RESUMO
The target of rapamycin (TOR), discovered 30 years ago, is a highly conserved serine/threonine protein kinase that plays a central role in regulating cell growth and metabolism. It is activated by nutrients, growth factors, and cellular energy. TOR forms two structurally and functionally distinct complexes, TORC1 and TORC2. TOR signaling activates cell growth, defined as an increase in biomass, by stimulating anabolic metabolism while inhibiting catabolic processes. With emphasis on mammalian TOR (mTOR), we comprehensively reviewed the literature and identified all reported direct substrates. In the context of recent structural information, we discuss how mTORC1 and mTORC2, despite having a common catalytic subunit, phosphorylate distinct substrates. We conclude that the two complexes recruit different substrates to phosphorylate a common, minimal motif.
Assuntos
Complexos Multiproteicos , Serina-Treonina Quinases TOR , Animais , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Fosforilação , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismoRESUMO
The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Multimerização Proteica , Piroptose , Transdução de Sinais , Aminoácidos/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular , Testes Genéticos , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas de Ligação a Fosfato/química , Domínios Proteicos , RNA Guia de Cinetoplastídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
Oncogenic transformation is associated with profound changes in cellular metabolism, but whether tracking these can improve disease stratification or influence therapy decision-making is largely unknown. Using the iKnife to sample the aerosol of cauterized specimens, we demonstrate a new mode of real-time diagnosis, coupling metabolic phenotype to mutant PIK3CA genotype. Oncogenic PIK3CA results in an increase in arachidonic acid and a concomitant overproduction of eicosanoids, acting to promote cell proliferation beyond a cell-autonomous manner. Mechanistically, mutant PIK3CA drives a multimodal signaling network involving mTORC2-PKCζ-mediated activation of the calcium-dependent phospholipase A2 (cPLA2). Notably, inhibiting cPLA2 synergizes with fatty acid-free diet to restore immunogenicity and selectively reduce mutant PIK3CA-induced tumorigenicity. Besides highlighting the potential for metabolic phenotyping in stratified medicine, this study reveals an important role for activated PI3K signaling in regulating arachidonic acid metabolism, uncovering a targetable metabolic vulnerability that largely depends on dietary fat restriction. VIDEO ABSTRACT.
Assuntos
Ácido Araquidônico/análise , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Eicosanoides/metabolismo , Animais , Ácido Araquidônico/metabolismo , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Citosol/metabolismo , Eicosanoides/fisiologia , Ativação Enzimática , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipases A2/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Regulatory T cells (Treg cells) deficient in the transcription factor Foxp3 lack suppressor function and manifest an effector T (Teff) cell-like phenotype. We demonstrate that Foxp3 deficiency dysregulates metabolic checkpoint kinase mammalian target of rapamycin (mTOR) complex 2 (mTORC2) signaling and gives rise to augmented aerobic glycolysis and oxidative phosphorylation. Specific deletion of the mTORC2 adaptor gene Rictor in Foxp3-deficient Treg cells ameliorated disease in a Foxo1 transcription factor-dependent manner. Rictor deficiency re-established a subset of Treg cell genetic circuits and suppressed the Teff cell-like glycolytic and respiratory programs, which contributed to immune dysregulation. Treatment of Treg cells from patients with FOXP3 deficiency with mTOR inhibitors similarly antagonized their Teff cell-like program and restored suppressive function. Thus, regulatory function can be re-established in Foxp3-deficient Treg cells by targeting their metabolic pathways, providing opportunities to restore tolerance in Treg cell disorders.
Assuntos
Reprogramação Celular/imunologia , Fatores de Transcrição Forkhead/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Glicólise/fisiologia , Humanos , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação Oxidativa , Transdução de Sinais , Linfócitos T Reguladores/citologiaRESUMO
Glucocorticoids (GC) are the mainstay treatment option for inflammatory conditions. Despite the broad usage of GC, the mechanisms by which GC exerts its effects remain elusive. Here, utilizing murine autoimmune and allergic inflammation models, we report that Foxp3+ regulatory T (Treg) cells are irreplaceable GC target cells in vivo. Dexamethasone (Dex) administered in the absence of Treg cells completely lost its ability to control inflammation, and the lack of glucocorticoid receptor in Treg cells alone resulted in the loss of therapeutic ability of Dex. Mechanistically, Dex induced miR-342-3p specifically in Treg cells and miR-342-3p directly targeted the mTORC2 component, Rictor. Altering miRNA-342-3p or Rictor expression in Treg cells dysregulated metabolic programming in Treg cells, controlling their regulatory functions in vivo. Our results uncover a previously unknown contribution of Treg cells during glucocorticoid-mediated treatment of inflammation and the underlying mechanisms operated via the Dex-miR-342-Rictor axis.
Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Inflamação/tratamento farmacológico , MicroRNAs/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Anti-Inflamatórios/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , Receptores de Glucocorticoides/genética , Linfócitos T Reguladores/metabolismoRESUMO
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Assuntos
Glicólise/fisiologia , Metabolismo dos Lipídeos/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Animais , Humanos , Transdução de Sinais/fisiologiaRESUMO
Nutrients and energy have emerged as central modulators of developmental programmes in plants and animals1-3. The evolutionarily conserved target of rapamycin (TOR) kinase is a master integrator of nutrient and energy signalling that controls growth. Despite its key regulatory roles in translation, proliferation, metabolism and autophagy2-5, little is known about how TOR shapes developmental transitions and differentiation. Here we show that glucose-activated TOR kinase controls genome-wide histone H3 trimethylation at K27 (H3K27me3) in Arabidopsis thaliana, which regulates cell fate and development6-10. We identify FERTILIZATION-INDEPENDENT ENDOSPERM (FIE), an indispensable component of Polycomb repressive complex 2 (PRC2), which catalyses H3K27me3 (refs. 6-8,10-12), as a TOR target. Direct phosphorylation by TOR promotes the dynamic translocation of FIE from the cytoplasm to the nucleus. Mutation of the phosphorylation site on FIE abrogates the global H3K27me3 landscape, reprogrammes the transcriptome and disrupts organogenesis in plants. Moreover, glucose-TOR-FIE-PRC2 signalling modulates vernalization-induced floral transition. We propose that this signalling axis serves as a nutritional checkpoint leading to epigenetic silencing of key transcription factor genes that specify stem cell destiny in shoot and root meristems and control leaf, flower and silique patterning, branching and vegetative-to-reproduction transition. Our findings reveal a fundamental mechanism of nutrient signalling in direct epigenome reprogramming, with broad relevance for the developmental control of multicellular organisms.
Assuntos
Arabidopsis , Glucose , Alvo Mecanístico do Complexo 2 de Rapamicina , Fosfatidilinositol 3-Quinases , Desenvolvimento Vegetal , Complexo Repressor Polycomb 2 , Proteínas Repressoras , Transdução de Sinais , Arabidopsis/embriologia , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Glucose/metabolismo , Histonas/química , Histonas/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Desenvolvimento Vegetal/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genéticaRESUMO
Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3ß (GSK3ß) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3ß at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Memória Imunológica , Mitocôndrias/metabolismo , Transdução de Sinais , Respiração Celular , Retículo Endoplasmático/ultraestrutura , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicólise , Membranas Intracelulares/metabolismo , Ativação Linfocitária , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mitocôndrias/ultraestrutura , Modelos Biológicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/deficiênciaRESUMO
mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.
Assuntos
Adipócitos Marrons/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólise , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirtuínas/metabolismo , Adipócitos Marrons/citologia , Animais , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirtuínas/genéticaRESUMO
Proximity-dependent biotin labeling (BioID) may identify new targets for cancers driven by difficult-to-drug oncogenes such as Ras. Therefore, BioID was used with wild-type (WT) and oncogenic mutant (MT) H-, K-, and N-Ras, identifying known interactors, including Raf and PI3K, as well as a common set of 130 novel proteins proximal to all Ras isoforms. A CRISPR screen of these proteins for Ras dependence identified mTOR, which was also found proximal to MT Ras in human tumors. Oncogenic Ras directly bound two mTOR complex 2 (mTORC2) components, mTOR and MAPKAP1, to promote mTORC2 kinase activity at the plasma membrane. mTORC2 enabled the Ras pro-proliferative cell cycle transcriptional program, and perturbing the Ras-mTORC2 interaction impaired Ras-dependent neoplasia in vivo. Combining proximity-dependent proteomics with CRISPR screening identified a new set of functional Ras-associated proteins, defined mTORC2 as a new direct Ras effector, and offers a strategy for finding new proteins that cooperate with dominant oncogenes.
Assuntos
Transformação Celular Neoplásica/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neoplasias/metabolismo , Proteoma , Proteínas ras/metabolismo , Animais , Sítios de Ligação , Sistemas CRISPR-Cas , Células CACO-2 , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos Pelados , Camundongos SCID , Camundongos Transgênicos , Mutação , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteômica/métodos , Carga Tumoral , Proteínas ras/genéticaRESUMO
Growth factor signaling is initiated at the plasma membrane and propagated through the cytoplasm for eventual relay to intracellular organelles such as lysosomes. The serine/threonine kinase mTOR participates in growth factor signaling as a component of two multi-subunit complexes, mTORC1 and mTORC2. mTORC1 associates with lysosomes, and its activity depends on the positioning of lysosomes within the cytoplasm, although there is no consensus regarding the exact effect of perinuclear versus peripheral distribution. mTORC2 and its substrate kinase AKT have a widespread distribution, but they are thought to act mainly at the plasma membrane. Using cell lines with knockout of components of the lysosome-positioning machinery, we show that perinuclear clustering of lysosomes delays reactivation of not only mTORC1, but also mTORC2 and AKT upon serum replenishment. These experiments demonstrate the existence of pools of mTORC2 and AKT that are sensitive to lysosome positioning.
Assuntos
Núcleo Celular/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Sistemas CRISPR-Cas , Núcleo Celular/ultraestrutura , Meios de Cultura Livres de Soro , Endossomos/metabolismo , Endossomos/ultraestrutura , Edição de Genes , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Cinesinas/deficiência , Cinesinas/genética , Lisossomos/ultraestrutura , Fatores de Transcrição MEF2/deficiência , Fatores de Transcrição MEF2/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de SinaisRESUMO
Protein kinase C (PKC) isozymes are maintained in a 'ready-to-go' but 'safe' autoinhibited conformation until second messenger binding unleashes an autoinhibitory pseudosubstrate to allow substrate phosphorylation. However, to gain this 'ready-to-go' conformation, PKC must be processed by a series of complex priming phosphorylations, the mechanism of which was enigmatic until now. Recent findings snapped the pieces of the phosphorylation puzzle into place to unveil a process that involves a newly described motif (TOR interaction motif, TIM), a well-described kinase [mechanistic target of rapamycin complex 2 (mTORC2)], and an often-used mechanism (autophosphorylation) to prime PKC to signal. This review highlights new insights into how phosphorylation controls PKC and discusses them in the context of common mechanisms for AGC kinase regulation by phosphorylation and autophosphorylation.
Assuntos
Proteína Quinase C , Quarentena , Isoenzimas/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Proteína Quinase C/metabolismoRESUMO
Macrophage polarization is a process whereby macrophages acquire distinct effector states (M1 or M2) to carry out multiple and sometimes opposite functions. We show here that translational reprogramming occurs during macrophage polarization and that this relies on the Elongator complex subunit Elp3, an enzyme that modifies the wobble uridine base U34 in cytosolic tRNAs. Elp3 expression is downregulated by classical M1-activating signals in myeloid cells, where it limits the production of pro-inflammatory cytokines via FoxO1 phosphorylation, and attenuates experimental colitis in mice. In contrast, alternative M2-activating signals upregulate Elp3 expression through a PI3K- and STAT6-dependent signaling pathway. The metabolic reprogramming linked to M2 macrophage polarization relies on Elp3 and the translation of multiple candidates, including the mitochondrial ribosome large subunit proteins Mrpl3, Mrpl13, and Mrpl47. By promoting translation of its activator Ric8b in a codon-dependent manner, Elp3 also regulates mTORC2 activation. Elp3 expression in myeloid cells further promotes Wnt-driven tumor initiation in the intestine by maintaining a pool of tumor-associated macrophages exhibiting M2 features. Collectively, our data establish a functional link between tRNA modifications, mTORC2 activation, and macrophage polarization.
Assuntos
Histona Acetiltransferases , Ativação de Macrófagos , Transdução de Sinais , Animais , Códon/metabolismo , Histona Acetiltransferases/genética , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , CamundongosRESUMO
Both hedgehog (Hh) and target of rapamycin complex 2 (TORC2) are central, evolutionarily conserved signaling pathways that regulate development and metabolism. In C. elegans, loss of the essential TORC2 component RICTOR (rict-1) causes delayed development, shortened lifespan, reduced brood, small size and increased fat. Here, we report that knockdown of both the hedgehog-related morphogen grd-1 and its patched-related receptor ptr-11 rescues delayed development in TORC2 loss-of-function mutants, and grd-1 and ptr-11 overexpression delays wild-type development to a similar level to that in TORC2 loss-of-function animals. These findings potentially indicate an unexpected role for grd-1 and ptr-11 in slowing developmental rate downstream of a nutrient-sensing pathway. Furthermore, we implicate the chronic stress transcription factor pqm-1 as a key transcriptional effector in this slowing of whole-organism growth by grd-1 and ptr-11. We propose that TORC2, grd-1 and ptr-11 may act linearly or converge on pqm-1 to delay organismal development.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Receptores PatchedRESUMO
ER-mitochondria contact sites (ERMCSs) regulate processes, including calcium homoeostasis, energy metabolism and autophagy. Previously, it was shown that during growth factor signalling, mTORC2/Akt gets recruited to and stabilizes ERMCSs. Independent studies showed that GSK3ß, a well-known Akt substrate, reduces ER-mitochondria connectivity by disrupting the VAPB-PTPIP51 tethering complex. However, the mechanisms that regulate ERMCSs are incompletely understood. Here we find that annulate lamellae (AL), relatively unexplored subdomains of ER enriched with a subset of nucleoporins, are present at ERMCSs. Depletion of Nup358, an AL-resident nucleoporin, results in enhanced mTORC2/Akt activation, GSK3ß inhibition and increased ERMCSs. Depletion of Rictor, a mTORC2-specific subunit, or exogenous expression of GSK3ß, was sufficient to reverse the ERMCS-phenotype in Nup358-deficient cells. We show that growth factor-mediated activation of mTORC2 requires the VAPB-PTPIP51 complex, whereas, Nup358's association with this tether restricts mTORC2/Akt signalling and ER-mitochondria connectivity. Expression of a Nup358 fragment that is sufficient for interaction with the VAPB-PTPIP51 complex suppresses mTORC2/Akt activation and disrupts ERMCSs. Collectively, our study uncovers a novel role for Nup358 in controlling ERMCSs by modulating the mTORC2/Akt/GSK3ß axis.
Assuntos
Retículo Endoplasmático , Mitocôndrias , Chaperonas Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares , Transdução de Sinais , Humanos , Retículo Endoplasmático/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Complexos Multiproteicos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Pharmacological vitamin C (VC) is a potential natural compound for cancer treatment. However, the mechanism underlying its antitumor effects remains unclear. In this study, we found that pharmacological VC significantly inhibits the mTOR (including mTORC1 and mTORC2) pathway activation and promotes GSK3-FBXW7-mediated Rictor ubiquitination and degradation by increasing the cellular ROS. Moreover, we identified that HMOX1 is a checkpoint for pharmacological-VC-mediated mTOR inactivation, and the deletion of FBXW7 or HMOX1 suppresses the regulation of pharmacological VC on mTOR activation, cell size, cell viability, and autophagy. More importantly, it was observed that the inhibition of mTOR by pharmacological VC supplementation in vivo produces positive therapeutic responses in tumor growth, while HMOX1 deficiency rescues the inhibitory effect of pharmacological VC on tumor growth. These results demonstrate that VC influences cellular activities and tumor growth by inhibiting the mTOR pathway through Rictor and HMOX1, which may have therapeutic potential for cancer treatment.
Assuntos
Ácido Ascórbico , Neoplasias , Humanos , Proteína 7 com Repetições F-Box-WD/metabolismo , Ácido Ascórbico/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fatores de Transcrição/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismoRESUMO
Saccharomyces cerevisiae target of rapamycin (TOR) complex 2 (TORC2) is an essential regulator of plasma membrane lipid and protein homeostasis. How TORC2 activity is modulated in response to changes in the status of the cell envelope is unclear. Here we document that TORC2 subunit Avo2 is a direct target of Slt2, the mitogen-activated protein kinase (MAPK) of the cell wall integrity pathway. Activation of Slt2 by overexpression of a constitutively active allele of an upstream Slt2 activator (Pkc1) or by auxin-induced degradation of a negative Slt2 regulator (Sln1) caused hyperphosphorylation of Avo2 at its MAPK phosphoacceptor sites in a Slt2-dependent manner and diminished TORC2-mediated phosphorylation of its major downstream effector, protein kinase Ypk1. Deletion of Avo2 or expression of a phosphomimetic Avo2 allele rendered cells sensitive to two stresses (myriocin treatment and elevated exogenous acetic acid) that the cell requires Ypk1 activation by TORC2 to survive. Thus, Avo2 is necessary for optimal TORC2 activity, and Slt2-mediated phosphorylation of Avo2 down-regulates TORC2 signaling. Compared with wild-type Avo2, phosphomimetic Avo2 shows significant displacement from the plasma membrane, suggesting that Slt2 inhibits TORC2 by promoting Avo2 dissociation. Our findings are the first demonstration that TORC2 function is regulated by MAPK-mediated phosphorylation.
Assuntos
Regulação para Baixo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética , Ácido Acético/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ácidos Graxos Monoinsaturados/farmacologia , Deleção de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Transdução de Sinais/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mutação/genética , Tamanho Corporal/genéticaRESUMO
Bacillus Calmette-Guérin (BCG) vaccination induces a type of immune memory known as "trained immunity", characterized by the immunometabolic and epigenetic changes in innate immune cells. However, the molecular mechanism underlying the strategies for inducing and/or boosting trained immunity in alveolar macrophages remains unknown. Here, we found that mucosal vaccination with the recombinant strain rBCGPPE27 significantly augmented the trained immune response in mice, facilitating a superior protective response against Mycobacterium tuberculosis and non-related bacterial reinfection in mice when compared to BCG. Mucosal immunization with rBCGPPE27 enhanced innate cytokine production by alveolar macrophages associated with promoted glycolytic metabolism, typical of trained immunity. Deficiency of the mammalian target of rapamycin complex 2 and hexokinase 1 abolished the immunometabolic and epigenetic rewiring in mouse alveolar macrophages after mucosal rBCGPPE27 vaccination. Most noteworthy, utilizing rBCGPPE27's higher-up trained effects: The single mucosal immunization with rBCGPPE27-adjuvanted coronavirus disease (CoV-2) vaccine raised the rapid development of virus-specific immunoglobulin G antibodies, boosted pseudovirus neutralizing antibodies, and augmented T helper type 1-biased cytokine release by vaccine-specific T cells, compared to BCG/CoV-2 vaccine. These findings revealed that mucosal recombinant BCG vaccine induces lung-resident memory macrophages and enhances trained immunity via reprogramming mTORC2- and HK-1-mediated aerobic glycolysis, providing new vaccine strategies for improving tuberculosis (TB) or coronavirus variant vaccinations, and targeting innate immunity via mucosal surfaces.
Assuntos
Vacina BCG , Hexoquinase , Memória Imunológica , Pulmão , Macrófagos Alveolares , Alvo Mecanístico do Complexo 2 de Rapamicina , Mycobacterium tuberculosis , Imunidade Treinada , Animais , Camundongos , Vacina BCG/imunologia , Citocinas/metabolismo , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas Sintéticas/imunologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Hexoquinase/metabolismoRESUMO
Recent research has identified the mechanistic Target of Rapamycin Complex 2 (mTORC2) as a conserved direct effector of Ras proteins. While previous studies suggested the involvement of the Switch I (SWI) effector domain of Ras in binding mTORC2 components, the regulation of the Ras-mTORC2 pathway is not entirely understood. In Dictyostelium, mTORC2 is selectively activated by the Ras protein RasC, and the RasC-mTORC2 pathway then mediates chemotaxis to cAMP and cellular aggregation by regulating the actin cytoskeleton and promoting cAMP signal relay. Here, we investigated the role of specific residues in RasC's SWI, C-terminal allosteric domain, and hypervariable region (HVR) related to mTORC2 activation. Interestingly, our results suggest that RasC SWI residue A31, which was previously implicated in RasC-mediated aggregation, regulates RasC's specific activation by the Aimless RasGEF. On the other hand, our investigation identified a crucial role for RasC SWI residue T36, with secondary contributions from E38 and allosteric domain residues. Finally, we found that conserved basic residues and the adjacent prenylation site in the HVR, which are crucial for RasC's membrane localization, are essential for RasC-mTORC2 pathway activation by allowing for both RasC's own cAMP-induced activation and its subsequent activation of mTORC2. Therefore, our findings revealed new determinants of RasC-mTORC2 pathway specificity in Dictyostelium, contributing to a deeper understanding of Ras signaling regulation in eukaryotic cells.