Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(2): e1011170, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802406

RESUMO

Viruses have evolved countless mechanisms to subvert and impair the host innate immune response. Measles virus (MeV), an enveloped, non-segmented, negative-strand RNA virus, alters the interferon response through different mechanisms, yet no viral protein has been described as directly targeting mitochondria. Among the crucial mitochondrial enzymes, 5'-aminolevulinate synthase (ALAS) is an enzyme that catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. In this work, we demonstrate that MeV impairs the mitochondrial network through the V protein, which antagonizes the mitochondrial enzyme ALAS1 and sequesters it to the cytosol. This re-localization of ALAS1 leads to a decrease in mitochondrial volume and impairment of its metabolic potential, a phenomenon not observed in MeV deficient for the V gene. This perturbation of the mitochondrial dynamics demonstrated both in culture and in infected IFNAR-/- hCD46 transgenic mice, causes the release of mitochondrial double-stranded DNA (mtDNA) in the cytosol. By performing subcellular fractionation post infection, we demonstrate that the most significant source of DNA in the cytosol is of mitochondrial origin. Released mtDNA is then recognized and transcribed by the DNA-dependent RNA polymerase III. The resulting double-stranded RNA intermediates will be captured by RIG-I, ultimately initiating type I interferon production. Deep sequencing analysis of cytosolic mtDNA editing divulged an APOBEC3A signature, primarily analyzed in the 5'TpCpG context. Finally, in a negative feedback loop, APOBEC3A an interferon inducible enzyme will orchestrate the catabolism of mitochondrial DNA, decrease cellular inflammation, and dampen the innate immune response.


Assuntos
Interferons , Mitocôndrias , Camundongos , Animais , Mitocôndrias/metabolismo , Vírus do Sarampo , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , DNA Mitocondrial
2.
Biochemistry ; 63(13): 1636-1646, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888931

RESUMO

The conserved enzyme aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in certain bacteria and eukaryotes by catalyzing the condensation of glycine and succinyl-CoA to yield aminolevulinic acid. In humans, the ALAS isoform responsible for heme production during red blood cell development is the erythroid-specific ALAS2 isoform. Owing to its essential role in erythropoiesis, changes in human ALAS2 (hALAS2) function can lead to two different blood disorders. X-linked sideroblastic anemia results from loss of ALAS2 function, while X-linked protoporphyria results from gain of ALAS2 function. Interestingly, mutations in the ALAS2 C-terminal extension can be implicated in both diseases. Here, we investigate the molecular basis for enzyme dysfunction mediated by two previously reported C-terminal loss-of-function variants, hALAS2 V562A and M567I. We show that the mutations do not result in gross structural perturbations, but the enzyme stability for V562A is decreased. Additionally, we show that enzyme stability moderately increases with the addition of the pyridoxal 5'-phosphate (PLP) cofactor for both variants. The variants display differential binding to PLP and the individual substrates compared to wild-type hALAS2. Although hALAS2 V562A is a more active enzyme in vitro, it is less efficient concerning succinyl-CoA binding. In contrast, the M567I mutation significantly alters the cooperativity of substrate binding. In combination with previously reported cell-based studies, our work reveals the molecular basis by which hALAS2 C-terminal mutations negatively affect ALA production necessary for proper heme biosynthesis.


Assuntos
5-Aminolevulinato Sintetase , Anemia Sideroblástica , Humanos , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , 5-Aminolevulinato Sintetase/química , 5-Aminolevulinato Sintetase/deficiência , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Mutação com Perda de Função , Estabilidade Enzimática , Heme/metabolismo , Heme/química , Porfirias/genética , Porfirias/metabolismo , Modelos Moleculares , Mutação , Protoporfiria Eritropoética
3.
Clin Exp Immunol ; 216(1): 45-54, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133636

RESUMO

Cold agglutinin disease (CAD) is a rare B-cell lymphoproliferative disorder of the bone marrow, manifested by autoimmune hemolytic anemia caused by binding of monoclonal IgM autoantibodies to the I antigen. Underlying genetic changes have previously been reported, but their impact on gene expression profile has been unknown. Here, we define differentially expressed genes in CAD B cells. To unravel downstream alteration in cellular pathways, gene expression by RNA sequencing was undertaken. Clonal B-cell samples from 12 CAD patients and IgM-expressing memory B cells from 4 healthy individuals were analyzed. Differential expression analysis and filtering resulted in 93 genes with significant differential expression. Top upregulated genes included SLC4A1, SPTA1, YBX3, TESC, HBD, AHSP, TRAF1, HBA2, RHAG, CA1, SPTB, IL10, UBASH3B, ALAS2, HBA1, CRYM, RGCC, KANK2, and IGHV4-34. They were upregulated at least 8-fold, while complement receptor 1 (CR1/CD35) was downregulated 11-fold in clonal CAD B cells compared to control B cells. Flow cytometry analyses further confirmed reduced CR1 (CD35) protein expression by clonal CAD IgM+ B cells compared to IgM+ memory B cells in controls. CR1 (CD35) is an important negative regulator of B-cell activation and differentiation. Therefore, reduced CR1 (CD35) expression may increase activation, proliferation, and antibody production in CAD-associated clonal B cells.


Assuntos
Anemia Hemolítica Autoimune , Humanos , Anemia Hemolítica Autoimune/genética , Anemia Hemolítica Autoimune/metabolismo , Regulação para Baixo , Receptores de Complemento 3b/genética , Linfócitos B , Imunoglobulina M , Perfilação da Expressão Gênica , Proteínas Sanguíneas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo
4.
Liver Int ; 44(9): 2235-2250, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38888238

RESUMO

Heme is a primordial macrocycle upon which most aerobic life on Earth depends. It is essential to the survival and health of nearly all cells, functioning as a prosthetic group for oxygen-carrying proteins and enzymes involved in oxidation/reduction and electron transport reactions. Heme is essential for the function of numerous hemoproteins and has numerous other roles in the biochemistry of life. In mammals, heme is synthesised from glycine, succinyl-CoA, and ferrous iron in a series of eight steps. The first and normally rate-controlling step is catalysed by 5-aminolevulinate synthase (ALAS), which has two forms: ALAS1 is the housekeeping form with highly variable expression, depending upon the supply of the end-product heme, which acts to repress its activity; ALAS2 is the erythroid form, which is regulated chiefly by the adequacy of iron for erythroid haemoglobin synthesis. Abnormalities in the several enzymes of the heme synthetic pathway, most of which are inherited partial enzyme deficiencies, give rise to rare diseases called porphyrias. The existence and role of heme importers and exporters in mammals have been debated. Recent evidence established the presence of heme transporters. Such transporters are important for the transfer of heme from mitochondria, where the penultimate and ultimate steps of heme synthesis occur, and for the transfer of heme from cytoplasm to other cellular organelles. Several chaperones of heme and iron are known and important for cell health. Heme and iron, although promoters of oxidative stress and potentially toxic, are essential cofactors for cellular energy production and oxygenation.


Assuntos
5-Aminolevulinato Sintetase , Metabolismo Energético , Heme , Ferro , Heme/metabolismo , Heme/biossíntese , Humanos , Ferro/metabolismo , Animais , 5-Aminolevulinato Sintetase/metabolismo , 5-Aminolevulinato Sintetase/genética , Transporte Biológico
5.
Liver Int ; 44(9): 2144-2155, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38767598

RESUMO

We describe developments in understanding of the porphyrias associated with each step in the haem biosynthesis pathway and the role of individuals whose contributions led to major advances over the past 150 years. The first case of erythropoietic porphyria was reported in 1870, and the first with acute porphyria in 1889. Photosensitisation by porphyrin was confirmed by Meyer-Betz, who self-injected haematoporphyrin. Günther classified porphyrias into haematoporphyria acuta, acuta toxica, congenita and chronica. This was revised by Waldenström into porphyria congenita, acuta and cutanea tarda, with the latter describing those with late-onset skin lesions. Waldenström was the first to recognise porphobilinogen's association with acute porphyria, although its structure was not solved until 1953. Hans Fischer was awarded the Nobel prize in 1930 for solving the structure of porphyrins and the synthesis of haemin. After 1945, research by several groups elucidated the pathway of haem biosynthesis and its negative feedback regulation by haem. By 1961, following the work of Watson, Schmid, Rimington, Goldberg, Dean, Magnus and others, aided by the availability of modern techniques of porphyrin separation, six of the porphyrias were identified and classified as erythropoietic or hepatic. The seventh, 5-aminolaevulinate dehydratase deficiency porphyria, was described by Doss in 1979. The discovery of increased hepatic 5-aminolaevulinate synthase activity in acute porphyria led to development of haematin as a treatment for acute attacks. By 2000, all the haem biosynthesis genes were cloned, sequenced and assigned to chromosomes and disease-specific mutations identified in all inherited porphyrias. These advances have allowed definitive family studies and development of new treatments.


Assuntos
Genômica , Heme , Porfirias , História do Século XX , Humanos , Porfirias/genética , Porfirias/história , História do Século XIX , Heme/biossíntese , Heme/metabolismo , História do Século XXI , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo
6.
J Biol Chem ; 298(3): 101643, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093382

RESUMO

Heme is a critical biomolecule that is synthesized in vivo by several organisms such as plants, animals, and bacteria. Reflecting the importance of this molecule, defects in heme biosynthesis underlie several blood disorders in humans. Aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in α-proteobacteria and nonplant eukaryotes. Debilitating and painful diseases such as X-linked sideroblastic anemia and X-linked protoporphyria can result from one of more than 91 genetic mutations in the human erythroid-specific enzyme ALAS2. This review will focus on recent structure-based insights into human ALAS2 function in health and how it dysfunctions in disease. We will also discuss how certain genetic mutations potentially result in disease-causing structural perturbations. Furthermore, we use thermodynamic and structural information to hypothesize how the mutations affect the human ALAS2 structure and categorize some of the unique human ALAS2 mutations that do not respond to typical treatments, that have paradoxical in vitro activity, or that are highly intolerable to changes. Finally, we will examine where future structure-based insights into the family of ALA synthases are needed to develop additional enzyme therapeutics.


Assuntos
5-Aminolevulinato Sintetase , Anemia Sideroblástica , Doenças Genéticas Ligadas ao Cromossomo X , 5-Aminolevulinato Sintetase/química , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Anemia Sideroblástica/enzimologia , Anemia Sideroblástica/genética , Animais , Heme , Humanos , Relação Estrutura-Atividade
7.
Mol Biol Evol ; 39(8)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35904937

RESUMO

The antibiotic alaremycin has a structure that resembles that of 5-aminolevulinic acid (ALA), a universal precursor of porphyrins, and inhibits porphyrin biosynthesis. Genome sequencing of the alaremycin-producing bacterial strain and enzymatic analysis revealed that the first step of alaremcyin biosynthesis is catalysed by the enzyme, AlmA, which exhibits a high degree of similarity to 5-aminolevulinate synthase (ALAS) expressed by animals, protozoa, fungi, and α-proteobacteria. Site-directed mutagenesis of AlmA revealed that the substitution of two amino acids residues around the substrate binding pocket transformed its substrate specificity from that of alaremycin precursor synthesis to ALA synthesis. To estimate the evolutionary trajectory of AlmA and ALAS, we performed an ancestral sequence reconstitution analysis based on a phylogenetic tree of AlmA and ALAS. The reconstructed common ancestral enzyme of AlmA and ALAS exhibited alaremycin precursor synthetic activity, rather than ALA synthetic activity. These results suggest that ALAS evolved from an AlmA-like enzyme. We propose a new evolutionary hypothesis in which a non-essential secondary metabolic enzyme acts as an 'evolutionary seed' to generate an essential primary metabolic enzyme.


Assuntos
5-Aminolevulinato Sintetase , 5-Aminolevulinato Sintetase/química , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Animais , Catálise , Mutagênese Sítio-Dirigida , Filogenia , Especificidade por Substrato
8.
Int Urogynecol J ; 34(7): 1395-1403, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36136109

RESUMO

INTRODUCTION AND HYPOTHESIS: The pathogenesis of pelvic organ prolapse (POP) remains unknown. Herein, we aim to reveal the molecular profile of POP by transcriptomic and metabolomic analysis. METHODS: We selected 12 samples of uterosacral ligaments (USLs) from 6 POP patients and 6 controls for transcriptomic and metabolomic analyses. Differentially expressed genes (DEGs) were identified using the R package edgeR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using clusterProfiler, and a protein-protein interaction (PPI) network was constructed using STRING and visualized in Cytoscape. Metabolomic profiling was performed by a liquid chromatography-tandem mass spectrometry system. RESULTS: Transcriptomic analysis identified 487 DEGs between the POP and control groups. Functional enrichment analysis revealed that they were mostly related to immune response terms, including "adaptive immune response," "T cell differentiation," and "T cell activation." In addition, PTPRC, LCK, CD247, IL2RB, CD2, CXR5, JUN, CD3E, IL2RG, and PRF1 were the 10 nodes with the highest node degrees in the PPI network. Metabolomic profiling revealed 290 differentially expressed metabolites, which significantly enriched in "glycerophospholipid metabolism," "nicotinate and nicotinamide metabolism," "glycine, serine, and threonine metabolism," "arginine and proline metabolism," "pyrimidine metabolism," and "purine metabolism." Finally, integrated analysis revealed that the DEGs involved in these significantly enriched metabolic pathways included NT5C1A, GMPR, SDS, ALAS2, CARNS1, PYCR1, P4HA3, PGS1, and NMRK2. CONCLUSIONS: Our findings demonstrate that the immune response and metabolic regulatory pathways are intertwined in POP and might provide new therapeutic targets.


Assuntos
Prolapso de Órgão Pélvico , Transcriptoma , Humanos , Perfilação da Expressão Gênica/métodos , Metaboloma , Imunidade , Prolapso de Órgão Pélvico/genética , Pró-Colágeno-Prolina Dioxigenase/genética , 5-Aminolevulinato Sintetase/genética
9.
Anim Genet ; 54(2): 189-198, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36632647

RESUMO

ALAS1 is a member of the α-oxoamine synthase family, which is the first rate-limiting enzyme for heme synthesis and is important for maintaining intracellular heme levels. In the ovary, ALAS1 is associated with the regulation of ovulation-related mitochondrial P450 cytochromes, steroid metabolism, and steroid hormone production. However, there are few studies on the relationship between ALAS1 and reproductive traits in goats. In this study, a mutation located in the promoter region of ALAS1 (g.48791372C>A) was found to be significantly (p < 0.05) associated with the kidding number of Yunshang black goats. Specifically, the mean kidding number in the first three litters and the kidding numbers of all three litters were significantly (p < 0.05) higher in individuals with the CA genotype or AA genotype than in those with the CC genotype. To further investigate the regulatory mechanism of ALAS1, the expression of ALAS1 in goat ovarian tissues with different genotypes was verified by real-time quantitative PCR. The results showed that the expression of ALAS1 was significantly higher in the ovaries of individuals with AA genotype than those with AC and CC genotypes (p < 0.01), and the expression trend of transcription factor ASCL2 was consistent with ALAS1. Additionally, the ALAS1 g.48791372C>A mutation created a new binding site for the transcription factor ASCL2. The luciferase activity assay indicated that the mutation increased the promoter activity of ALAS1. Overexpression of the transcription factor ASCL2 induced increased expression of ALAS1 in goat granulosa cells (p < 0.05). The opposite trend was shown for the inhibition of ASCL2 expression. The results of real-time quantitative PCR, EdU and Cell Counting Kit-8 assays indicated that the transcription factor ASCL2 increased the proliferation of goat granulosa cells by mediating the expression of ALAS1. In conclusion, the transcription factor ASCL2 positively regulated the transcriptional activity and expression levels of ALAS1, altering granulosa cell proliferation and the kidding number in goats.


Assuntos
5-Aminolevulinato Sintetase , Cabras , Fatores de Transcrição , Animais , Feminino , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Proliferação de Células , Cabras/genética , Cabras/metabolismo , Heme , Fatores de Transcrição/metabolismo
10.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769209

RESUMO

In heart failure, the biological and clinical connection between abnormal iron homeostasis, myocardial function, and prognosis is known; however, the expression profiles of iron-linked genes both at myocardial tissue and single-cell level are not well defined. Through publicly available bulk and single-nucleus RNA sequencing (RNA-seq) datasets of left ventricle samples from adult non-failed (NF) and dilated cardiomyopathy (DCM) subjects, we aim to evaluate the altered iron metabolism in a diseased condition, at the whole cardiac tissue and single-cell level. From the bulk RNA-seq data, we found 223 iron-linked genes expressed at the myocardial tissue level and 44 differentially expressed between DCM and NF subjects. At the single-cell level, at least 18 iron-linked expressed genes were significantly regulated in DCM when compared to NF subjects. Specifically, the iron metabolism in DCM cardiomyocytes is altered at several levels, including: (1) imbalance of Fe3+ internalization (SCARA5 down-regulation) and reduction of internal conversion from Fe3+ to Fe2+ (STEAP3 down-regulation), (2) increase of iron consumption to produce hemoglobin (HBA1/2 up-regulation), (3) higher heme synthesis and externalization (ALAS2 and ABCG2 up-regulation), (4) lower cleavage of heme to Fe2+, biliverdin and carbon monoxide (HMOX2 down-regulation), and (5) positive regulation of hepcidin (BMP6 up-regulation).


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Adulto , Humanos , Cardiomiopatia Dilatada/metabolismo , Miocárdio/metabolismo , Regulação para Baixo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , 5-Aminolevulinato Sintetase/genética , Receptores Depuradores Classe A/genética
11.
N Engl J Med ; 380(6): 549-558, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30726693

RESUMO

BACKGROUND: Induction of delta aminolevulinic acid synthase 1 ( ALAS1) gene expression and accumulation of neurotoxic intermediates result in neurovisceral attacks and disease manifestations in patients with acute intermittent porphyria, a rare inherited disease of heme biosynthesis. Givosiran is an investigational RNA interference therapeutic agent that inhibits hepatic ALAS1 synthesis. METHODS: We conducted a phase 1 trial of givosiran in patients with acute intermittent porphyria. In part A of the trial, patients without recent porphyria attacks (i.e., no attacks in the 6 months before baseline) were randomly assigned to receive a single subcutaneous injection of one of five ascending doses of givosiran (0.035, 0.10, 0.35, 1.0, or 2.5 mg per kilogram of body weight) or placebo. In part B, patients without recent attacks were randomly assigned to receive once-monthly injections of one of two doses of givosiran (0.35 or 1.0 mg per kilogram) or placebo (total of two injections 28 days apart). In part C, patients who had recurrent attacks were randomly assigned to receive injections of one of two doses of givosiran (2.5 or 5.0 mg per kilogram) or placebo once monthly (total of four injections) or once quarterly (total of two injections) during a 12-week period, starting on day 0. Safety, pharmacokinetic, pharmacodynamic, and exploratory efficacy outcomes were evaluated. RESULTS: A total of 23 patients in parts A and B and 17 patients in part C underwent randomization. Common adverse events included nasopharyngitis, abdominal pain, and diarrhea. Serious adverse events occurred in 6 patients who received givosiran in parts A through C combined. In part C, all 6 patients who were assigned to receive once-monthly injections of givosiran had sustained reductions in ALAS1 messenger RNA (mRNA), delta aminolevulinic acid, and porphobilinogen levels to near normal. These reductions were associated with a 79% lower mean annualized attack rate than that observed with placebo (exploratory efficacy end point). CONCLUSIONS: Once-monthly injections of givosiran in patients who had recurrent porphyria attacks resulted in mainly low-grade adverse events, reductions in induced ALAS1 mRNA levels, nearly normalized levels of the neurotoxic intermediates delta aminolevulinic acid and porphobilinogen, and a lower attack rate than that observed with placebo. (Funded by Alnylam Pharmaceuticals; ClinicalTrials.gov number, NCT02452372 .).


Assuntos
5-Aminolevulinato Sintetase/antagonistas & inibidores , Amidas/administração & dosagem , Porfiria Aguda Intermitente/tratamento farmacológico , Terapêutica com RNAi , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Acetilgalactosamina/análogos & derivados , Adulto , Amidas/efeitos adversos , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Injeções Subcutâneas , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Porfobilinogênio/sangue , Pirrolidinas , RNA Mensageiro/metabolismo , RNA Mensageiro/urina
12.
Blood ; 136(21): 2457-2468, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32678895

RESUMO

Congenital erythropoietic porphyria (CEP) is an inborn error of heme synthesis resulting from uroporphyrinogen III synthase (UROS) deficiency and the accumulation of nonphysiological porphyrin isomer I metabolites. Clinical features are heterogeneous among patients with CEP but usually combine skin photosensitivity and chronic hemolytic anemia, the severity of which is related to porphyrin overload. Therapeutic options include symptomatic strategies only and are unsatisfactory. One promising approach to treating CEP is to reduce the erythroid production of porphyrins through substrate reduction therapy by inhibiting 5-aminolevulinate synthase 2 (ALAS2), the first and rate-limiting enzyme in the heme biosynthetic pathway. We efficiently reduced porphyrin accumulation after RNA interference-mediated downregulation of ALAS2 in human erythroid cellular models of CEP disease. Taking advantage of the physiological iron-dependent posttranscriptional regulation of ALAS2, we evaluated whether iron chelation with deferiprone could decrease ALAS2 expression and subsequent porphyrin production in vitro and in vivo in a CEP murine model. Treatment with deferiprone of UROS-deficient erythroid cell lines and peripheral blood CD34+-derived erythroid cultures from a patient with CEP inhibited iron-dependent protein ALAS2 and iron-responsive element-binding protein 2 expression and reduced porphyrin production. Furthermore, porphyrin accumulation progressively decreased in red blood cells and urine, and skin photosensitivity in CEP mice treated with deferiprone (1 or 3 mg/mL in drinking water) for 26 weeks was reversed. Hemolysis and iron overload improved upon iron chelation with full correction of anemia in CEP mice treated at the highest dose of deferiprone. Our findings highlight, in both mouse and human models, the therapeutic potential of iron restriction to modulate the phenotype in CEP.


Assuntos
Anemia Hemolítica/tratamento farmacológico , Deferiprona/uso terapêutico , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/tratamento farmacológico , Transtornos de Fotossensibilidade/tratamento farmacológico , Porfiria Eritropoética/tratamento farmacológico , 5-Aminolevulinato Sintetase/antagonistas & inibidores , 5-Aminolevulinato Sintetase/biossíntese , 5-Aminolevulinato Sintetase/genética , Adulto , Anemia Hemolítica/etiologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Feminino , Técnicas de Introdução de Genes , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/etiologia , Leucemia Eritroblástica Aguda/patologia , Camundongos , Células-Tronco de Sangue Periférico/efeitos dos fármacos , Células-Tronco de Sangue Periférico/metabolismo , Transtornos de Fotossensibilidade/etiologia , Porfiria Aguda Intermitente/metabolismo , Porfiria Eritropoética/complicações , Porfirinas/biossíntese , Interferência de RNA , RNA Interferente Pequeno/farmacologia
13.
Traffic ; 19(3): 198-214, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29282820

RESUMO

Transbilayer lipid asymmetry is a fundamental characteristic of the eukaryotic cell plasma membrane (PM). While PM phospholipid asymmetry is well documented, the transbilayer distribution of PM sterols such as mammalian cholesterol and yeast ergosterol is not reliably known. We now report that sterols are asymmetrically distributed across the yeast PM, with the majority (~80%) located in the cytoplasmic leaflet. By exploiting the sterol-auxotrophic hem1Δ yeast strain we obtained cells in which endogenous ergosterol was quantitatively replaced with dehydroergosterol (DHE), a closely related fluorescent sterol that functionally and accurately substitutes for ergosterol in vivo. Using fluorescence spectrophotometry and microscopy we found that <20% of DHE fluorescence was quenched when the DHE-containing cells were exposed to membrane-impermeant collisional quenchers (spin-labeled phosphatidylcholine and trinitrobenzene sulfonic acid). Efficient quenching was seen only after the cells were disrupted by glass-bead lysis or repeated freeze-thaw to allow quenchers access to the cell interior. The extent of quenching was unaffected by treatments that deplete cellular ATP levels, collapse the PM electrochemical gradient or affect the actin cytoskeleton. However, alterations in PM phospholipid asymmetry in cells lacking phospholipid flippases resulted in a more symmetric transbilayer distribution of sterol. Similarly, an increase in the quenchable pool of DHE was observed when PM sphingolipid levels were reduced by treating cells with myriocin. We deduce that sterols comprise up to ~45% of all inner leaflet lipids in the PM, a result that necessitates revision of current models of the architecture of the PM lipid bilayer.


Assuntos
Membrana Celular/metabolismo , Ergosterol/metabolismo , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Membrana Celular/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo
14.
Mol Genet Metab ; 131(4): 418-423, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199206

RESUMO

BACKGROUND: 5-Aminolevulinic acid dehydratase (ALAD) porphyria (ADP) is an ultrarare autosomal recessive disease, with only eight documented cases, all of whom were males. Although classified as an acute hepatic porphyria (AHP), induction of the rate limiting hepatic enzyme 5-aminolevulinic acid synthase-1 (ALAS1) has not been demonstrated, and the marrow may also contribute excess 5-aminolevulinic acid (ALA). Two patients have died and reported follow up for the others is limited, so the natural history of this disease is poorly understood and treatment experience limited. METHODS: We report new molecular findings and update the clinical course and treatment of the sixth reported ADP patient, now 31 years old and the only known case in the Americas, and review published data regarding genotype-phenotype correlation and treatment. RESULTS: Circulating hepatic 5-aminolevulinic acid synthase-1 (ALAS1) mRNA was elevated in this case, as in other AHPs. Gain of function mutation of erythroid specific ALAS2 - an X-linked modifying gene in some other porphyrias - was not found. Seven reported ADP cases had compound heterozygous ALAD mutations resulting in very low residual ALAD activity and symptoms early in life or adolescence. One adult with a germline ALAD mutant allele developed ADP in association with a clonal myeloproliferative disorder, polycythemia vera. CONCLUSIONS: Elevation in circulating hepatic ALAS1 and response to treatment with hemin indicate that the liver is an important source of excess ALA in ADP, although the marrow may also contribute. Intravenous hemin was effective in most reported cases for treatment and prevention of acute attacks of neurological symptoms.


Assuntos
5-Aminolevulinato Sintetase/genética , Sintase do Porfobilinogênio/deficiência , Sintase do Porfobilinogênio/genética , Porfiria Aguda Intermitente/genética , Porfirias Hepáticas/genética , 5-Aminolevulinato Sintetase/sangue , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Heme/genética , Hemina/administração & dosagem , Humanos , Lactente , Recém-Nascido , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Porfobilinogênio/metabolismo , Sintase do Porfobilinogênio/sangue , Porfiria Aguda Intermitente/sangue , Porfiria Aguda Intermitente/tratamento farmacológico , Porfiria Aguda Intermitente/patologia , Porfirias Hepáticas/sangue , Porfirias Hepáticas/tratamento farmacológico , Porfirias Hepáticas/patologia , RNA Mensageiro/sangue , Adulto Jovem
15.
Biotechnol Bioeng ; 117(9): 2842-2851, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32458463

RESUMO

Harnessing enzyme expression for production of target chemicals is a critical and multifarious process, where screening of different genes by inspection of enzymatic activity plays an imperative role. Here, we conceived an idea to improve the time-consuming and labor-intensive process of enzyme screening. Controlling cell growth was achieved by the Cluster Regularly Interspaced Short Palindromic Repeat (CRISPRi) system with different single guide RNA targeting the essential gene can (CRISPRi::CA) that encodes a carbonic anhydrase for CO2 uptake. CRISPRi::CA comprises a whole-cell biosensor to monitor CO2 concentration, ranging from 1% to 5%. On the basis of CRISPRi::CA, an effective and simple Direct Enzymatic Performance Evaluation & Determination (DEPEND) system was developed by a single step of plasmid transformation for targeted enzymes. As a result, the activity of different carbonic anhydrases corresponded to the colony-forming units. Furthermore, the enzymatic performance of 5-aminolevulinic acid synthetase (ALAS), which converts glycine and succinate-CoA to release a molecule of CO2 , has also been distinguished, and the effect of the chaperone GroELS on ALAS enzyme folding was successfully identified in the DEPEND system. We provide a highly feasible, time-saving, and flexible technology for the screening and inspection of high-performance enzymes, which may accelerate protein engineering in the future.


Assuntos
Técnicas Biossensoriais/métodos , Sistemas CRISPR-Cas/genética , Genes Essenciais/genética , Proteínas Recombinantes/genética , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Escherichia coli/genética , RNA Guia de Cinetoplastídeos/genética , Proteínas Recombinantes/metabolismo
16.
Proc Natl Acad Sci U S A ; 114(38): E8045-E8052, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874591

RESUMO

Loss-of-function mutations in genes for heme biosynthetic enzymes can give rise to congenital porphyrias, eight forms of which have been described. The genetic penetrance of the porphyrias is clinically variable, underscoring the role of additional causative, contributing, and modifier genes. We previously discovered that the mitochondrial AAA+ unfoldase ClpX promotes heme biosynthesis by activation of δ-aminolevulinate synthase (ALAS), which catalyzes the first step of heme synthesis. CLPX has also been reported to mediate heme-induced turnover of ALAS. Here we report a dominant mutation in the ATPase active site of human CLPX, p.Gly298Asp, that results in pathological accumulation of the heme biosynthesis intermediate protoporphyrin IX (PPIX). Amassing of PPIX in erythroid cells promotes erythropoietic protoporphyria (EPP) in the affected family. The mutation in CLPX inactivates its ATPase activity, resulting in coassembly of mutant and WT protomers to form an enzyme with reduced activity. The presence of low-activity CLPX increases the posttranslational stability of ALAS, causing increased ALAS protein and ALA levels, leading to abnormal accumulation of PPIX. Our results thus identify an additional molecular mechanism underlying the development of EPP and further our understanding of the multiple mechanisms by which CLPX controls heme metabolism.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Endopeptidase Clp , Mutação de Sentido Incorreto , Porfiria Eritropoética , Protoporfirinas/biossíntese , 5-Aminolevulinato Sintetase/genética , Adolescente , Substituição de Aminoácidos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Estabilidade Enzimática/genética , Feminino , Humanos , Masculino , Porfiria Eritropoética/genética , Porfiria Eritropoética/metabolismo , Porfiria Eritropoética/patologia , Protoporfirinas/genética
17.
Mol Microbiol ; 110(6): 1011-1029, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30232811

RESUMO

Strains of the phototrophic alpha-proteobacterium Rhodobacter sphaeroides vary in the number of enzymes catalyzing the formation of 5-aminolevulinic acid (ALA synthases) that are encoded in their genomes. All have hemA, but not all have hemT. This study compared transcription of these genes, and also properties of their products among three wild-type strains; 2.4.3 has hemA alone, 2.4.1 and 2.4.9 have both hemA and hemT. Using lacZ reporter plasmids all hemA genes were found to be upregulated under anaerobic conditions, but induction amplitudes differ. hemT is transcriptionally silent in 2.4.1 but actively transcribed in 2.4.9, and strongly upregulated under anaerobic-dark growth conditions when cells are respiring dimethyl sulfoxide, vs. aerobic-dark or phototrophic (anaerobic-light) conditions. Two extracytoplasmic function (ECF)-type sigma factors present in 2.4.9, but absent from 2.4.1 are directly involved in hemT transcription. Kinetic properties of the ALA synthases of all three strains were similar, but HemT enzymes are far less sensitive to feedback inhibition by hemin than HemA enzymes, and HemT is less active under oxidizing conditions. A model is presented that compares and contrast events in strains 2.4.1 and 2.4.9.


Assuntos
5-Aminolevulinato Sintetase/fisiologia , Ácido Aminolevulínico/metabolismo , Rhodobacter sphaeroides/enzimologia , 5-Aminolevulinato Sintetase/química , 5-Aminolevulinato Sintetase/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos
18.
Mol Med ; 25(1): 4, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678654

RESUMO

BACKGROUND: X-linked protoporphyria (XLP) (MIM 300752) is an erythropoietic porphyria due to gain-of-function mutations in the last exon (Ducamp et al., Hum Mol Genet 22:1280-88, 2013) of the erythroid-specific aminolevulinate synthase gene (ALAS2). Five ALAS2 exon 11 variants identified by the NHBLI Exome sequencing project (p.R559H, p.E565D, p.R572C, p.S573F and p.Y586F) were expressed, purified and characterized in order to assess their possible contribution to XLP. To further characterize the XLP gain-of-function region, five novel ALAS2 truncation mutations (p.P561X, p.V562X, p.H563X, p.E569X and p.F575X) were also expressed and studied. METHODS: Site-directed mutagenesis was used to generate ALAS2 mutant clones and all were prokaryotically expressed, purified to near homogeneity and characterized by protein and enzyme kinetic assays. Standard deviations were calculated for 3 or more assay replicates. RESULTS: The five ALAS2 single nucleotide variants had from 1.3- to 1.9-fold increases in succinyl-CoA Vmax and 2- to 3-fold increases in thermostability suggesting that most could be gain-of-function modifiers of porphyria instead of causes. One SNP (p.R559H) had markedly low purification yield indicating enzyme instability as the likely cause for XLSA in an elderly patient with x-linked sideroblastic anemia. The five novel ALAS2 truncation mutations had increased Vmax values for both succinyl-CoA and glycine substrates (1.4 to 5.6-fold over wild-type), while the Kms for both substrates were only modestly changed. Of interest, the thermostabilities of the truncated ALAS2 mutants were significantly lower than wild-type, with an inverse relationship to Vmax fold-increase. CONCLUSIONS: Patients with porphyrias should always be assessed for the presence of the ALAS2 gain-of-function modifier variants identified here. A key region of the ALAS2 carboxyterminal region is identified by the truncation mutations studied here and the correlation of increased thermolability with activity suggests that increased molecular flexibility/active site openness is the mechanism of enhanced function of mutations in this region providing further insights into the role of the carboxyl-terminal region of ALAS2 in the regulation of erythroid heme synthesis.


Assuntos
5-Aminolevulinato Sintetase/genética , Mutação com Ganho de Função , 5-Aminolevulinato Sintetase/metabolismo , Estabilidade Enzimática , Éxons , Cinética , Polimorfismo de Nucleotídeo Único
19.
Br J Haematol ; 187(4): 530-542, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31338833

RESUMO

Congenital sideroblastic anaemia (CSA) is a rare disease caused by germline mutations of genes involved in haem and iron-sulphur cluster formation, and mitochondrial protein biosynthesis. We performed a retrospective multicentre European study of a cohort of childhood-onset CSA patients to explore genotype/phenotype correlations. We studied 23 females and 20 males with symptoms of CSA. Among the patients, the most frequently mutated genes were ALAS2 (n = 10; 23·3%) and SLC25A38 (n = 8; 18·6%), causing isolated forms of microcytic anaemia of varying severity. Five patients with SLC19A2 mutations suffered from thiamine-responsive megaloblastic anaemia and three exhibited the 'anaemia, deafness and diabetes' triad. Three patients with TRNT1 mutations exhibited severe early onset microcytic anaemia associated with thrombocytosis, and two exhibited B-cell immunodeficiency, inflammatory syndrome and psychomotor delay. The prognoses of patients with TRNT1 and SLC2A38 mutations were generally dismal because of comorbidities or severe iron overload. No molecular diagnosis could be established in 14/43 cases. This study emphasizes the frequency of ALAS2 and SLC25A38 mutations and provides the largest comprehensive analysis to date of genotype/phenotype correlations in CSA. Further studies of CSA patients with data recorded in an international registry would be helpful to improve patient management and establish standardized guidelines.


Assuntos
5-Aminolevulinato Sintetase/genética , Anemia Sideroblástica/genética , Estudos de Associação Genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Anemia Sideroblástica/patologia , Criança , Estudos de Coortes , Europa (Continente) , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Masculino , Mutação , Nucleotidiltransferases/genética , Estudos Retrospectivos
20.
Clin Chem ; 65(12): 1563-1571, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570629

RESUMO

BACKGROUND: Despite implementation of the Athlete Biological Passport 10 years ago, blood doping remains difficult to detect. Thus, there is a need for new biomarkers to increase the sensitivity of the adaptive model. Transcriptomic biomarkers originating from immature reticulocytes may be reliable indicators of blood manipulations. Furthermore, the use of dried blood spots (DBSs) for antidoping purposes constitutes a complementary approach to venous blood collection. Here, we developed a method of quantifying the RNA-based 5'-aminolevulinate synthase 2 (ALAS2) biomarker in DBS. MATERIALS: The technical, interindividual, and intraindividual variabilities of the method, and the effects of storage conditions on the production levels of ALAS2 RNA were assessed. The method was used to monitor erythropoiesis stimulated endogenously (blood withdrawal) or exogenously (injection of recombinant human erythropoietin). RESULTS: When measured over a 7-week period, the intra- and interindividual variabilities of ALAS2 expression in DBS were 12.5%-42.4% and 49%, respectively. Following withdrawal of 1 unit of blood, the ALAS2 RNA in DBS increased significantly for up to 15 days. Variations in the expression level of this biomarker in DBS samples were more marked than those of the conventional hematological parameters, reticulocyte percentage and immature reticulocyte fraction. After exogenous stimulation of erythropoiesis via recombinant human erythropoietin injection, ALAS2 expression in DBS increased by a mean 8-fold. CONCLUSIONS: Monitoring of transcriptomic biomarkers in DBS could complement the measurement of hematological parameters in the Athlete Biological Passport and aid the detection of blood manipulations.


Assuntos
5-Aminolevulinato Sintetase/genética , Teste em Amostras de Sangue Seco/métodos , Eritropoese/genética , 5-Aminolevulinato Sintetase/sangue , 5-Aminolevulinato Sintetase/metabolismo , Adulto , Biomarcadores/sangue , Dopagem Esportivo/métodos , Eritropoetina , Feminino , Voluntários Saudáveis , Humanos , Masculino , RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA