Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2314314121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865262

RESUMO

Pyruvate lies at a pivotal node of carbon metabolism in eukaryotes. It is involved in diverse metabolic pathways in multiple organelles, and its interorganelle shuttling is crucial for cell fitness. Many apicomplexan parasites harbor a unique organelle called the apicoplast that houses metabolic pathways like fatty acid and isoprenoid precursor biosyntheses, requiring pyruvate as a substrate. However, how pyruvate is supplied in the apicoplast remains enigmatic. Here, deploying the zoonotic parasite Toxoplasma gondii as a model apicomplexan, we identified two proteins residing in the apicoplast membranes that together constitute a functional apicoplast pyruvate carrier (APC) to mediate the import of cytosolic pyruvate. Depletion of APC results in reduced activities of metabolic pathways in the apicoplast and impaired integrity of this organelle, leading to parasite growth arrest. APC is a pyruvate transporter in diverse apicomplexan parasites, suggesting a common strategy for pyruvate acquisition by the apicoplast in these clinically relevant intracellular pathogens.


Assuntos
Apicoplastos , Ácido Pirúvico , Toxoplasma , Apicoplastos/metabolismo , Toxoplasma/metabolismo , Ácido Pirúvico/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Animais , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Transporte Biológico , Redes e Vias Metabólicas
2.
Nucleic Acids Res ; 52(13): 7843-7862, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38888125

RESUMO

The human malaria parasite Plasmodium falciparum genome is among the most A + T rich, with low complexity regions (LCRs) inserted in coding sequences including those for proteins targeted to its essential relict plastid (apicoplast). Replication of the apicoplast genome (plDNA), mediated by the atypical multifunctional DNA polymerase PfPrex, would require additional enzymatic functions for lagging strand processing. We identified an apicoplast-targeted, [4Fe-4S]-containing, FEN/Exo (PfExo) with a long LCR insertion and detected its interaction with PfPrex. Distinct from other known exonucleases across organisms, PfExo recognized a wide substrate range; it hydrolyzed 5'-flaps, processed dsDNA as a 5'-3' exonuclease, and was a bipolar nuclease on ssDNA and RNA-DNA hybrids. Comparison with the rodent P. berghei ortholog PbExo, which lacked the insertion and [4Fe-4S], revealed interspecies functional differences. The insertion-deleted PfExoΔins behaved like PbExo with a limited substrate repertoire because of compromised DNA binding. Introduction of the PfExo insertion into PbExo led to gain of activities that the latter initially lacked. Knockout of PbExo indicated essentiality of the enzyme for survival. Our results demonstrate the presence of a novel apicoplast exonuclease with a functional LCR that diversifies substrate recognition, and identify it as the candidate flap-endonuclease and RNaseH required for plDNA replication and maintenance.


Assuntos
Apicoplastos , Plasmodium falciparum , Apicoplastos/metabolismo , Apicoplastos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Exonucleases/metabolismo , Exonucleases/genética , Replicação do DNA , Animais , Mutagênese Insercional , Especificidade da Espécie , Humanos , DNA/metabolismo , DNA/química
3.
Proc Natl Acad Sci U S A ; 120(28): e2214765120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406097

RESUMO

The malaria parasite Plasmodium falciparum has a nonphotosynthetic plastid called the apicoplast, which contains its own genome. Regulatory mechanisms for apicoplast gene expression remain poorly understood, despite this organelle being crucial for the parasite life cycle. Here, we identify a nuclear-encoded apicoplast RNA polymerase σ subunit (sigma factor) which, along with the α subunit, appears to mediate apicoplast transcript accumulation. This has a periodicity reminiscent of parasite circadian or developmental control. Expression of the apicoplast subunit gene, apSig, together with apicoplast transcripts, increased in the presence of the blood circadian signaling hormone melatonin. Our data suggest that the host circadian rhythm is integrated with intrinsic parasite cues to coordinate apicoplast genome transcription. This evolutionarily conserved regulatory system might be a future target for malaria treatment.


Assuntos
Apicoplastos , Malária , Parasitos , Animais , Apicoplastos/genética , Apicoplastos/metabolismo , Parasitos/genética , Parasitos/metabolismo , Sinais (Psicologia) , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malária/metabolismo , Proteínas de Protozoários/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(34): e2309043120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590416

RESUMO

Toxoplasma gondii is responsible for toxoplasmosis, a disease that can be serious when contracted during pregnancy, but can also be a threat for immunocompromised individuals. Acute infection is associated with the tachyzoite form that spreads rapidly within the host. However, under stress conditions, some parasites can differentiate into cyst-forming bradyzoites, residing mainly in the central nervous system, retina and muscle. Because this latent form of the parasite is resistant to all currently available treatments, and is central to persistence and transmission of the parasite, specific therapeutic strategies targeting this developmental stage need to be found. T. gondii contains a plastid of endosymbiotic origin called the apicoplast, which is an appealing drug target because it is essential for tachyzoite viability and contains several key metabolic pathways that are largely absent from the mammalian host. Its function in bradyzoites, however, is unknown. Our objective was thus to study the contribution of the apicoplast to the viability and persistence of bradyzoites during chronic toxoplasmosis. We have used complementary strategies based on stage-specific promoters to generate conditional bradyzoite mutants of essential apicoplast genes. Our results show that specifically targeting the apicoplast in both in vitro or in vivo-differentiated bradyzoites leads to a loss of long-term bradyzoite viability, highlighting the importance of this organelle for this developmental stage. This validates the apicoplast as a potential area to look for therapeutic targets in bradyzoites, with the aim to interfere with this currently incurable parasite stage.


Assuntos
Apicoplastos , Cistos , Toxoplasma , Toxoplasmose , Animais , Feminino , Gravidez , Humanos , Toxoplasma/genética , Sistema Nervoso Central , Mamíferos
5.
EMBO J ; 40(16): e107247, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34031901

RESUMO

Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron-sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood-stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood-stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Apicoplastos , Ácido Pantotênico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética
6.
PLoS Pathog ; 19(10): e1011713, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37883328

RESUMO

Isoprenoid precursor synthesis is an ancient and fundamental function of plastid organelles and a critical metabolic activity of the apicoplast in Plasmodium malaria parasites [1-3]. Over the past decade, our understanding of apicoplast properties and functions has increased enormously [4], due in large part to our ability to rescue blood-stage parasites from apicoplast-specific dysfunctions by supplementing cultures with isopentenyl pyrophosphate (IPP), a key output of this organelle [5,6]. In this Pearl, we explore the interdependence between isoprenoid metabolism and apicoplast biogenesis in P. falciparum and highlight critical future questions to answer.


Assuntos
Apicoplastos , Malária Falciparum , Parasitos , Animais , Parasitos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malária Falciparum/parasitologia , Proteínas de Protozoários/metabolismo
7.
PLoS Pathog ; 18(3): e1010313, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298557

RESUMO

Apicomplexa are obligate intracellular parasites responsible for major human infectious diseases such as toxoplasmosis and malaria, which pose social and economic burdens around the world. To survive and propagate, these parasites need to acquire a significant number of essential biomolecules from their hosts. Among these biomolecules, lipids are a key metabolite required for parasite membrane biogenesis, signaling events, and energy storage. Parasites can either scavenge lipids from their host or synthesize them de novo in a relict plastid, the apicoplast. During their complex life cycle (sexual/asexual/dormant), Apicomplexa infect a large variety of cells and their metabolic flexibility allows them to adapt to different host environments such as low/high fat content or low/high sugar levels. In this review, we discuss the role of lipids in Apicomplexa parasites and summarize recent findings on the metabolic mechanisms in host nutrient adaptation.


Assuntos
Apicomplexa , Apicoplastos , Parasitos , Animais , Apicomplexa/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipídeos
8.
PLoS Pathog ; 18(11): e1010922, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36318587

RESUMO

Phosphoinositides are important second messengers that regulate key cellular processes in eukaryotes. While it is known that a single phosphoinositol-3 kinase (PI3K) catalyses the formation of 3'-phosphorylated phosphoinositides (PIPs) in apicomplexan parasites like Plasmodium and Toxoplasma, how its activity and PI3P formation is regulated has remained unknown. Present studies involving a unique Vps15 like protein (TgVPS15) in Toxoplasma gondii provides insight into the regulation of phosphatidyl-3-phosphate (PI3P) generation and unravels a novel pathway that regulates parasite development. Detailed investigations suggested that TgVPS15 regulates PI3P formation in Toxoplasma gondii, which is important for the inheritance of the apicoplast-a plastid like organelle present in most apicomplexans and parasite replication. Interestingly, TgVPS15 also regulates autophagy in T. gondii under nutrient-limiting conditions as it promotes autophagosome formation. For both these processes, TgVPS15 uses PI3P-binding protein TgATG18 and regulates trafficking and conjugation of TgATG8 to the apicoplast and autophagosomes, which is important for biogenesis of these organelles. TgVPS15 has a protein kinase domain but lacks several key residues conserved in conventional protein kinases. Interestingly, two critical residues in its active site are important for PI3P formation and parasitic functions of this kinase. Collectively, these studies unravel a signalling cascade involving TgVPS15, a novel effector of PI3-kinase in T. gondii and possibly other Apicomplexa, that regulate critical processes like apicoplast biogenesis and autophagy.


Assuntos
Apicoplastos , Parasitos , Toxoplasma , Animais , Apicoplastos/fisiologia , Toxoplasma/metabolismo , Autofagia , Autofagossomos/metabolismo , Parasitos/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Protozoários/metabolismo
9.
PLoS Pathog ; 18(11): e1011009, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36449552

RESUMO

Many apicomplexan parasites harbor a non-photosynthetic plastid called the apicoplast, which hosts important metabolic pathways like the methylerythritol 4-phosphate (MEP) pathway that synthesizes isoprenoid precursors. Yet many details in apicoplast metabolism are not well understood. In this study, we examined the physiological roles of four glycolytic enzymes in the apicoplast of Toxoplasma gondii. Many glycolytic enzymes in T. gondii have two or more isoforms. Endogenous tagging each of these enzymes found that four of them were localized to the apicoplast, including pyruvate kinase2 (PYK2), phosphoglycerate kinase 2 (PGK2), triosephosphate isomerase 2 (TPI2) and phosphoglyceraldehyde dehydrogenase 2 (GAPDH2). The ATP generating enzymes PYK2 and PGK2 were thought to be the main energy source of the apicoplast. Surprisingly, deleting PYK2 and PGK2 individually or simultaneously did not cause major defects on parasite growth or virulence. In contrast, TPI2 and GAPDH2 are critical for tachyzoite proliferation. Conditional depletion of TPI2 caused significant reduction in the levels of MEP pathway intermediates and led to parasite growth arrest. Reconstitution of another isoprenoid precursor synthesis pathway called the mevalonate pathway in the TPI2 depletion mutant partially rescued its growth defects. Similarly, knocking down the GAPDH2 enzyme that produces NADPH also reduced isoprenoid precursor synthesis through the MEP pathway and inhibited parasite proliferation. In addition, it reduced de novo fatty acid synthesis in the apicoplast. Together, these data suggest a model that the apicoplast dwelling TPI2 provides carbon source for the synthesis of isoprenoid precursor, whereas GAPDH2 supplies reducing power for pathways like MEP, fatty acid synthesis and ferredoxin redox system in T. gondii. As such, both enzymes are critical for parasite growth and serve as potential targets for anti-toxoplasmic intervention designs. On the other hand, the dispensability of PYK2 and PGK2 suggest additional sources for energy in the apicoplast, which deserves further investigation.


Assuntos
Apicoplastos , Parasitos , Toxoplasma , Animais , Toxoplasma/metabolismo , Redes e Vias Metabólicas , Parasitos/metabolismo , Ácido Pirúvico/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
10.
Vet Res ; 55(1): 10, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233899

RESUMO

Toxoplasma gondii is among the most important parasites worldwide. The apicoplast is a unique organelle shared by all Apicomplexan protozoa. Increasing lines of evidence suggest that the apicoplast possesses its own ubiquitination system. Deubiquitination is a crucial step executed by deubiquitinase (DUB) during protein ubiquitination. While multiple components of ubiquitination have been identified in T. gondii, the deubiquitinases involved remain unknown. The aim of the current study was to delineate the localization of TgOTU7 and elucidate its functions. TgOTU7 was specifically localized at the apicoplast, and its expression was largely regulated during the cell cycle. Additionally, TgOTU7 efficiently breaks down ubiquitin chains, exhibits linkage-nonspecific deubiquitinating activity and is critical for the lytic cycle and apicoplast biogenesis, similar to the transcription of the apicoplast genome and the nuclear genes encoding apicoplast-targeted proteins. Taken together, the results indicate that the newly described deubiquitinase TgOTU7 specifically localizes to the apicoplast and affects the cell growth and apicoplast homeostasis of T. gondii.


Assuntos
Apicoplastos , Toxoplasma , Animais , Toxoplasma/genética , Apicoplastos/genética , Apicoplastos/metabolismo , Ciclo Celular , Homeostase , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
11.
J Biol Chem ; 298(8): 102243, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35810787

RESUMO

Like many other apicomplexan parasites, Toxoplasma gondii contains a plastid harboring key metabolic pathways, including the sulfur utilization factor (SUF) pathway that is involved in the biosynthesis of iron-sulfur clusters. These cofactors are crucial for a variety of proteins involved in important metabolic reactions, potentially including plastidic pathways for the synthesis of isoprenoid and fatty acids. It was shown previously that impairing the NFS2 cysteine desulfurase, involved in the first step of the SUF pathway, leads to an irreversible killing of intracellular parasites. However, the metabolic impact of disrupting the pathway remained unexplored. Here, we generated another mutant of this pathway, deficient in the SUFC ATPase, and investigated in details the phenotypic consequences of TgNFS2 and TgSUFC depletion on the parasites. Our analysis confirms that Toxoplasma SUF mutants are severely and irreversibly impacted in division and membrane homeostasis, and suggests a defect in apicoplast-generated fatty acids. However, we show that increased scavenging from the host or supplementation with exogenous fatty acids do not fully restore parasite growth, suggesting that this is not the primary cause for the demise of the parasites and that other important cellular functions were affected. For instance, we also show that the SUF pathway is key for generating the isoprenoid-derived precursors necessary for the proper targeting of GPI-anchored proteins and for parasite motility. Thus, we conclude plastid-generated iron-sulfur clusters support the functions of proteins involved in several vital downstream cellular pathways, which implies the SUF machinery may be explored for new potential anti-Toxoplasma targets.


Assuntos
Apicoplastos , Proteínas Ferro-Enxofre , Proteínas de Protozoários , Toxoplasma , Apicoplastos/genética , Apicoplastos/metabolismo , Ácidos Graxos/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Plastídeos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Terpenos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
12.
J Biol Chem ; 298(1): 101468, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896149

RESUMO

Apicomplexan parasites, such as Toxoplasma gondii, are unusual in that each cell contains a single apicoplast, a plastid-like organelle that compartmentalizes enzymes involved in the essential 2C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis. The last two enzymatic steps in this organellar pathway require electrons from a redox carrier. However, the small iron-sulfur cluster-containing protein ferredoxin, a likely candidate for this function, has not been investigated in this context. We show here that inducible knockdown of T. gondii ferredoxin results in progressive inhibition of growth and eventual parasite death. Surprisingly, this phenotype is not accompanied by ultrastructural changes in the apicoplast or overall cell morphology. The knockdown of ferredoxin was instead associated with a dramatic decrease in cellular levels of the last two metabolites in isoprenoid biosynthesis, 1-hydroxy-2-methyl-2-(E)- butenyl-4-pyrophosphate, and isomeric dimethylallyl pyrophosphate/isopentenyl pyrophosphate. Ferredoxin depletion was also observed to impair gliding motility, consistent with isoprenoid metabolites being important for dolichol biosynthesis, protein prenylation, and modification of other proteins involved in motility. Significantly, pharmacological inhibition of isoprenoid synthesis of the host cell exacerbated the impact of ferredoxin depletion on parasite replication, suggesting that the slow onset of parasite death after ferredoxin depletion is because of isoprenoid scavenging from the host cell and leading to partial compensation of the depleted parasite metabolites upon ferredoxin knockdown. Overall, these findings show that ferredoxin has an essential physiological function as an electron donor for the 2C-methyl-D-erythritol 4-phosphate pathway and is a potential drug target for apicomplexan parasites.


Assuntos
Apicoplastos , Ferredoxinas , Proteínas Ferro-Enxofre , Proteínas de Protozoários , Toxoplasma , Apicoplastos/genética , Apicoplastos/metabolismo , Vias Biossintéticas , Difosfatos/metabolismo , Elétrons , Eritritol/análogos & derivados , Eritritol/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fosfatos Açúcares/metabolismo , Terpenos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
13.
Protein Expr Purif ; 202: 106187, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36216219

RESUMO

Recombinant expression and purification of proteins have become a staple of modern drug discovery as it enables more precise in vitro analyses of drug targets, which may help obtain biochemical and biophysical parameters of a known enzyme and even uncover unknown characteristics indicative of novel enzymatic functions. Such information is often necessary to prepare adequate screening assays and drug-discovery experiments in general. Toxoplasma gondii is an obligate protozoan parasite that is a member of the phylum Apicomplexa, can develop several neuro-degenerative symptoms and, in specific cases, certain death for human hosts. Its relict non-photosynthetic plastid, the apicoplast, harbours a unique de novo long-chain fatty acid synthesis pathway of a prokaryotic character, FASII. The FASII pathway shows plasticity and, is essential for many intracellular and membranal components, along with fatty acid uptake via salvaging from the host, therefore, its disruption causes parasite death. TgFabG, a FASII enzyme responsible for a single reduction step in the pathway, was recombinantly expressed, purified and biochemically and biophysically characterised in this study. The bioengineering hurdle of expressing the recombinant gene of a eukaryotic, signal peptide-containing protein in a prokaryotic system was overcome for the apicomplexan enzyme TgFabG, by truncating the N-terminal signal peptide. TgFabG was ultimately recombinantly produced in a plasmid expression vector from its 1131 base pair gene, purified as 260 and 272 amino acid proteins using a hexahistidine (6 × Histag) affinity chromatography and its biochemical (enzyme activity and kinetics) and biophysical characteristics were analysed in vitro.


Assuntos
Apicoplastos , Toxoplasma , Humanos , Apicoplastos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Proteína de Transporte de Acila/metabolismo , Oxirredutases/metabolismo , Ácidos Graxos/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(24): 13719-13729, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482878

RESUMO

The human malaria parasite, Plasmodium falciparum, contains an essential plastid called the apicoplast. Most apicoplast proteins are encoded by the nuclear genome and it is unclear how the plastid proteome is regulated. Here, we study an apicoplast-localized caseinolytic-protease (Clp) system and how it regulates organelle proteostasis. Using null and conditional mutants, we demonstrate that the P. falciparum Clp protease (PfClpP) has robust enzymatic activity that is essential for apicoplast biogenesis. We developed a CRISPR/Cas9-based system to express catalytically dead PfClpP, which showed that PfClpP oligomerizes as a zymogen and is matured via transautocatalysis. The expression of both wild-type and mutant Clp chaperone (PfClpC) variants revealed a functional chaperone-protease interaction. Conditional mutants of the substrate-adaptor (PfClpS) demonstrated its essential function in plastid biogenesis. A combination of multiple affinity purification screens identified the Clp complex composition as well as putative Clp substrates. This comprehensive study reveals the molecular composition and interactions influencing the proteolytic function of the apicoplast Clp system and demonstrates its central role in the biogenesis of the plastid in malaria parasites.


Assuntos
Apicoplastos/enzimologia , Endopeptidase Clp/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Animais , Apicoplastos/genética , Endopeptidase Clp/genética , Humanos , Malária/parasitologia , Biogênese de Organelas , Plasmodium falciparum/genética , Proteólise , Proteínas de Protozoários/genética
15.
Biochemistry ; 61(23): 2742-2750, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36346714

RESUMO

Plasmodium falciparumis the most common and harmful causative agent of malaria worldwide. As a member of the phylum Apicomplexa, P. falciparum is characterized by the presence of a unique and essential organelle called the apicoplast. Reminiscent of an algal chloroplast, the apicoplast possesses its own genome, which is maintained by a single apicoplast DNA polymerase (apPol). Ribonucleotides misincorporated into the genome are among the most common lesions encountered by DNA polymerases, and the ability to replicate past these lesions varies widely among characterized enzymes. Here, we have investigated the ribonucleotide (rNTP) misincorporation frequency of apPol and determined its reverse transcriptase (RT) activity across templating ribonucleotides. Pre-steady-state kinetic experiments indicate that apPol does not have an unusually high discrimination between deoxy and ribonucleotides, with frequencies ranging between 104 and 106 depending on the identity of the ribonucleotide. Once incorporated into its template, apPol can replicate across ribonucleotides using its RT activity, but extension of a deoxynucleotide basepaired with the ribonucleotide is slow relative to a canonical basepair. Exonuclease assays indicate that apPol proofreads ribonucleotides an order of magnitude faster than extension, suggesting that most, but not all, misincorporated ribonucleotides will be excised. Although the components have not been identified, ribonucleotide excision repair or other tolerance mechanisms may exist in the P. falciparum apicoplast, and more targeted proteomic efforts will be needed to elucidate them.


Assuntos
Apicoplastos , Apicoplastos/genética , Ribonucleotídeos , Plasmodium falciparum/genética , Proteômica , DNA Polimerase Dirigida por DNA/genética , DNA/genética , DNA Polimerase Dirigida por RNA
16.
Biochemistry ; 61(21): 2319-2333, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36251801

RESUMO

Plasmodium, the causative agent of malaria, belongs to the phylum Apicomplexa. Most apicomplexans, including Plasmodium, contain an essential nonphotosynthetic plastid called the apicoplast that harbors its own genome that is replicated by a dedicated organellar replisome. This replisome employs a single DNA polymerase (apPol), which is expected to perform both replicative and translesion synthesis. Unlike other replicative polymerases, no processivity factor for apPol has been identified. While preliminary structural and biochemical studies have provided an overall characterization of apPol, the kinetic mechanism of apPol's activity remains unknown. We have used transient state methods to determine the kinetics of replicative and translesion synthesis by apPol and show that apPol has low processivity and efficiency while copying undamaged DNA. Moreover, while apPol can bypass oxidatively damaged lesions, the bypass is error-prone. Taken together, our results raise the following question─how does a polymerase with low processivity, efficiency, and fidelity (for translesion synthesis) faithfully replicate the apicoplast organellar DNA within the hostile environment of the human host? We hypothesize that interactions with putative components of the apicoplast replisome and/or an as-yet-undiscovered processivity factor transform apPol into an efficient and accurate enzyme.


Assuntos
Apicoplastos , Humanos , Plasmodium falciparum/genética , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/química , DNA
17.
J Biol Chem ; 296: 100338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33497624

RESUMO

ATPases Associated with diverse cellular Activities (AAA+) are a superfamily of proteins that typically assemble into hexameric rings. These proteins contain AAA+ domains with two canonical motifs (Walker A and B) that bind and hydrolyze ATP, allowing them to perform a wide variety of different functions. For example, AAA+ proteins play a prominent role in cellular proteostasis by controlling biogenesis, folding, trafficking, and degradation of proteins present within the cell. Several central proteolytic systems (e.g., Clp, Deg, FtsH, Lon, 26S proteasome) use AAA+ domains or AAA+ proteins to unfold protein substrates (using energy from ATP hydrolysis) to make them accessible for degradation. This allows AAA+ protease systems to degrade aggregates and large proteins, as well as smaller proteins, and feed them as linearized molecules into a protease chamber. This review provides an up-to-date and a comparative overview of the essential Clp AAA+ protease systems in Cyanobacteria (e.g., Synechocystis spp), plastids of photosynthetic eukaryotes (e.g., Arabidopsis, Chlamydomonas), and apicoplasts in the nonphotosynthetic apicomplexan pathogen Plasmodium falciparum. Recent progress and breakthroughs in identifying Clp protease structures, substrates, substrate adaptors (e.g., NblA/B, ClpS, ClpF), and degrons are highlighted. We comment on the physiological importance of Clp activity, including plastid biogenesis, proteostasis, the chloroplast Protein Unfolding Response, and metabolism, across these diverse lineages. Outstanding questions as well as research opportunities and priorities to better understand the essential role of Clp systems in cellular proteostasis are discussed.


Assuntos
Apicoplastos/enzimologia , Cianobactérias/enzimologia , Endopeptidase Clp/metabolismo , Plastídeos/enzimologia , Endopeptidase Clp/química , Plasmodium falciparum/enzimologia , Proteômica , Proteostase , Transdução de Sinais , Especificidade por Substrato
18.
PLoS Pathog ; 16(2): e1008316, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059044

RESUMO

Malaria parasites rely on a plastid organelle for survival during the blood stages of infection. However, the entire organelle is dispensable as long as the isoprenoid precursor, isopentenyl pyrophosphate (IPP), is supplemented in the culture medium. We engineered parasites to produce isoprenoid precursors from a mevalonate-dependent pathway, creating a parasite line that replicates normally after the loss of the apicoplast organelle. We show that carbon-labeled mevalonate is specifically incorporated into isoprenoid products, opening new avenues for researching this essential class of metabolites in malaria parasites. We also show that essential apicoplast proteins, such as the enzyme target of the drug fosmidomycin, can be deleted in this mevalonate bypass parasite line, providing a new method to determine the roles of other important apicoplast-resident proteins. Several antibacterial drugs kill malaria parasites by targeting basic processes, such as transcription, in the organelle. We used metabolomic and transcriptomic methods to characterize parasite metabolism after azithromycin treatment triggered loss of the apicoplast and found that parasite metabolism and the production of apicoplast proteins is largely unaltered. These results provide insight into the effects of apicoplast-disrupting drugs, several of which have been used to treat malaria infections in humans. Overall, the mevalonate bypass system provides a way to probe essential aspects of apicoplast biology and study the effects of drugs that target apicoplast processes.


Assuntos
Hemiterpenos/metabolismo , Ácido Mevalônico/metabolismo , Compostos Organofosforados/metabolismo , Plasmodium falciparum/metabolismo , Animais , Antibacterianos/farmacologia , Apicoplastos/genética , Apicoplastos/fisiologia , Azitromicina/metabolismo , Fosfomicina/análogos & derivados , Fosfomicina/farmacologia , Humanos , Malária/metabolismo , Malária/parasitologia , Parasitos/metabolismo , Plastídeos/parasitologia , Proteínas de Protozoários/metabolismo
19.
Cell Microbiol ; 23(1): e13266, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32975363

RESUMO

Malaria parasites are fast replicating unicellular organisms and require substantial amounts of folate for DNA synthesis. Despite the central role of this critical co-factor for parasite survival, only little is known about intraparasitic folate trafficking in Plasmodium. Here, we report on the expression, subcellular localisation and function of the parasite's folate transporter 2 (FT2) during life cycle progression in the murine malaria parasite Plasmodium berghei. Using live fluorescence microscopy of genetically engineered parasites, we demonstrate that FT2 localises to the apicoplast. In invasive P. berghei stages, a fraction of FT2 is also observed at the apical end. Upon genetic disruption of FT2, blood and liver infection, gametocyte production and mosquito colonisation remain unaltered. But in the Anopheles vector, FT2-deficient parasites develop inflated oocysts with unusual pulp formation consisting of numerous single-membrane vesicles, which ultimately fuse to form large cavities. Ultrastructural analysis suggests that this defect reflects aberrant sporoblast formation caused by abnormal vesicular traffic. Complete sporogony in FT2-deficient oocysts is very rare, and mutant sporozoites fail to establish hepatocyte infection, resulting in a complete block of parasite transmission. Our findings reveal a previously unrecognised organellar folate transporter that exerts critical roles for pathogen maturation in the arthropod vector.


Assuntos
Apicoplastos/metabolismo , Transportadores de Ácido Fólico/genética , Transportadores de Ácido Fólico/metabolismo , Ácido Fólico/metabolismo , Malária/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Animais , Anopheles/parasitologia , Hepatócitos/parasitologia , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Mosquitos Vetores , Oocistos/citologia , Oocistos/genética , Oocistos/metabolismo , Organismos Geneticamente Modificados , Plasmodium berghei/citologia , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo
20.
PLoS Biol ; 17(2): e3000136, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30726238

RESUMO

Endosymbiosis has driven major molecular and cellular innovations. Plasmodium spp. parasites that cause malaria contain an essential, non-photosynthetic plastid-the apicoplast-which originated from a secondary (eukaryote-eukaryote) endosymbiosis. To discover organellar pathways with evolutionary and biomedical significance, we performed a mutagenesis screen for essential genes required for apicoplast biogenesis in Plasmodium falciparum. Apicoplast(-) mutants were isolated using a chemical rescue that permits conditional disruption of the apicoplast and a new fluorescent reporter for organelle loss. Five candidate genes were validated (out of 12 identified), including a triosephosphate isomerase (TIM)-barrel protein that likely derived from a core metabolic enzyme but evolved a new activity. Our results demonstrate, to our knowledge, the first forward genetic screen to assign essential cellular functions to unannotated P. falciparum genes. A putative TIM-barrel enzyme and other newly identified apicoplast biogenesis proteins open opportunities to discover new mechanisms of organelle biogenesis, molecular evolution underlying eukaryotic diversity, and drug targets against multiple parasitic diseases.


Assuntos
Apicoplastos/genética , Genes Essenciais , Mutação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Triose-Fosfato Isomerase/genética , Apicoplastos/metabolismo , Sistemas CRISPR-Cas , Eritrócitos/parasitologia , Ontologia Genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismo , Anotação de Sequência Molecular , Mutagênese , Biogênese de Organelas , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Triose-Fosfato Isomerase/metabolismo , Sequenciamento Completo do Genoma , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA