydroxyamidotransferase to produce terminal hydroxamic acid group-containing HDAC inhibitors different from trichostatin A.


Assuntos
Aspartato-Amônia Ligase , Glutaminase , Glutamina , Ácidos Hidroxâmicos/química , Proteínas , Inibidores de Histona Desacetilases/farmacologia , Fenilalanina
15.
Chembiochem ; 24(18): e202300238, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37366008

RESUMO

In the present study, a novel series of 11 urushiol-based hydroxamic acid histone deacetylase (HDAC) inhibitors was designed, synthesized, and biologically evaluated. Compounds 1-11 exhibited good to excellent inhibitory activities against HDAC1/2/3 (IC50 : 42.09-240.17 nM) and HDAC8 (IC50 : 16.11-41.15 nM) in vitro, with negligible activity against HDAC6 (>1409.59 nM). Considering HDAC8, docking experiments revealed some important features contributing to inhibitory activity. According to Western blot analysis, select compounds could notably enhance the acetylation of histone H3 and SMC3 but not-tubulin, indicating their privileged structure is appropriate for targeting class I HDACs. Furthermore, antiproliferation assays revealed that six compounds exerted greater in vitro antiproliferative activity against four human cancer cell lines (A2780, HT-29, MDA-MB-231, and HepG2, with IC50 values ranging from 2.31-5.13 µM) than suberoylanilide hydroxamic acid; administration of these compounds induced marked apoptosis in MDA-MB-231 cells, with cell cycle arrest in the G2/M phase. Collectively, specific synthesized compounds could be further optimized and biologically explored as antitumor agents.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Histona Desacetilases/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilases/metabolismo , Simulação de Acoplamento Molecular , Antineoplásicos/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Proteínas Repressoras/metabolismo
16.
Nitric Oxide ; 136-137: 24-32, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217001

RESUMO

Developing functional nitroxyl (HNO) donors play a significant role in the further exploration of endogenous HNO in biochemistry and pharmacology. In this work, two novel Piloty's acids (SBD-D1 and SBD-D2) were proposed by incorporating benzoxadiazole-based fluorophores, in order to achieve the dual-function of releasing both HNO and a fluorophore in situ. Under physiological conditions, both SBD-D1 and SBD-D2 efficiently donated HNO (t1/2 = 10.96 and 8.18 min, respectively). The stoichiometric generation of HNO was determined by both Vitamin B12 and phosphine compound trap. Interestingly, due to the different substitution groups on the aromatic ring, SBD-D1 with the chlorine showed no fluorescence emission, but SBD-D2 was strongly fluorescent due to the presence of the dimethylamine group. Specifically, the fluorescent signal would decrease during the release process of HNO. Moreover, theoretical calculations were performed to understand the emission difference. A strong radiation derived from benzoxadiazole with dimethylamine group due to the large transition dipole moment (∼4.3 Debye), while the presence of intramolecular charge transfer process in the donor with chlorine group caused a small transition dipole moment (<0.1 Debye). Finally, these studies would contribute to the future design and application of novel functional HNO donors for the exploration of HNO biochemistry and pharmacology.


Assuntos
Cloro , Óxidos de Nitrogênio , Óxidos de Nitrogênio/química , Ácidos Hidroxâmicos/química , Corantes Fluorescentes
17.
J Org Chem ; 88(1): 433-441, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36485008

RESUMO

A novel gold-catalyzed [4 + 1] heterocyclization of nonactivated alkyne and hydroxamic acid is developed for the regiospecific synthesis of 5-methyl-1,4,2-dioxazole, which is an important structural motif in various bioactive molecules. The current methodology is characterized by high efficiency, simple operation, mild reaction conditions, and good functional group compatibility. Moreover, gram-scale synthesis and synthetic application toward bioactive molecular skeletons have been realized.


Assuntos
Alcinos , Ouro , Alcinos/química , Ouro/química , Ácidos Hidroxâmicos/química , Ciclização , Catálise
18.
Bioorg Med Chem ; 92: 117437, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37563016

RESUMO

Tubulin and histone deacetylase have been clinically proven as promising targets for cancer therapy. Herein, we describe the design and synthesis of chiral 1,4-diarylazetidin-2-one-based hydroxamic acids as novel tubulin/HDAC dual inhibitors. Among them, compound 12a was validated to effectively disrupt tubulin polymerization, and exhibited potent HDAC1/8 inhibitory activities. Meanwhile, 12a showed good antiproliferative activities against four tumor cell lines. Further studies showed 12a works through blocking cellular cycle, inducing apoptosis and inhibiting colony formation. In addition, 12a has suitable physicochemical properties and high liver microsomal metabolic stability. Importantly, compound 12a was found to exhibit significant antitumor efficacy in vivo, thus warranting it as a promising tubulin/HDAC dual inhibitor for further development.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Moduladores de Tubulina/farmacologia , Ácidos Hidroxâmicos/química , Relação Estrutura-Atividade , Antineoplásicos/química , Tubulina (Proteína)/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo
19.
Bioorg Chem ; 131: 106331, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587505

RESUMO

In order to develop novel inhibitors of the bacterial deacetylase LpxC bearing a substituent to target the UDP binding site of the enzyme, a series of aldotetronic acid-based hydroxamic acids was accessed in chiral pool syntheses starting from 4,6-O-benzylidene-d-glucose and l-arabinitol. The synthesized hydroxamic acids were tested for LpxC inhibitory activity in vitro, revealing benzyl ether 17a ((2S,3S)-4-(benzyloxy)-N,3-dihydroxy-2-[(4-{[4-(morpholinomethyl)phenyl]ethynyl}benzyl)oxy]butanamide) as the most potent LpxC inhibitor. This compound was additionally tested for antibacterial activity against a panel of clinically relevant Gram-negative bacteria, bacterial uptake, and susceptibility to efflux pumps. Molecular docking studies were performed to rationalize the observed structure-activity relationships.


Assuntos
Amidoidrolases , Antibacterianos , Inibidores Enzimáticos , Escherichia coli , Amidoidrolases/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902164

RESUMO

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.


Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Histona Desacetilases , Ácidos Hidroxâmicos , Oxidiazóis , Humanos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Processamento de Proteína Pós-Traducional , Acetilação , Oxidiazóis/química , Oxidiazóis/farmacologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA