Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.426
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(9): 3157-3170, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38447953

RESUMO

Vincristine-induced peripheral neuropathy is a common side effect of vincristine treatment, which is accompanied by pain and can be dose-limiting. The molecular mechanisms that underlie vincristine-induced pain are not well understood. We have established an animal model to investigate pathophysiological mechanisms of vincristine-induced pain. Our previous studies have shown that the tetrodotoxin-sensitive voltage-gated sodium channel Nav1.6 in medium-diameter dorsal root ganglion (DRG) neurons contributes to the maintenance of vincristine-induced allodynia. In this study, we investigated the effects of vincristine administration on excitability in small-diameter DRG neurons and whether the tetrodotoxin-resistant (TTX-R) Nav1.8 channels contribute to mechanical allodynia. Current-clamp recordings demonstrated that small DRG neurons become hyper-excitable following vincristine treatment, with both reduced current threshold and increased firing frequency. Using voltage-clamp recordings in small DRG neurons, we now show an increase in TTX-R current density and a -7.3 mV hyperpolarizing shift in the half-maximal potential (V1/2) of activation of Nav1.8 channels in vincristine-treated animals, which likely contributes to the hyperexcitability that we observed in these neurons. Notably, vincristine treatment did not enhance excitability of small DRG neurons from Nav1.8 knockout mice, and the development of mechanical allodynia was delayed but not abrogated in these mice. Together, our data suggest that sodium channel Nav1.8 in small DRG neurons contributes to the development of vincristine-induced mechanical allodynia.


Assuntos
Gânglios Espinais , Hiperalgesia , Canal de Sódio Disparado por Voltagem NAV1.8 , Neurônios , Vincristina , Animais , Vincristina/toxicidade , Vincristina/farmacologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Masculino , Camundongos Knockout , Tetrodotoxina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Antineoplásicos Fitogênicos/toxicidade , Técnicas de Patch-Clamp
2.
Toxicol Appl Pharmacol ; 491: 117066, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128506

RESUMO

Paclitaxel (PTX) is a microtubule stabilizer that disrupts the normal cycle of microtubule depolymerization and repolymerization, leading to cell cycle arrest and cancer cell death. It is commonly used as a first-line chemotherapeutics for various malignancies, such as breast cancer, non-small cell lung cancer, and ovarian cancer. However, PTX chemotherapy is associated with common and serious side effects, including chemotherapy-induced peripheral neuropathy (CIPN). As cancer treatment advances and survival rates increase, the impact of CIPN on patients' quality of life has become more significant. To date, there is no effective treatment strategy for CIPN. Surtuin3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+) dependent protein deacetylase located on mitochondria. It transfers the acetyl group of the lysine side chain of acetylated substrate proteins to NAD+, producing deacetylated proteins to regulate mitochondrial energy metabolic processes. SIRT3 has been found to play an important role in various diseases, including aging, neurodegenerative diseases, cancer, heart disease, metabolic diseases, etc. However, the role of SIRT3 in CIPN is still unknown. This study found for the first time that activating SIRT3 helps to improve paclitaxel-induced CIPN. Nicotinamide riboside (NR) can protect dorsal root ganglion (DRG) mitochondria against oxidative damage caused by paclitaxel through activating SIRT3-MnSOD2 and SIRT3-Nrf2 pathway. Moreover, NR can enhance the anticancer activity of paclitaxel. Together, our research provides new strategy and candidate drug for the treatment of CIPN.


Assuntos
Niacinamida , Paclitaxel , Doenças do Sistema Nervoso Periférico , Compostos de Piridínio , Sirtuína 3 , Paclitaxel/toxicidade , Sirtuína 3/metabolismo , Animais , Compostos de Piridínio/farmacologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Doenças do Sistema Nervoso Periférico/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/toxicidade , Camundongos , Humanos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino
3.
Environ Toxicol ; 39(9): 4333-4346, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38742918

RESUMO

Plants provide a wide array of compounds that can be explored for potential anticancer properties. Siphonochilone, a furanoterpene that represents one of the main components of the African plant Siphonochilus aethiopicus, shows numerous health benefits. However, to date, its antiproliferative properties have not been tested. The aim of this study was to analyze the cytotoxic effects of siphonochilone on a panel of cancer cell lines and its underlying mechanism of action. Our results demonstrated that siphonochilone exhibited significant cytotoxic effects on pancreatic, breast, lung, colon, and liver cancer cell lines showing a IC50 ranging from 22 to 124 µM at 72 h of treatment and highlighting its cytotoxic effect against MCF7 and PANC1 breast and pancreas cancer cell lines (22.03 and 39.03 µM, respectively). Cell death in these tumor lines was mediated by apoptosis by the mitochondrial pathway, as evidenced by siphonochilone-induced depolarization of the mitochondrial membrane potential. In addition, siphonochilone treatment involves the generation of reactive oxygen species that may contribute to apoptosis induction. In this work, we described for the first time the cytotoxic properties of siphonochilone and provided data about the molecular processes of cell death. Although future studies will be necessary, our results support the interest in this molecule in relation to their clinical application in cancer, and especially in breast and pancreatic cancer.


Assuntos
Apoptose , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio , Humanos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Zingiber officinale/química , Sobrevivência Celular/efeitos dos fármacos
4.
Toxicol Appl Pharmacol ; 435: 115851, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34971666

RESUMO

There has been a significant research interest in nanocrystals as a promising technology for improving the therapeutic efficacy of poorly water-soluble drugs, such as resveratrol. Little is known about the interaction of nanocrystals with biological tissue. The aim of this study was to investigate the potential use of resveratrol (RSV) and its nanocrystals (NANO-RSV) as antitumor agents in Ehrlich ascites tumour (EAT)-bearing mice and the interaction of nanocrystals with biological tissue through biochemical and histological changes of kidney, liver and EAT cells. After intraperitoneal injection of 2.5 × 106 cells into the abdominal cavity of mice, treatment of animals was started next day by injecting RSV or NANO-RSV at a dose of either 25 or 50 mg/kg every other day for 14 days. The results show that the administration of resveratrol and its nanocrystals lead to significant reductions in the proliferation of tumour cells in the abdominal cavity, and a reduction of the number of blood vessels in the peritoneum, with low systemic toxicity. In histopathological examinations, greater hepatocellular necrosis and apoptosis, hepatic fibrosis around the central vein and degeneration with minor fatty change were observed with RSV than with NANO-RSV. Inflammation with proximal tubular necrosis and renal glomerulus swelling were also observed, together with slight elevation of several biochemical parameters in both the RSV and NANO-RSV groups. In order to increase the beneficial effects and reduce risks associated with resveratrol nanocrystals, additional factors such as dose, genetic factors, health status, and the nature of the target cells should also be considered.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Nanopartículas/uso terapêutico , Resveratrol/uso terapêutico , Cavidade Abdominal/patologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/toxicidade , Antioxidantes/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Injeções Intraperitoneais , Masculino , Camundongos , Nanopartículas/química , Nanopartículas/toxicidade , Tamanho da Partícula , Peritônio/irrigação sanguínea , Fluxo Sanguíneo Regional/efeitos dos fármacos , Resveratrol/química , Resveratrol/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Brain ; 144(6): 1727-1737, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33734317

RESUMO

The microtubule-stabilizing chemotherapy drug paclitaxel (PTX) causes dose-limiting chemotherapy-induced peripheral neuropathy (CIPN), which is often accompanied by pain. Among the multifaceted effects of PTX is an increased expression of sodium channel Nav1.7 in rat and human sensory neurons, enhancing their excitability. However, the mechanisms underlying this increased Nav1.7 expression have not been explored, and the effects of PTX treatment on the dynamics of trafficking and localization of Nav1.7 channels in sensory axons have not been possible to investigate to date. In this study we used a recently developed live imaging approach that allows visualization of Nav1.7 surface channels and long-distance axonal vesicular transport in sensory neurons to fill this basic knowledge gap. We demonstrate concentration and time-dependent effects of PTX on vesicular trafficking and membrane localization of Nav1.7 in real-time in sensory axons. Low concentrations of PTX increase surface channel expression and vesicular flux (number of vesicles per axon). By contrast, treatment with a higher concentration of PTX decreases vesicular flux. Interestingly, vesicular velocity is increased for both concentrations of PTX. Treatment with PTX increased levels of endogenous Nav1.7 mRNA and current density in dorsal root ganglion neurons. However, the current produced by transfection of dorsal root ganglion neurons with Halo-tag Nav1.7 was not increased after exposure to PTX. Taken together, this suggests that the increased trafficking and surface localization of Halo-Nav1.7 that we observed by live imaging in transfected dorsal root ganglion neurons after treatment with PTX might be independent of an increased pool of Nav1.7 channels. After exposure to inflammatory mediators to mimic the inflammatory condition seen during chemotherapy, both Nav1.7 surface levels and vesicular transport are increased for both low and high concentrations of PTX. Overall, our results show that PTX treatment increases levels of functional endogenous Nav1.7 channels in dorsal root ganglion neurons and enhances trafficking and surface distribution of Nav1.7 in sensory axons, with outcomes that depend on the presence of an inflammatory milieu, providing a mechanistic explanation for increased excitability of primary afferents and pain in CIPN.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Transporte Axonal/efeitos dos fármacos , Axônios/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Paclitaxel/toxicidade , Transporte Proteico/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Humanos , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
6.
Brain ; 144(10): 3226-3238, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33964142

RESUMO

Axonal degeneration is an early and ongoing event that causes disability and disease progression in many neurodegenerative disorders of the peripheral and central nervous systems. Chemotherapy-induced peripheral neuropathy (CIPN) is a major cause of morbidity and the main cause of dose reductions and discontinuations in cancer treatment. Preclinical evidence indicates that activation of the Wallerian-like degeneration pathway driven by sterile alpha and TIR motif containing 1 (SARM1) is responsible for axonopathy in CIPN. SARM1 is the central driver of an evolutionarily conserved programme of axonal degeneration downstream of chemical, inflammatory, mechanical or metabolic insults to the axon. SARM1 contains an intrinsic NADase enzymatic activity essential for its pro-degenerative functions, making it a compelling therapeutic target to treat neurodegeneration characterized by axonopathies of the peripheral and central nervous systems. Small molecule SARM1 inhibitors have the potential to prevent axonal degeneration in peripheral and central axonopathies and to provide a transformational disease-modifying treatment for these disorders. Using a biochemical assay for SARM1 NADase we identified a novel series of potent and selective irreversible isothiazole inhibitors of SARM1 enzymatic activity that protected rodent and human axons in vitro. In sciatic nerve axotomy, we observed that these irreversible SARM1 inhibitors decreased a rise in nerve cADPR and plasma neurofilament light chain released from injured sciatic nerves in vivo. In a mouse paclitaxel model of CIPN we determined that Sarm1 knockout mice prevented loss of axonal function, assessed by sensory nerve action potential amplitudes of the tail nerve, in a gene-dosage-dependent manner. In that CIPN model, the irreversible SARM1 inhibitors prevented loss of intraepidermal nerve fibres induced by paclitaxel and provided partial protection of axonal function assessed by sensory nerve action potential amplitude and mechanical allodynia.


Assuntos
Proteínas do Domínio Armadillo/antagonistas & inibidores , Axônios/efeitos dos fármacos , Proteínas do Citoesqueleto/antagonistas & inibidores , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Tiazóis/uso terapêutico , Animais , Antineoplásicos Fitogênicos/toxicidade , Proteínas do Domínio Armadillo/deficiência , Proteínas do Domínio Armadillo/genética , Axônios/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Tiazóis/farmacologia
7.
J Neuroinflammation ; 18(1): 48, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602238

RESUMO

BACKGROUND: Paclitaxel is a widely prescribed chemotherapy drug for treating solid tumors. However, paclitaxel-induced peripheral neuropathy (PIPN) is a common adverse effect during paclitaxel treatment, which results in sensory abnormalities and neuropathic pain among patients. Unfortunately, the mechanisms underlying PIPN still remain poorly understood. Long noncoding RNAs (lncRNAs) are novel and promising targets for chronic pain treatment, but their involvement in PIPN still remains unexplored. METHODS: We established a rat PIPN model by repetitive paclitaxel application. Immunostaining, RNA sequencing (RNA-Seq) and bioinformatics analysis were performed to study glia cell activation and explore lncRNA/mRNA expression profiles in spinal cord dorsal horn (SCDH) of PIPN model rats. qPCR and protein assay were used for further validation. RESULTS: PIPN model rats developed long-lasting mechanical and thermal pain hypersensitivities in hind paws, accompanied with astrocyte and microglia activation in SCDH. RNA-Seq identified a total of 814 differentially expressed mRNAs (DEmRNA) (including 467 upregulated and 347 downregulated) and 412 DElncRNAs (including 145 upregulated and 267 downregulated) in SCDH of PIPN model rats vs. control rats. Functional analysis of DEmRNAs and DElncRNAs identified that the most significantly enriched pathways include immune/inflammatory responses and neurotrophin signaling pathways, which are all important mechanisms mediating neuroinflammation, central sensitization, and chronic pain. We further compared our dataset with other published datasets of neuropathic pain and identified a core set of immune response-related genes extensively involved in PIPN and other neuropathic pain conditions. Lastly, a competing RNA network analysis of DElncRNAs and DEmRNAs was performed to identify potential regulatory networks of lncRNAs on mRNA through miRNA sponging. CONCLUSIONS: Our study provided the transcriptome profiling of DElncRNAs and DEmRNAs and uncovered immune and inflammatory responses were predominant biological events in SCDH of the rat PIPN model. Thus, our study may help to identify promising genes or signaling pathways for PIPN therapeutics.


Assuntos
Perfilação da Expressão Gênica/métodos , Neuralgia/genética , Paclitaxel/toxicidade , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Medula Espinal/patologia , Animais , Antineoplásicos Fitogênicos/toxicidade , Redes Reguladoras de Genes/fisiologia , Masculino , Neuralgia/induzido quimicamente , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , RNA Longo não Codificante/biossíntese , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos
8.
Toxicol Appl Pharmacol ; 410: 115359, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290779

RESUMO

Many antineoplastic agents induce myelosuppression and leukopenia as secondary effects in patients. The development of anticancer agents that simultaneously provoke antitumor immune response represents an important therapeutic advance. The administration of 6-pentadecyl salicylic acid (6SA) contributes to the antitumor immunity using 4T1 breast cancer cells in Balb/c female mice, with Taxol as a positive control and in cotreatment with 6SA (6SA + Taxol; CoT). Our results show that 6SA reduces tumor volume and size by inducing caspase-8-mediated apoptosis without reducing tumor infiltrated lymphocytes. Also, 6SA reduced lung metastasis and increased the proportion of immune cells in blood, lymph nodes and bone marrow; more evidently, in the proportion of tumor-infiltrated natural killer (NK) cells and cytotoxic T lymphocytes. Taxol reduces helper and cytotoxic lymphocytes causing systemic immunosuppression and myelosuppression in bone marrow, whereas 6SA does not decrease any immune cell subpopulations in circulating blood and lymph nodes. More importantly, the CoT decreased the Taxol-induced cytotoxicity in circulating T cells and bone marrow. Treatment with 6SA increases the secretion of IL-2, IL-12, GM-CSF, TNF-α and IFN-γ and significantly reduces IL-10 and IL-17 secretion, suggesting that the reduction of regulatory T cells and tumor-associated macrophages contribute to the host control of tumor development. Finally, 6SA has an effective antineoplastic activity against breast cancer cells in an immunocompetent animal, reduces the myelosuppression and leukopenia that Taxol produces, improves the antitumoral immunological microenvironment and increases the overall survival of the animals improving the quality of life of patients with cancer.


Assuntos
Ácidos Anacárdicos/uso terapêutico , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Imunização/métodos , Paclitaxel/toxicidade , Ácidos Anacárdicos/farmacologia , Animais , Apoptose/imunologia , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Feminino , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/fisiologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H
9.
Mol Cell Biochem ; 476(2): 1233-1243, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33247805

RESUMO

Vinblastine (VBL) has been considered as a first-line anti-tumor drug for many years. However, vinblastine-caused myocardial damage has been continually reported. The underlying molecular mechanism of the myocardial damage remains unknown. Here, we show that vinblastine induces myocardial damage and necroptosis is involved in the vinblastine-induced myocardial damage both in vitro and in vivo. The results of WST-8 and flow cytometry analysis show that vinblastine causes damage to H9c2 cells, and the results of animal experiments show that vinblastine causes myocardial cell damage. The necrosome components, receptor-interacting protein 1 (RIP1) receptor-interacting protein 3 (RIP3), are significantly increased in vinblastine-treated H9c2 cells, primary neonatal rat ventricular myocytes and rat heart tissues. And the downstream substrate of RIP3, mixed lineage kinase domain like protein (MLKL) was also increased. Pre-treatment with necroptosis inhibitors partially inhibits the necrosome components and MLKL levels and alleviates vinblastine-induced myocardial injury both in vitro and in vivo. This study indicates that necroptosis participated in vinblastine-evoked myocardial cell death partially, which would be a potential target for relieving the chemotherapy-related myocardial damage.


Assuntos
Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Necroptose , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Vimblastina/toxicidade , Animais , Antineoplásicos Fitogênicos/toxicidade , Masculino , Traumatismo por Reperfusão Miocárdica/induzido quimicamente , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
10.
J Peripher Nerv Syst ; 26(2): 216-226, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33683765

RESUMO

Peripheral neuropathy is a common side effect of paclitaxel. Clinical studies suggest that different paclitaxel formulations influence the severity and time course of paclitaxel-induced peripheral neuropathy. We compared two paclitaxel formulations, nanoparticle albumin-bound paclitaxel (nab-paclitaxel) and Cremophor EL paclitaxel (CreEL-paclitaxel), for their toxicity, distribution, and clearance in the peripheral nervous system. Neuronal F11 cells were used to detect changes in morphology, cell nuclei size, and cell viability after nab- or CreEL-paclitaxel treatment via MTT Assay and immunohistochemistry. C57BL/6 mice were treated with 50 mg/kg of nab-paclitaxel or CreEL-paclitaxel. Paclitaxel levels in serum, liver, dorsal root ganglia (DRG), and sciatic nerve (SCN) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Accumulation of paclitaxel in DRG neurons and SCN was visualized by immunostainings. Neurotoxicity was evaluated after a 4-week treatment regime with nab- or CreEL-paclitaxel by nerve morphology, behavioral, and functional assays. In vitro cell nuclei size and morphology were similar between the two treatment groups. Viability was increased in neurons exposed to nab-paclitaxel compared to CreEL-paclitaxel. In vivo paclitaxel mostly accumulated in DRG. SCN displayed lower paclitaxel uptake. The two paclitaxel formulations mainly accumulated in neurofilament 200-positive large-caliber neurons and less in Isolectin B4-, or calcitonin gene-related peptide-positive small-caliber neurons. Sensory nerve conduction studies demonstrated increased sensory latencies after 11 days in nab-paclitaxel treated animals, while an increase occurred after 22 days in CreEL-paclitaxel treated animals. Behavioral testing did not reveal significant differences between the different groups. Skin denervation, axon count, myelin thickness, and F4/80-positive cell accumulation were comparable between the two treatment groups. Our findings indicate that different drug formulations impact the severity of neuropathy induced by paclitaxel via different tissue uptake. Neurotoxicity was comparable between the two paclitaxel formulations.


Assuntos
Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/toxicidade , Cromatografia Líquida , Composição de Medicamentos , Gânglios Espinais , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Espectrometria de Massas em Tandem
11.
Mol Biol Rep ; 48(4): 3827-3840, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33895972

RESUMO

Ribosome inactivating proteins (RIPs) as family of anti-cancer drugs recently received much attention due to their interesting anti-cancer mechanism. In spite of small drugs, RIPs use the large-size effect (LSE) to prevent the efflux process governed by drug resistance transporters (DRTs) which prevents inside of the cells against drug transfection. There are many clinical translation obstacles that severely restrict their applications especially their delivery approach to the tumor cells. As the main goal of this review, we will focus on trichosanthin (TCS) and gelonin (Gel) and other types, especially scorpion venom-derived RIPs to clarify that they are struggling with what types of bio-barriers and these challenges could be solved in cancer therapy science. Then, we will try to highlight recent state-of-the-arts in delivery of RIPs for cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Inativadoras de Ribossomos Tipo 1/toxicidade , Tricosantina/toxicidade , Animais , Antineoplásicos Fitogênicos/toxicidade , Humanos , Proteínas Inativadoras de Ribossomos Tipo 1/uso terapêutico , Venenos de Escorpião/uso terapêutico , Venenos de Escorpião/toxicidade , Bloqueadores dos Canais de Sódio/uso terapêutico , Bloqueadores dos Canais de Sódio/toxicidade , Tricosantina/uso terapêutico
12.
Brain ; 143(8): 2421-2436, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830219

RESUMO

Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Células Receptoras Sensoriais/metabolismo , Vincristina/toxicidade , Animais , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos
13.
BMC Vet Res ; 17(1): 198, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034733

RESUMO

BACKGROUND: Betulin, a natural pentacyclic triterpene with the lupane structure that is present in significant amounts in the outer bark of birch, is known for its broad array of biological and pharmacological properties. Betulin has attracted attention as a potential, natural-origin antimicrobial substance. The literature describes it as selectively toxic to neoplastic cells but safe for normal cells. The research aim was to evaluate the basal cytotoxicity of betulin towards fish (BF-2) and murine (NIH/3T3) fibroblasts. We used four colorimetric tests that provide a preliminary evaluation of possible mechanisms of the cytotoxicity of a compound to assess the degree of the toxicity of betulin after 24, 48 and 72 h of incubation with cells: the MTT assay (mitochondrial activity assessment), the NRU assay (lysosomal membrane integrity assessment), the LDH assay (cellular membrane integrity assessment) and the SRB assay (total cellular protein content determination). RESULTS: The results revealed an exceptionally high sensitivity of mitochondria to the effect of betulin, with the other endpoints being less sensitive. Although murine fibroblasts were more vulnerable to the toxic effect of betulin than fish fibroblasts, the betulin CC50 values for both cell lines were comparable with analogous IC50 values determined by other researchers in studies involving cancerous cells. CONCLUSIONS: The results indicate the need to verify the claim about the selective toxicity of betulin towards malignant cells and to conduct safety/toxicity tests before any potential therapeutic use of betulin in veterinary medicine.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Fibroblastos/efeitos dos fármacos , Triterpenos/toxicidade , Células 3T3 , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular , Citotoxinas/toxicidade , Dimetil Sulfóxido/toxicidade , Peixes , L-Lactato Desidrogenase/metabolismo , Camundongos , Vermelho Neutro/metabolismo , Solubilidade , Sais de Tetrazólio/metabolismo , Tiazóis/metabolismo , Triterpenos/química , Triterpenos/farmacologia
14.
Arch Toxicol ; 95(4): 1349-1365, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33523262

RESUMO

A major challenge in current cancer therapy is still the treatment of metastatic melanomas of the skin. BH3 mimetics represent a novel group of substances inducing apoptosis. In this study, we investigated the cytotoxic effect of (±) gossypol (GP), a natural compound from cotton seed, on A375 melanoma cells and the underlying biochemical mechanisms. To prevent undesired side effects due to toxicity on normal (healthy) cells, concentrations only toxic for tumor cells have been elaborated. Viability assays were performed to determine the cytotoxicity of GP in A375 melanoma and normal (healthy) cells. For the majority of experiments, a concentration of 2.5 µM GP was used resulting in a ROS-independent but caspase-dependent cell death of A375 melanoma cells. At this level, GP was non-toxic for normal human epidermal melanocytes. GP has a very short half-life, however, it was demonstrated that only the "parent" compound and not decomposition products are responsible for the cytotoxic effect in A375 melanoma cells. GP significantly decreased mitochondrial membrane potential accompanied by a Drp1-dependent loss of mitochondrial integrity (fragmentation) in tumor cells. Taken together, GP induced a ROS-independent intrinsic apoptosis leading to the conclusion that within a specific concentration range, GP may work as effective anticancer drug without harmful side effects.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Gossipol/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Gossipol/toxicidade , Humanos , Melanoma/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/patologia
15.
Proc Natl Acad Sci U S A ; 115(42): 10654-10659, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30257945

RESUMO

Axon degeneration, a hallmark of chemotherapy-induced peripheral neuropathy (CIPN), is thought to be caused by a loss of the essential metabolite nicotinamide adenine dinucleotide (NAD+) via the prodegenerative protein SARM1. Some studies challenge this notion, however, and suggest that an aberrant increase in a direct precursor of NAD+, nicotinamide mononucleotide (NMN), rather than loss of NAD+, is responsible. In support of this idea, blocking NMN accumulation in neurons by expressing a bacterial NMN deamidase protected axons from degeneration. We hypothesized that protection could similarly be achieved by reducing NMN production pharmacologically. To achieve this, we took advantage of an alternative pathway for NAD+ generation that goes through the intermediate nicotinic acid mononucleotide (NAMN), rather than NMN. We discovered that nicotinic acid riboside (NAR), a precursor of NAMN, administered in combination with FK866, an inhibitor of the enzyme nicotinamide phosphoribosyltransferase that produces NMN, protected dorsal root ganglion (DRG) axons against vincristine-induced degeneration as well as NMN deamidase. Introducing a different bacterial enzyme that converts NAMN to NMN reversed this protection. Collectively, our data indicate that maintaining NAD+ is not sufficient to protect DRG neurons from vincristine-induced axon degeneration, and elevating NMN, by itself, is not sufficient to cause degeneration. Nonetheless, the combination of FK866 and NAR, which bypasses NMN formation, may provide a therapeutic strategy for neuroprotection.


Assuntos
Acrilamidas/farmacologia , NAD/metabolismo , Degeneração Neural/prevenção & controle , Neurônios/efeitos dos fármacos , Niacinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/análogos & derivados , Piperidinas/farmacologia , Vincristina/toxicidade , Animais , Antineoplásicos Fitogênicos/toxicidade , Combinação de Medicamentos , Francisella tularensis/enzimologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Niacinamida/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Compostos de Piridínio
16.
Drug Chem Toxicol ; 44(4): 427-436, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025581

RESUMO

Aralia elata Seem. is a traditional folk Chinese medicinal plant and its leaves have been used to treat many diseases. We aimed to evaluate the anti-breast cancer activity and safety pharmacology of the ethanol extract of A. elata Seem. leaves (ELE). Cytotoxicity was evaluated on human tumor cell lines by MTT assay in vitro. A tumor bearing-nude mice model was used to assess antitumor activity in vivo. Cell apoptosis was determined by Hoechst 33258 staining, flow cytometry and TUNEL staining. The protein levels were determined by western-blotting and immunohistochemical staining. In safety evaluation, ICR mice and beagle dogs were orally administered ELE at different doses to determine its adverse effects on the central nervous system and cardiorespiratory system. ELE significantly inhibited tumor growth and induced cell apoptosis in MCF-7 cells in vitro and in vivo. The protein levels including caspase-3, caspase-9, bax, bcl-2, PARP, and cytochrome c were significantly changed. For the central nervous system, no treatment-related changes in behavior, motor activity or coordination were observed in mice. For the cardiorespiratory system, no significant differences in cardiorespiratory parameters including heart rate, PR interval, RR interval, P wave duration, QRS duration, QTcF interval, respiratory frequency, tidal volume, body temperature, and blood pressure were observed in beagle dogs between the ELE treatment and control group. In conclusion, ELE possessed anti-breast cancer activity by activating a mitochondrial-mediated apoptotic pathway with high biological safety in animals, which indicates it could be a potential therapeutic agent for treating human breast cancer in the future.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Aralia/química , Neoplasias da Mama/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cães , Relação Dose-Resposta a Droga , Etanol/química , Feminino , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , Extratos Vegetais/administração & dosagem , Extratos Vegetais/toxicidade , Folhas de Planta , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Drug Chem Toxicol ; 44(1): 84-91, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30554535

RESUMO

Cancer is a common disease threatening human health, chemotherapy is widely used in clinical treatment of cancer, but chemotherapy-induced peripheral neuropathy (CIPN) has a relevant impact on life quality of cancer patients. Administration of gastrodin can relieve chronic pain to cancer patients with CIPN and attenuated the inflammatory response by reducing the expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). However, its exact molecular mechanisms remain unclear. In this study, we established an animal model of CIPN using Walker-256 breast cancer cell and vincristine. We found that the mechanical and thermal pain threshold of rats was decreased with treatment of vincristine. Using gastrodin could restore the mechanical and thermal threshold without interfering anti-tumor effect of vincristine. Gastrodin relieved CIPN by inhibiting activation of spinal microglia through Fractalkine (CX3CL1) and its receptor CX3CR1, then inhibited P38/mitogen-activated protein kinase (MAPK) signaling pathway and reduced the expression of inflammatory factor TNF-α and interleukin-1ß (IL-1ß). Taking together, our study demonstrated that gastrodin is a potential drug for the treatment of CIPN and likely to improve cancer patient's life quality.


Assuntos
Analgésicos/farmacologia , Antineoplásicos Fitogênicos/toxicidade , Álcoois Benzílicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Glucosídeos/farmacologia , Neuralgia/prevenção & controle , Doenças do Sistema Nervoso Periférico/prevenção & controle , Coluna Vertebral/efeitos dos fármacos , Vincristina/toxicidade , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Feminino , Interleucina-1beta , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Ratos Sprague-Dawley , Transdução de Sinais , Coluna Vertebral/metabolismo , Coluna Vertebral/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Int J Toxicol ; 40(1): 40-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33148080

RESUMO

Clinical use of the chemotherapeutic agent vincristine (VCR) is limited by chemotherapy-induced peripheral neuropathy (CiPN). A new formulation of VCR encapsulated by nanoparticles has been proposed and developed to alleviate CiPN. We hypothesized in nonclinical animals that the nanoparticle drug would be less neurotoxic due to different absorption and distribution properties to the peripheral nerve from the unencapsulated free drug. Here, we assessed whether VCR encapsulation in nanoparticles alleviates CiPN using behavioral gait analysis (CatWalk), histopathologic and molecular biological (RT-qPCR) approaches. Adult male C57BL/6 mice were assigned to 3 groups (empty nanoparticle, nano-VCR, solution-based VCR, each n = 8). After 15 days of dosing, animals were euthanized for tissue collection. It was shown that intraperitoneal administration of nano-VCR (0.15 mg/kg, every other day) and the empty nanoparticle resulted in no changes in gait parameters; whereas, injection of solution-based VCR resulted in decreased run speed and increased step cycle and stance (P < 0.05). There were no differences in incidence and severity of degeneration in the sciatic nerves between the nano-VCR-dosed and solution-based VCR-dosed animals. Likewise, decreased levels of a nervous tissue-enriched microRNA-183 in circulating blood did not show a significant difference between the nano- and solution-based VCR groups (P > 0.05). Empty nanoparticle administration did not cause any behavioral, microRNA, or structural changes. In conclusion, this study suggests that the nano-VCR formulation may alleviate behavioral changes in CiPN, but it does not improve the structural changes of CiPN in peripheral nerve. Nanoparticle properties may need to be optimized to improve biological observations.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Comportamento Animal/efeitos dos fármacos , Marcha/efeitos dos fármacos , Nanopartículas/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Vincristina/toxicidade , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361036

RESUMO

Hinokitiol is a natural tropolone derivative that is present in the heartwood of cupressaceous plants, and has been extensively investigated for its anti-inflammatory, antioxidant, and antitumor properties in the context of various diseases. To date, the effects of hinokitiol on endometrial cancer (EC) has not been explored. The purpose of our study was to investigate the anti-proliferative effects of hinokitiol on EC cells. Cell viability was determined with an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the quantification of apoptosis and reactive oxygen species (ROSs) was performed by using flow cytometry, while protein expression was measured with the Western blotting technique. Hinokitiol significantly suppressed cell proliferation through the inhibition of the expression of cell-cycle mediators, such as cyclin D1 and cyclin-dependent kinase 4 (CDK4), as well as the induction of the tumor suppressor protein p53. In addition, hinokitiol increased the number of apoptotic cells and increased the protein expression of cleaved-poly-ADP-ribose polymerase (PARP) and active cleaved-caspase-3, as well as the ratio of Bcl-2-associated X protein (Bax) to B-cell lymphoma 2 (Bcl-2). Interestingly, except for KLE cells, hinokitiol induced autophagy by promoting the accumulation of the microtubule-associated protein light chain 3B (LC3B) and reducing the sequestosome-1 (p62/SQSTM1) protein level. Furthermore, hinokitiol triggered ROS production and upregulated the phosphorylation of extracellular-signal-regulated kinase (p-ERK1/2) in EC cells. These results demonstrate that hinokitiol has potential anti-proliferative and pro-apoptotic benefits in the treatment of endometrial cancer cell lines (Ishikawa, HEC-1A, and KLE).


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Apoptose , Pontos de Checagem do Ciclo Celular , Neoplasias do Endométrio/metabolismo , Monoterpenos/toxicidade , Tropolona/análogos & derivados , Autofagia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Feminino , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tropolona/toxicidade , Proteína Supressora de Tumor p53/metabolismo
20.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199936

RESUMO

Vincristine (VCR) is a widely used chemotherapy drug that induced peripheral painful neuropathy. Yet, it still lacks an ideal therapeutic strategy. The transient receptor potential (TRP) channels, purinergic receptor (P2Y), and mitogen-activated protein kinase (MAPK) signaling play a crucial role in the pathogenesis of neuropathic pain. Withametelin (WMT), a potential Phytosteroid isolated from datura innoxa, exhibits remarkable neuroprotective properties. The present investigation was designed to explore the effect of withametelin on VCR-induced neuropathic pain and its underlying molecular mechanism. Initially, the neuroprotective potential of WMT was confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. To develop potential candidates for neuropathic pain treatment, a VCR-induced neuropathic pain model was established. Vincristine (75 µg/kg) was administered intraperitoneally (i.p.) for 10 consecutive days (day 1-10) for the induction of neuropathic pain. Gabapentin (GBP) (60 mg/kg, i.p.) and withametelin (0.1 and 1 mg/kg i.p.) treatments were given after the completion of VCR injection on the 11th day up to 21 days. The results revealed that WMT significantly reduced VCR-induced pain hypersensitivity, including mechanical allodynia, cold allodynia, and thermal hyperalgesia. It reversed the VCR-induced histopathological changes in the brain, spinal cord, and sciatic nerve. It inhibited VCR-induced changes in the biochemical composition of the myelin sheath of the sciatic nerve. It markedly downregulated the expression levels of TRPV1 (transient receptor potential vanilloid 1); TRPM8 (Transient receptor potential melastatin 8); and P2Y nociceptors and MAPKs signaling, including ERK (Extracellular Signal-Regulated Kinase), JNK (c-Jun N-terminal kinase), and p-38 in the spinal cord. It suppressed apoptosis by regulating Bax (Bcl2-associated X-protein), Bcl-2 (B-cell-lymphoma-2), and Caspase-3 expression. It considerably attenuated inflammatory cytokines, oxidative stress, and genotoxicity. This study suggests that WMT treatment suppressed vincristine-induced neuropathic pain by targeting the TRPV1/TRPM8/P2Y nociceptors and MAPK signaling.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Nociceptores/efeitos dos fármacos , Fitosteróis/farmacologia , Receptores Purinérgicos P2Y/química , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPV/antagonistas & inibidores , Vincristina/toxicidade , Animais , Antineoplásicos Fitogênicos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA