Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.077
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 152(4): 831-43, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23415230

RESUMO

p11, through unknown mechanisms, is required for behavioral and cellular responses to selective serotonin reuptake inhibitors (SSRIs). We show that SMARCA3, a chromatin-remodeling factor, is a target for the p11/annexin A2 heterotetrameric complex. Determination of the crystal structure indicates that SMARCA3 peptide binds to a hydrophobic pocket in the heterotetramer. Formation of this complex increases the DNA-binding affinity of SMARCA3 and its localization to the nuclear matrix fraction. In the dentate gyrus, both p11 and SMARCA3 are highly enriched in hilar mossy cells and basket cells. The SSRI fluoxetine induces expression of p11 in both cell types and increases the amount of the ternary complex of p11/annexin A2/SMARCA3. SSRI-induced neurogenesis and behavioral responses are abolished by constitutive knockout of SMARCA3. Our studies indicate a central role for a chromatin-remodeling factor in the SSRI/p11 signaling pathway and suggest an approach to the development of improved antidepressant therapies. PAPERCLIP:


Assuntos
Anexina A2/metabolismo , Proteínas de Ligação a DNA/metabolismo , Giro Denteado/metabolismo , Proteínas S100/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/química , Feminino , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Fibras Musgosas Hipocampais/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Fatores de Transcrição/química , Difração de Raios X
2.
EMBO Rep ; 25(9): 3870-3895, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969946

RESUMO

Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.


Assuntos
Actinas , Anexina A2 , Membrana Celular , Citoesqueleto , Septinas , Septinas/metabolismo , Septinas/genética , Humanos , Anexina A2/metabolismo , Anexina A2/genética , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIA/genética , Células HeLa , Cálcio/metabolismo , Proteínas S100/metabolismo , Proteínas S100/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
3.
Mol Cell Proteomics ; 23(2): 100723, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253182

RESUMO

Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1ß, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.


Assuntos
Anexina A2 , Microglia , Traumatismo por Reperfusão , Animais , Camundongos , Anexina A2/metabolismo , Microglia/metabolismo , Multiômica , NF-kappa B/metabolismo , Proteômica , Traumatismo por Reperfusão/metabolismo
4.
J Biol Chem ; 300(2): 105591, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141769

RESUMO

Long noncoding RNAs (lncRNAs) are specifically expressed in different diseases and regulate disease progression. To explore the functions of rheumatoid arthritis (RA)-specific lncRNA, we determined the lncRNA expression profile of fibroblast-like synoviocytes (FLS) obtained from patients with RA and osteoarthritis (OA) using a LncRNA microarray and identified up-regulated LncNFYB in RA as a potential therapeutic target. Using gain- and loss-of-function studies, LncNFYB was proven to promote FLS proliferation and cell cycle progress but not affect their invasion, migration, and apoptotic abilities. Further investigation discovered that LncRNA could combine with annexin A2 (ANXA2) and enhance the level of phospho-ANXA2 (Tyr24) in the plasma membrane area, which induced the activation of ERK1/2 to promote proliferation. These findings provide new insights into the biological functions of LncNFYB on modification of FLS, which may be exploited for the therapy of RA.


Assuntos
Anexina A2 , Artrite Reumatoide , Sistema de Sinalização das MAP Quinases , RNA Longo não Codificante , Sinoviócitos , Humanos , Anexina A2/genética , Anexina A2/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/fisiopatologia , Proliferação de Células/genética , Células Cultivadas , Ativação Enzimática/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Fosforilação/genética , Ligação Proteica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sinoviócitos/citologia , Sinoviócitos/metabolismo
5.
Exp Cell Res ; 442(1): 114228, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197578

RESUMO

Anterior gradient-2 (AGR2) is highly expressed in several tumors and plays an important role in tumor development. However, the biological function of AGR2 in teratomas has not yet been thoroughly studied. In this study, AGR2 was found to be upregulated in teratoma tissues and in human testicular teratoma cell lines by Western blotting and qRT-PCR assays. A DNA Methylation-Specific PCR assay demonstrated that AGR2 upregulation resulted from hypomethylated AGR2 in teratoma cells. NCC-IT and NT2-D1 cells were transfected with pcDNA-AGR2 or sh-AGR2 to obtain AGR2-overexpressed or -silenced cells, and cell proliferation, invasion and glycolysis were determined using CCK-8, 5-ethynyl-2'-deoxyuridine (EdU), Transwell assays, and commercial kits. The results revealed that overexpression of AGR2 promoted teratoma cell proliferation and invasion and elevated glycolysis levels evidencing by the increase in lactate secretion, glucose consumption, ATP levels and the expression of glycolysis-related proteins, while knockdown of AGR2 showed the opposite results. The interactions between AGR2 and annexin A2 (AnXA2), as well as between AnXA2 and epidermal growth factor receptor (EGFR) were verified by co-immunoprecipitation assay. Mechanistic studies revealed that AGR2 interacts with AnXA2 and increases the level of AnXA2 to recruit more AnXA2 to EGFR, there by promoting EGFR expression. A series of rescue experiments showed that knockdown of AnXA2 or EGFR weakened the promotional effects of AGR2 overexpression on the proliferation, invasion, and glycolysis of teratoma cells. Finally, tumorigenicity assays were performed using NT2-D1 cells stably transfected with either LV-NC-shRNA or LV-shAGR2. The results showed that AGR2 knockdown significantly inhibited teratoma tumor growth in vivo. In conclusion, our data suggested that AGR2 facilitates glycolysis in teratomas through promoting EGFR expression by interacting with AnXA2, thereby promoting teratoma cells proliferation and invasion.


Assuntos
Anexina A2 , Proliferação de Células , Receptores ErbB , Glicólise , Mucoproteínas , Proteínas Oncogênicas , Neoplasias Testiculares , Humanos , Mucoproteínas/genética , Mucoproteínas/metabolismo , Glicólise/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Animais , Proliferação de Células/genética , Masculino , Receptores ErbB/metabolismo , Receptores ErbB/genética , Camundongos , Anexina A2/metabolismo , Anexina A2/genética , Neoplasias Testiculares/patologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Linhagem Celular Tumoral , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Proteínas/metabolismo , Proteínas/genética , Movimento Celular/genética , Camundongos Endogâmicos BALB C , Invasividade Neoplásica
6.
Nucleic Acids Res ; 51(3): 1409-1423, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36124719

RESUMO

The introduction of phosphorothioate (PS) linkages to the backbone of therapeutic nucleic acids substantially increases their stability and potency. It also affects their interactions with cellular proteins, but the molecular mechanisms that underlie this effect are poorly understood. Here, we report structural and biochemical studies of interactions between annexin A2, a protein that does not possess any known canonical DNA binding domains, and phosphorothioate-modified antisense oligonucleotides. We show that a unique mode of hydrophobic interactions between a sulfur atom of the phosphorothioate group and lysine and arginine residues account for the enhanced affinity of modified nucleic acid for the protein. Our results demonstrate that this mechanism of interaction is observed not only for nucleic acid-binding proteins but can also account for the association of PS oligonucleotides with other proteins. Using the anomalous diffraction of sulfur, we showed that preference for phosphorothioate stereoisomers is determined by the hydrophobic environment around the PS linkage that comes not only from protein but also from additional structural features within the ASO such as 5-Me groups on cytosine nucleobases.


Assuntos
Anexina A2 , Anexina A2/metabolismo , Ligação Proteica/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Fosforotioatos/química , DNA/metabolismo , Proteínas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Enxofre/metabolismo
7.
Biophys J ; 123(16): 2431-2442, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859585

RESUMO

Annexin A2 (A2)-induced microdomain formation is a key step in biological processes such as Ca2+-mediated exocytosis in neuroendocrine cells. In this work, a total of 15 coarse-grained molecular dynamics simulations were performed on vesicle models having a diameter of approximately 250 Å for 15 µs each using the Martini2 force field. Five simulations were performed in the presence of 10 A2, 5 in the presence of A2 but absence of PIP2, and 5 simulations in the absence of A2 but presence of PIP2. Consistent results were generated among the simulations. A2-induced PIP2 microdomain formation was observed and shown to occur in three phases: A2-vesicle association, localized A2-induced PIP2 clustering, and A2 aggregation driving PIP2 microdomain formation. The relationship between A2 aggregation and PIP2 microdomain formation was quantitatively described using a novel method which calculated the variance among protein and lipid positions via the Fréchet mean. A large reduction in PIP2 variance was observed in the presence of A2 but not in its absence. This reduction in PIP2 variance was proportional to the reduction observed in A2 variance and demonstrates that the observed PIP2 microdomain formation is dependent upon A2 aggregation. The three-phase model of A2-induced microdomain formation generated in this work will serve as a valuable guide for further experimental studies and the development of novel A2 inhibitors. No microdomain formation was observed in the absence of A2 and minimal A2-membrane interaction was observed in the absence of PIP2.


Assuntos
Anexina A2 , Simulação de Dinâmica Molecular , Anexina A2/metabolismo , Anexina A2/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química
8.
Am J Physiol Cell Physiol ; 326(4): C1042-C1053, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372137

RESUMO

Solute carrier organic anion transporter family member 2A1 (SLCO2A1) is a prostaglandin (PG) transporter and serves as the osmosensitive ATP-permeable maxi-anion channel (Maxi-Cl). Since a heterotetrameric complex of annexin A2 (ANXA2) and S100A10 is obligatory for the channel activity, the present study aimed to determine if they regulate SLCO2A1-mediated PG transport. This study examined PGE2 uptake and ATP release in Anxa2 and/or S100a10 knockout (KO) murine breast C127 cells. Deletion of Slco2a1 decreased PGE2-d4 uptake by wild-type (WT) cells in an isotonic medium (290 mosmol/kgH2O). Decreased osmolarity (135 mosmol/kgH2O) stimulated ATP release but did not affect PGE2 uptake kinetics, showing Km (1,280 nM) and Vmax (10.38 pmol/15 s/mg protein) similar to those in isotonic medium (1,227 nM and 10.65 pmol/15 s/mg protein), respectively, in WT cells. Deletion of Anxa2 associated with loss of S100a10 diminished SLCO2A1-mediated ATP release and uncompetitively inhibited PGE2 uptake with lowered Km (376 nM) and Vmax (2.59 pmol/15 s/mg protein). Moreover, the immunoprecipitation assay confirmed the physical interaction of ANXA2 with SLCO2A1 in WT cells. Enforcement of ANXA2 expression to Anxa2 KO cells partially restored PGE2 uptake and increased Km (744.3 nM) and Vmax (9.07 pmol/15 s/mg protein), whereas the uptake clearance (Vmax/Km) did not change much regardless of ANXA2 expression. These results suggest that an ANXA2/S100A10 complex modulates PG transport activity but osmolality has little effect on it; therefore, the bound form of SLCO2A1, which functions as a PG transporter and Maxi-Cl, may exist regardless of changes in the cell volume.NEW & NOTEWORTHY A previous study indicated that the ANXA2/S100A10 complex represents the regulatory component of SLCO2A1-mediated Maxi-Cl channel activity. The present study showed that apparent PGE2 uptake by C127 cells was osmoinsensitive and uncompetitively inhibited by loss of ANXA2 expression, demonstrating that ANXA2 is a regulatory factor of SLCO2A1-mediated PG transport activity.


Assuntos
Anexina A2 , Transportadores de Ânions Orgânicos , Prostaglandinas , Proteínas S100 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Anexina A2/metabolismo , Transporte Biológico , Dinoprostona/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Prostaglandinas/metabolismo , Proteínas S100/metabolismo
9.
J Cell Mol Med ; 28(14): e18575, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39048916

RESUMO

In recent years, in the development of emerging immunotherapy, B7-H3 is also termed as CD276 and has become a novel chimeric antigen receptor (CAR)-T target against glioma and other tumours, and aroused extensive attention. However, B7-H3 has three isoforms (2, 3 and 4Ig) with the controversial expression and elusive function in tumour especially glioma. The current study mainly focuses on the regulatory factors and related mechanisms of generation of different B7-H3 isoforms. First, we have determined that 2Ig is dominant in glioma with high malignancy, and 4Ig is widely expressed, whereas 3Ig shows negative expression in all glioma. Next, we have further found that RNA binding protein annexin A2 (ANXA2) is essential for B7-H3 isoform maintenance, but fail to determine the choice of 4Ig or 2Ig. RNA methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and 5-methylcytosine reader Y-box binding protein 1 (YBX1) facilitate the production of 2Ig. Our findings have uncovered a series of factors (ANXA2/NSUN2/YBX1) that can determine the alternative generation of different isoforms of B7-H3 in glioma. Our result aims to help peers gain a clearer understanding of the expression and regulatory mechanisms of B7H3 in tumour patients, and to provide better strategies for designing B7H3 as a target in immunotherapy.


Assuntos
Anexina A2 , Antígenos B7 , Regulação Neoplásica da Expressão Gênica , Glioma , Isoformas de Proteínas , Humanos , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Antígenos B7/metabolismo , Antígenos B7/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Anexina A2/metabolismo , Anexina A2/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
10.
Cancer Sci ; 115(6): 1896-1909, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38480477

RESUMO

Cholangiocarcinoma (CCA) is one of the most difficult malignancies to treat as the therapeutic options are limited. Although several driver genes have been identified, most remain unknown. In this study, we identified a failed axon connection homolog (FAXC), whose function is unknown in mammals, by analyzing serially passaged CCA xenograft models. Knockdown of FAXC reduced subcutaneous tumorigenicity in mice. FAXC was bound to annexin A2 (ANXA2) and c-SRC, which are tumor-promoting genes. The FAXC/ANXA2/c-SRC complex forms in the mitochondria. FAXC enhances SRC-dependent ANXA2 phosphorylation at tyrosine-24, and the C-terminal amino acid residues (351-375) of FAXC are required for ANXA2 phosphorylation. Transcriptome data from a xenografted CCA cell line revealed that FAXC correlated with epithelial-mesenchymal transition, hypoxia, and KRAS signaling genes. Collectively, these findings advance our understanding of CCA tumorigenesis and provide candidate therapeutic targets.


Assuntos
Anexina A2 , Neoplasias dos Ductos Biliares , Carcinogênese , Colangiocarcinoma , Mitocôndrias , Quinases da Família src , Animais , Humanos , Masculino , Camundongos , Anexina A2/metabolismo , Anexina A2/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Mitocôndrias/metabolismo , Fosforilação , Transdução de Sinais , Quinases da Família src/metabolismo , Quinases da Família src/genética
11.
J Cell Sci ; 135(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362526

RESUMO

Proper mitotic spindle orientation depends on the correct anchorage of astral microtubules to the cortex. It relies on the remodeling of the cell cortex, a process not fully understood. Annexin A2 (Anx2; also known as ANXA2) is a protein known to be involved in cortical domain remodeling. Here, we report that in HeLa cell early mitosis, Anx2 recruits the scaffold protein Ahnak at the cell cortex facing spindle poles, and the distribution of both proteins is controlled by cell adhesion. Depletion of either protein or impaired cortical Ahnak localization result in delayed anaphase onset and unstable spindle anchoring, which leads to altered spindle orientation. We find that Ahnak is present in a complex with dynein-dynactin. Furthermore, Ahnak and Anx2 are required for correct dynein and NuMA (also known as NUMA1) cortical localization and dynamics. We propose that the Ahnak-Anx2 complex influences the cortical organization of the astral microtubule-anchoring complex, and thereby mitotic spindle positioning in human cells. This article has an associated First Person interview with the first author of the paper.


Assuntos
Anexina A2 , Dineínas , Anáfase , Anexina A2/genética , Anexina A2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , Proteínas de Neoplasias/metabolismo , Fuso Acromático/metabolismo
12.
J Virol ; 97(3): e0154522, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36786600

RESUMO

Pseudorabies virus (PRV) infection causes enormous economic losses to the pork industry and severe health consequences in many hosts. Annexin A2 (ANXA2) is a membrane-associated protein with various intracellular functions associated with many viral infections. However, the role of ANXA2 in alphaherpesvirus replication is still not explored. In the present study, we identified the interaction between ANXA2 and PRV US3. The deficiency of ANXA2 significantly restricted PRV proliferation. PRV infection or US3 overexpression led to ANXA2 extracellular translocation. Furthermore, we confirmed that PRV or US3 could lead to the phosphorylation of the Tyr23 ANXA2 and Tyr419 Src kinase, which was associated with the ANXA2 cell surface transposition. US3 can also bind to Src in an ANXA2-independent manner and enhance the interaction between Src and ANXA2. Additionally, inhibitors targeting ANXA2 (A2ti-1) or Src (PP2) could remarkably inhibit PRV propagation in vitro and protect mice from PRV infection in vivo. Collectively, our findings broaden our understanding of the molecular mechanisms of ANXA2 in alphaherpesvirus pathogenicity and suggest that ANXA2 is a potential therapeutic target for treating alphaherpesvirus-induced infectious diseases. IMPORTANCE PRV belongs to the alphaherpesvirus and has recently re-emerged in China, causing severe economic losses. Recent studies also indicate that PRV may pose a potential public health challenge. ANXA2 is a multifunctional calcium- and lipid-binding protein implicated in immune function, multiple human diseases, and viral infection. Herein, we found that ANXA2 was essential to PRV efficient proliferation. PRV infection resulted in the extracellular translocation of ANXA2 through phosphorylation of ANXA2 and Src. ANXA2 and Src formed a complex with PRV US3. Importantly, inhibitors targeting ANXA2 or Src prevented PRV infection in vitro and in vivo. Therefore, our studies reveal a novel strategy by which alphaherpesvirus modifies ANXA2 to promote its replication and highlight ANXA2 as a target in developing novel promising antivirus agents in viral therapy.


Assuntos
Anexina A2 , Herpesvirus Suídeo 1 , Pseudorraiva , Replicação Viral , Animais , Humanos , Camundongos , Anexina A2/genética , Anexina A2/metabolismo , Herpesvirus Suídeo 1/metabolismo , Herpesvirus Suídeo 1/patogenicidade , Fosforilação , Pseudorraiva/virologia , Transporte Proteico
13.
FASEB J ; 37(1): e22715, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527391

RESUMO

The intersection of protein and lipid biology is of growing importance for understanding how cells address structural challenges during adhesion and migration. While protein complexes engaged with the cytoskeleton play a vital role, support from the phospholipid membrane is crucial for directing localization and assembly of key protein complexes. During angiogenesis, dramatic cellular remodeling is necessary for endothelial cells to shift from a stable monolayer to invasive structures. However, the molecular dynamics between lipids and proteins during endothelial invasion are not defined. Here, we utilized cell culture, immunofluorescence, and lipidomic analyses to identify a novel role for the membrane binding protein Annexin A2 (ANXA2) in modulating the composition of specific membrane lipids necessary for cortical F-actin organization and adherens junction stabilization. In the absence of ANXA2, there is disorganized cortical F-actin, reduced junctional Arp2, excess sprout initiation, and ultimately failed sprout maturation. Furthermore, we observed reduced filipin III labeling of membrane cholesterol in cells with reduced ANXA2, suggesting there is an alteration in phospholipid membrane dynamics. Lipidomic analyses revealed that 42 lipid species were altered with loss of ANXA2, including an accumulation of phosphatidylcholine (16:0_16:0). We found that supplementation of phosphatidylcholine (16:0_16:0) in wild-type endothelial cells mimicked the ANXA2 knock-down phenotype, indicating that ANXA2 regulated the phospholipid membrane upstream of Arp2 recruitment and organization of cortical F-actin. Altogether, these data indicate a novel role for ANXA2 in coordinating events at endothelial junctions needed to initiate sprouting and show that proper lipid modulation is a critical component of these events.


Assuntos
Anexina A2 , Anexina A2/genética , Anexina A2/metabolismo , Actinas/metabolismo , Fosfolipídeos , Células Endoteliais/metabolismo , Fosfatidilcolinas
14.
Fish Shellfish Immunol ; 148: 109492, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467321

RESUMO

Annexin A2 (AnxA2), belonging to the annexin family, plays a crucial role in immune responses. In this study, the cDNA of the AnxA2 gene was identified in half-smooth tongue sole, Cynoglossus semilaevis. The transcript of AnxA2 gene in C. semilaevis (CsAnxA2) showed broad tissue distribution, with the highest expression level observed in the gut. CsAnxA2 expression was significantly up-regulated in the intestine, spleen, and kidney tissues following exposure to Shewanella algae. Immunohistochemical staining revealed that CsAnxA2 was predominantly expressed in epithelial cells and significantly elevated after S. algae challenge. Subcellular localization showed that CsAnxA2 was primarily localized in the cytoplasmic compartment. Moreover, proinflammatory cytokines (IL-6, IL-8 and IL-1ß) exhibited significant upregulation after CsAnxA2 was overexpressed in vivo. One hundred and fifty-eight CsAnxA2-interacting proteins were captured in the intestinal tissue, showing the top two normalized abundance observed for actin beta (ACTB) and protein S100-A10 (p11). Fifty-four high abundance CsAnxA2-interacting proteins (HIPs) were primary enriched in ten pathways, with the top three significantly enriched pathways being Salmonella infection, glycolysis/gluconeogenesis, and peroxisome proliferator-activated receptor (PPAR) signaling pathway. These results provide valuable information for further investigation into the functional mechanism of AnxA2 in C. semilaevis.


Assuntos
Anexina A2 , Linguados , Linguado , Animais , Anexina A2/genética , Anexina A2/metabolismo , Linguado/metabolismo , Proteínas de Peixes/química
15.
J Reprod Dev ; 70(4): 238-246, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38910127

RESUMO

Understanding how stress hormones induce apoptosis in oviductal epithelial cells (OECs) and mural granulosa cells (MGCs) can reveal the mechanisms by which female stress impairs embryonic development and oocyte competence. A recent study showed that tissue plasminogen activator (tPA) ameliorates corticosterone-induced apoptosis in MGCs and OECs by acting on its receptors low-density lipoprotein receptor-related protein 1 (LRP1) and Annexin A2 (ANXA2), respectively. However, whether tPA is involved in corticotropin-releasing hormone (CRH)-induced apoptosis and whether it uses the same or different receptors to inhibit apoptosis induced by different hormones in the same cell type remains unknown. This study showed that CRH triggered apoptosis in both OECs and MGCs and significantly downregulated tPA expression. Moreover, tPA inhibits CRH-induced apoptosis by acting on ANXA2 in both OECs and MGCs. While ANXA2 inhibits apoptosis via phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling, LRP1 reduces apoptosis via mitogen-activated protein kinase (MAPK) signaling. Thus, tPA used the same receptor to inhibit CRH-induced apoptosis in both OECs and MGCs, however used different receptors to inhibit corticosterone-induced apoptosis in MGCs and OECs. These data helps understand the mechanism by which female stress impairs embryo/oocyte competence and proapoptotic factors trigger apoptosis in different cell types.


Assuntos
Apoptose , Hormônio Liberador da Corticotropina , Células Epiteliais , Células da Granulosa , Ativador de Plasminogênio Tecidual , Animais , Feminino , Apoptose/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Camundongos , Ativador de Plasminogênio Tecidual/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Hormônio Liberador da Corticotropina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Oviductos/metabolismo , Oviductos/efeitos dos fármacos , Anexina A2/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Tubas Uterinas/metabolismo , Tubas Uterinas/efeitos dos fármacos
16.
Nano Lett ; 23(11): 5297-5306, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37267288

RESUMO

Various viruses and pathogenic bacteria interact with annexin A2 to invade mammalian cells. Here, we show that Staphylococcus aureus engages in extremely strong catch bonds for host cell invasion. By means of single-molecule atomic force microscopy, we find that bacterial surface-located clumping factors bind annexin A2 with extraordinary strength, indicating that these bonds are extremely resilient to mechanical tension. By determining the lifetimes of the complexes under increasing mechanical stress, we demonstrate that the adhesins form catch bonds with their ligand that are capable to sustain forces of 1500-1700 pN. The force-dependent adhesion mechanism identified here provides a molecular framework to explain how S. aureus pathogens tightly attach to host cells during invasion and shows promise for the design of new therapeutics against intracellular S. aureus.


Assuntos
Anexina A2 , Staphylococcus aureus , Aderência Bacteriana , Anexina A2/metabolismo , Ligação Proteica , Adesinas Bacterianas/química
17.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39273539

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a rising global burden, affecting one in four adults. Despite the increasing prevalence of NAFLD, the exact cellular and molecular mechanisms remain unclear, and effective therapeutic strategies are still limited. In vitro models of NAFLD are critical to understanding the pathogenesis and searching for effective therapies; thus, we evaluated the effects of free fatty acids (FFAs) on NAFLD hallmarks and their association with the modulation of Annexin A2 (ANXA2) and Keratin 17 (KRT17) in HepG2 cells. Our results show that oleic and palmitic acids can differentially induce intracellular lipid accumulation, cell death, and promote oxidative stress by increasing lipid peroxidation, protein carbonylation, and antioxidant defense depletion. Moreover, a markedly increased expression of inflammatory cytokines demonstrated the activation of inflammation pathways associated with lipotoxicity and oxidative stress. ANXA2 overexpression and KRT17 nuclear translocation were also observed, supporting the role of both molecules in the progression of liver disease. Taken together, these data provide insights into the interplay between ANXA2 and KRT17 in NAFLD, paving the way for understanding molecular mechanisms involved with the disease and developing new therapeutic strategies.


Assuntos
Anexina A2 , Ácidos Graxos não Esterificados , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Humanos , Anexina A2/metabolismo , Anexina A2/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/efeitos dos fármacos , Células Hep G2 , Ácidos Graxos não Esterificados/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos
18.
Proteins ; 91(8): 1042-1053, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36965169

RESUMO

Annexin A2 (A2) is a member of the Annexin family, which contains Ca2+ -regulated phospholipid-binding proteins. Annexins associate with S100 proteins to form heterotetramers. The A2/S100A10 heterotetramer (A2t) is the most extensively studied of these heterotetramers. It induces membrane microdomain formation, causes membrane budding, and facilitates proliferation of some cancers. In this work, the first molecular dynamics (MD) study on the complete A2t of 868 amino acids was performed. MD trajectories of more than 600 ns each were generated for complete A2t complexes with and without Ca2+ ions. The outward extension of membrane-binding residues A2-K279 and A2-K281 was shown to be inhibited in the absence of Ca2+ as they were captured by Ca2+ -binding residue D322. F-actin binding residue A2-D339 was observed to occupy either an exposed or buried state in the absence of Ca2+ , while it only occupied the buried state in the presence of Ca2+ . The observed motions of the A2t subunits are highly organized with a strongly correlated central region which is negatively correlated with the periphery of the complex. The central region contains the S100A10 (p11) dimer, A2-N, and A2-I, while the periphery contains A2-II, A2-III, and A2-IV. Novel interactions between A2 and p11 were identified. A2 residues outside of A2-N (K80, R77, E82, and R145) had strong interactions with p11. Residue R145 of A2 may have a significant effect on the dynamics of the system, with its interaction resulting in asymmetric motions of A2. The presented results provide novel insights to inform future experimental studies.


Assuntos
Anexina A2 , Anexina A2/química , Anexina A2/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Ligação Proteica , Fosfolipídeos , Íons/metabolismo
19.
Biochem Biophys Res Commun ; 649: 93-100, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758484

RESUMO

Our recent study suggests that FBXW7 loss of function plays a critical function in esophageal cancer. However, the mechanism of FBXW7 in promoting esophageal cancer is still unclear. Here, we explored the interaction protein of FBXW7 by screening of GST-pulldown and LC-MS/MS analysis in esophageal squamous cell carcinoma (ESCC) and identified ANXA2 as a potential target of FBXW7. FBXW7 loss of function could restore the expression of ANXA2 and promote the malignant biological characteristics of ESCC cells in vitro. Up-regulation of ANXA2 enhances the ERK pathway in ESCC. Furthermore, the 23rd tyrosine residue of ANXA2, phosphorylated by SRC, was regarded as playing important roles in the FBXW7-related degradation system. In clinical samples, we found that ANXA2 had high expression in ESCC tissues. High ANXA2 was associated with poor tumor staging. More importantly, we designed a combination regimen including SCH779284, a clinical ERK inhibitor against the phosphorylation of EKR and siRNA targeting ANXA2 by intratumor injection, and it produced potent inhibitory effects on the growth of xenograft tumors in vivo. In conclusion, this study provided evidence that FBXW7 loss of function could promote esophageal cancer through ANXA2 overexpression, and this novel regulation pathway may be used as an efficient target for ESCC treatment.


Assuntos
Anexina A2 , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/patologia , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Carcinoma de Células Escamosas/patologia , Fosforilação , Cromatografia Líquida , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Anexina A2/metabolismo
20.
Development ; 147(8)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341028

RESUMO

Runx1 is a transcription factor that plays a key role in determining the proliferative and differential state of multiple cell types, during both development and adulthood. Here, we report how Runx1 is specifically upregulated at the injury site during zebrafish heart regeneration, and that absence of runx1 results in increased myocardial survival and proliferation, and overall heart regeneration, accompanied by decreased fibrosis. Using single cell sequencing, we found that the wild-type injury site consists of Runx1-positive endocardial cells and thrombocytes that induce expression of smooth muscle and collagen genes. Both these populations cannot be identified in runx1 mutant wounds that contain less collagen and fibrin. The reduction in fibrin in the mutant is further explained by reduced myofibroblast formation and upregulation of components of the fibrin degradation pathway, including plasminogen receptor annexin 2A as well as downregulation of plasminogen activator inhibitor serpine1 in myocardium and endocardium, resulting in increased levels of plasminogen. Our findings suggest that Runx1 controls the regenerative response of multiple cardiac cell types and that targeting Runx1 is a novel therapeutic strategy for inducing endogenous heart repair.


Assuntos
Cicatriz/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Coração/fisiopatologia , Miocárdio/patologia , Regeneração , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Anexina A2/metabolismo , Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Endocárdio/patologia , Regulação da Expressão Gênica no Desenvolvimento , Músculo Liso/metabolismo , Mutação/genética , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Cadeias Pesadas de Miosina/metabolismo , Regulação para Cima/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA