Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Evol ; 91(4): 441-457, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149832

RESUMO

Aquaporins (AQPs) are integral membrane proteins responsible for water transport across cellular membranes in both prokaryotes and eukaryotes. A subfamily of AQPs, known as aquaglyceroporins (AQGPs), facilitate the transport of small solutes such as glycerol, water, and other solutes across cellular membranes. These proteins are involved in a variety of physiological processes, such as organogenesis, wound healing, and hydration. Although AQPs have been studied extensively in different species, their conservation patterns, phylogenetic relationships, and evolution in mammals remain unexplored. In the present study, 119 AQGP coding sequences from 31 mammalian species were analysed to identify conserved residues, gene organisation, and most importantly, the nature of AQGP gene selection. Repertoire analysis revealed the absence of AQP7, 9, and 10 genes in certain species of Primates, Rodentia, and Diprotodontia, although not all three genes were absent in a single species. Two Asparagine-Proline-Alanine (NPA) motifs located at the N- and C-terminal ends, aspartic acid (D) residues, and the ar/R region were conserved in AQP3, 9, and 10. Six exons encoding the functional MIP domain of AQGP genes were found to be conserved across mammalian species. Evolutionary analysis indicated signatures of positive selection in AQP7, 9, and 10 amongst different mammalian lineages. Furthermore, substitutions of certain amino acids located close to critical residues may alter AQGP functionality, which is crucial for substrate selectivity, pore formation, and transport efficiency required for the maintenance of homeostasis in different mammalian species.


Assuntos
Aquagliceroporinas , Aquaporinas , Animais , Aquagliceroporinas/genética , Aquagliceroporinas/química , Aquagliceroporinas/metabolismo , Filogenia , Sequência de Aminoácidos , Aquaporinas/química , Aquaporinas/genética , Aquaporinas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Água/metabolismo
2.
Biochim Biophys Acta Biomembr ; 1860(4): 887-894, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29069569

RESUMO

The vestibule loop regions of aquaglyceroporins are involved in accumulation of glycerol inside the channel pore. Even though most loop regions do not show high sequence similarity among aquaglyceroporins, loop E is highly conserved in aquaglyceroporins, but not in members of the homologous aquaporins. Specifically, a tryptophan residue is extremely conserved within this loop. We have investigated the role of this residue (Trp219) that deeply protrudes into the protein and potentially interacts with adjacent loops, using the E. coli aqualgyeroporin GlpF as a model. Replacement of Trp219 affects the activity of GlpF and impairs the stability of the tetrameric protein. Furthermore, we have identified an amino acid cluster involving Trp219 that stabilizes the GlpF tetramer. Based on our results we propose that Trp219 is key for formation of a defined vestibule structure, which is crucial for glycerol accumulation as well as for the stability of the active GlpF tetramer.


Assuntos
Aminoácidos/metabolismo , Aquagliceroporinas/metabolismo , Aquaporinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Triptofano/metabolismo , Aminoácidos/genética , Aquagliceroporinas/química , Aquagliceroporinas/genética , Aquaporinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glicerol/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Triptofano/genética
3.
J Membr Biol ; 250(6): 629-639, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28914342

RESUMO

Orthodox aquaporins are transmembrane channel proteins that facilitate rapid diffusion of water, while aquaglyceroporins facilitate the diffusion of small uncharged molecules such as glycerol and arsenic trioxide. Aquaglyceroporins play important roles in human physiology, in particular for glycerol metabolism and arsenic detoxification. We have developed a unique system applying the strain of the yeast Pichia pastoris, where the endogenous aquaporins/aquaglyceroporins have been removed and human aquaglyceroporins AQP3, AQP7, and AQP9 are recombinantly expressed enabling comparative permeability measurements between the expressed proteins. Using a newly established Nuclear Magnetic Resonance approach based on measurement of the intracellular life time of water, we propose that human aquaglyceroporins are poor facilitators of water and that the water transport efficiency is similar to that of passive diffusion across native cell membranes. This is distinctly different from glycerol and arsenic trioxide, where high glycerol transport efficiency was recorded.


Assuntos
Aquagliceroporinas/química , Água/química , Humanos , Espectroscopia de Ressonância Magnética
4.
Reprod Fertil Dev ; 29(6): 1249-1259, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27221122

RESUMO

The present study aimed to determine the localisation of aquaglyceroporins 3 (AQP3) and 7 (AQP7) in bull spermatozoa and their relationship with the sperm cell's resilience to withstand cryopreservation (i.e. cryotolerance). A total of 18 bull ejaculates were cryopreserved and their sperm quality analysed before and after freeze-thawing. The presence and localisation of AQP3 and AQP7 was determined through immunoblotting and immunocytochemistry. AQP3 was found in the mid-piece and AQP7 in the mid-piece and post-acrosomal region of bull spermatozoa. Immunoblotting showed specific signal bands at 30 and 60kDa for AQP3 and at 25kDa for AQP7. Neither the relative abundance of AQP3 and AQP7 nor their localisation patterns was altered by cryopreservation but individual differences between bull ejaculates were found in immunoblots. In order to determine whether these individual differences were related to sperm cryotolerance, bull ejaculates were classified as having good (GFE) or poor freezability (PFE) on the basis of their sperm quality after thawing. While the relative abundance of AQP3 before cryopreservation did not differ between ejaculates with GFE and PFE, the abundance of AQP7 was higher in GFE than in PFE ejaculates. This finding was further confirmed through principal component and linear regression analyses. In conclusion, the relative abundance of AQP7 in fresh semen may be used as a marker to predict bull sperm cryotolerance.


Assuntos
Aquagliceroporinas/metabolismo , Aquaporina 3/metabolismo , Criopreservação/veterinária , Preservação do Sêmen/veterinária , Espermatozoides/fisiologia , Acrossomo/fisiologia , Reação Acrossômica , Animais , Animais Endogâmicos , Aquagliceroporinas/química , Aquaporina 3/química , Biomarcadores/metabolismo , Bovinos , Sobrevivência Celular , Imuno-Histoquímica/veterinária , Modelos Lineares , Masculino , Microscopia Confocal , Peso Molecular , Análise de Componente Principal , Transporte Proteico , Reprodutibilidade dos Testes , Análise do Sêmen/veterinária , Preservação do Sêmen/efeitos adversos , Peça Intermédia do Espermatozoide/fisiologia , Espermatozoides/citologia
5.
J Recept Signal Transduct Res ; 36(6): 543-557, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26906718

RESUMO

There has been a fair bit of understanding on the structure-function relationship of Aquaporins (AQPs) from plants and vertebrates obtained from available X-ray crystallography data. However, there is a lacuna in understanding the structure of AQPs from sanguinivorous insects like the mosquito where it plays a crucial role in survival. In this study, we have built homology models for the Aedes aegypti AQPs, identified key channel lining residues and compared the structure and sequence with orthodox AQPs. Although Ar/R filter residues of AaAQP1 were exactly similar to orthodox AQPs, AaAQP2 has a substitution at LE1position possibly making it less efficient in high capacity water transport. The huge difference in the selectivity filter region of AaAQP3 suggests a different transport property for this channel. The changes observed in the H5 position of the filter of AaAQP4 and AaAQP5 may explain the presence of a larger pore aperture to permit the passage of larger solute molecules. AaAQP6 possesses a completely hydrophobic filter like that in mammalian super aquaporins. The identified key residues are pivotal in understanding the mechanism of action and gating of these channels.


Assuntos
Aedes/química , Aquagliceroporinas/química , Aquaporinas/química , Relação Estrutura-Atividade , Aedes/genética , Animais , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Simulação por Computador
6.
Biochim Biophys Acta ; 1840(5): 1482-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24076236

RESUMO

BACKGROUND: The yeast Saccharomyces cerevisiae provides unique opportunities to study roles and regulation of aqua/glyceroporins using frontline tools of genetics and genomics as well as molecular cell and systems biology. SCOPE OF REVIEW: S. cerevisiae has two similar orthodox aquaporins. Based on phenotypes mediated by gene deletion or overexpression as well as on their expression pattern, the yeast aquaporins play important roles in key aspects of yeast biology: establishment of freeze tolerance, during spore formation as well as determination of cell surface properties for substrate adhesion and colony formation. Exactly how the aquaporins perform those roles and the mechanisms that regulate their function under such conditions remain to be elucidated. S. cerevisiae also has two different aquaglyceroporins. While the role of one of them, Yfl054c, remains to be determined, Fps1 plays critical roles in osmoregulation by controlling the accumulation of the osmolyte glycerol. Fps1 communicates with two osmo-sensing MAPK signalling pathways to perform its functions but the details of Fps1 regulation remain to be determined. MAJOR CONCLUSIONS: Several phenotypes associated with aqua/glyceroporin function in yeasts have been established. However, how water and glycerol transport contribute to the observed effects is not understood in detail. Also many of the basic principles of regulation of yeast aqua/glyceroporins remain to be elucidated. GENERAL SIGNIFICANCE: Studying the yeast aquaporins and aquaglyceroporins offers rich insight into the life style, evolution and adaptive responses of yeast and rewards us with discoveries of unexpected roles and regulatory mechanisms of members of this ancient protein family. This article is part of a Special Issue entitled Aquaporins.


Assuntos
Aquagliceroporinas/fisiologia , Aquaporinas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Adaptação Fisiológica/fisiologia , Sequência de Aminoácidos , Aquagliceroporinas/química , Aquaporinas/química , Congelamento , Dados de Sequência Molecular
7.
Nucleic Acids Res ; 40(Database issue): D362-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22080560

RESUMO

The channel proteins belonging to the major intrinsic proteins (MIP) superfamily are diverse and are found in all forms of life. Water-transporting aquaporin and glycerol-specific aquaglyceroporin are the prototype members of the MIP superfamily. MIPs have also been shown to transport other neutral molecules and gases across the membrane. They have internal homology and possess conserved sequence motifs. By analyzing a large number of publicly available genome sequences, we have identified more than 1000 MIPs from diverse organisms. We have developed a database MIPModDB which will be a unified resource for all MIPs. For each MIP entry, this database contains information about the source, gene structure, sequence features, substitutions in the conserved NPA motifs, structural model, the residues forming the selectivity filter and channel radius profile. For selected set of MIPs, it is possible to derive structure-based sequence alignment and evolutionary relationship. Sequences and structures of selected MIPs can be downloaded from MIPModDB database which is freely available at http://bioinfo.iitk.ac.in/MIPModDB.


Assuntos
Bases de Dados de Proteínas , Proteínas de Membrana Transportadoras/química , Motivos de Aminoácidos , Aminoácidos Aromáticos/química , Aquagliceroporinas/química , Aquagliceroporinas/genética , Aquaporinas/química , Aquaporinas/genética , Arginina/química , Humanos , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Filogenia , Alinhamento de Sequência
8.
Nat Commun ; 15(1): 3985, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734677

RESUMO

Pentamidine and melarsoprol are primary drugs used to treat the lethal human sleeping sickness caused by the parasite Trypanosoma brucei. Cross-resistance to these two drugs has recently been linked to aquaglyceroporin 2 of the trypanosome (TbAQP2). TbAQP2 is the first member of the aquaporin family described as capable of drug transport; however, the underlying mechanism remains unclear. Here, we present cryo-electron microscopy structures of TbAQP2 bound to pentamidine or melarsoprol. Our structural studies, together with the molecular dynamic simulations, reveal the mechanisms shaping substrate specificity and drug permeation. Multiple amino acids in TbAQP2, near the extracellular entrance and inside the pore, create an expanded conducting tunnel, sterically and energetically allowing the permeation of pentamidine and melarsoprol. Our study elucidates the mechanism of drug transport by TbAQP2, providing valuable insights to inform the design of drugs against trypanosomiasis.


Assuntos
Aquagliceroporinas , Microscopia Crioeletrônica , Melarsoprol , Simulação de Dinâmica Molecular , Pentamidina , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Aquagliceroporinas/metabolismo , Aquagliceroporinas/química , Melarsoprol/metabolismo , Melarsoprol/química , Pentamidina/química , Pentamidina/metabolismo , Transporte Biológico , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Humanos
9.
J Biol Chem ; 287(28): 23562-70, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22593571

RESUMO

Aquaglyceroporins are transmembrane proteins belonging to the family of aquaporins, which facilitate the passage of specific uncharged solutes across membranes of cells. The yeast aquaglyceroporin Fps1 is important for osmoadaptation by regulating intracellular glycerol levels during changes in external osmolarity. Upon high osmolarity conditions, yeast accumulates glycerol by increased production of the osmolyte and by restricting glycerol efflux through Fps1. The extended cytosolic termini of Fps1 contain short domains that are important for regulating glycerol flux through the channel. Here we show that the transmembrane core of the protein plays an equally important role. The evidence is based on results from an intragenic suppressor mutation screen and domain swapping between the regulated variant of Fps1 from Saccharomyces cerevisiae and the hyperactive Fps1 ortholog from Ashbya gossypii. This suggests a novel mechanism for regulation of glycerol flux in yeast, where the termini alone are not sufficient to restrict Fps1 transport. We propose that glycerol flux through the channel is regulated by interplay between the transmembrane helices and the termini. This mechanism enables yeast cells to fine-tune intracellular glycerol levels at a wide range of extracellular osmolarities.


Assuntos
Aquagliceroporinas/metabolismo , Eremothecium/metabolismo , Glicerol/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Aquagliceroporinas/química , Aquagliceroporinas/genética , Sítios de Ligação/genética , Transporte Biológico , Eremothecium/genética , Teste de Complementação Genética , Glicina/genética , Glicina/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Concentração Osmolar , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Equilíbrio Hidroeletrolítico/genética
10.
Curr Top Membr ; 69: 325-58, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23046656

RESUMO

Arsenic is the most prevalent environmental toxic substance and ranks first on the U.S. Environmental Protection Agency's Superfund List. Arsenic is a carcinogen and a causative agent of numerous human diseases. Paradoxically arsenic is used as a chemotherapeutic agent for treatment of acute promyelocytic leukemia. Inorganic arsenic has two biological important oxidation states: As(V) (arsenate) and As(III) (arsenite). Arsenic uptake is adventitious because the arsenate and arsenite are chemically similar to required nutrients. Arsenate resembles phosphate and is a competitive inhibitor of many phosphate-utilizing enzymes. Arsenate is taken up by phosphate transport systems. In contrast, at physiological pH, the form of arsenite is As(OH)(3), which resembles organic molecules such as glycerol. Consequently, arsenite is taken into cells by aquaglyceroporin channels. Arsenic efflux systems are found in nearly every organism and evolved to rid cells of this toxic metalloid. These efflux systems include members of the multidrug resistance protein family and the bacterial exchangers Acr3 and ArsB. ArsB can also be a subunit of the ArsAB As(III)-translocating ATPase, an ATP-driven efflux pump. The ArsD metallochaperone binds cytosolic As(III) and transfers it to the ArsA subunit of the efflux pump. Knowledge of the pathways and transporters for arsenic uptake and efflux is essential for understanding its toxicity and carcinogenicity and for rational design of cancer chemotherapeutic drugs.


Assuntos
Arsênio/metabolismo , Aquagliceroporinas/química , Aquagliceroporinas/metabolismo , Arseniatos/química , Arseniatos/metabolismo , Arsênio/química , Arsenitos/química , Arsenitos/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transporte Biológico , Eucariotos/metabolismo , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Metalochaperonas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
11.
J Biol Chem ; 285(31): 23880-8, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20504761

RESUMO

Nodulin 26 (nod26) is a major intrinsic protein that constitutes the major protein component on the symbiosome membrane (SM) of N(2)-fixing soybean nodules. Functionally, nod26 forms a low energy transport pathway for water, osmolytes, and NH(3) across the SM. Besides their transport functions, emerging evidence suggests that high concentrations of major intrinsic proteins on membranes provide interaction and docking targets for various cytosolic proteins. Here it is shown that the C-terminal domain peptide of nod26 interacts with a 40-kDa protein from soybean nodule extracts, which was identified as soybean cytosolic glutamine synthetase GS(1)beta1 by mass spectrometry. Fluorescence spectroscopy assays show that recombinant soybean GS(1)beta1 binds the nod26 C-terminal domain with a 1:1 stoichiometry (K(d) = 266 nm). GS(1)beta1 also binds to isolated SMs, and this binding can be blocked by preincubation with the C-terminal peptide of nod26. In vivo experiments using either a split ubiquitin yeast two-hybrid system or bimolecular fluorescence complementation show that the four cytosolic GS isoforms expressed in soybean nodules interact with full-length nod26. The binding of GS, the principal ammonia assimilatory enzyme, to the conserved C-terminal domain of nod26, a transporter of NH(3), is proposed to promote efficient assimilation of fixed nitrogen, as well as prevent potential ammonia toxicity, by localizing the enzyme to the cytosolic side of the symbiosome membrane.


Assuntos
Aquagliceroporinas/química , Citosol/metabolismo , Glutamato-Amônia Ligase/química , Glycine max/enzimologia , Glycine max/metabolismo , Proteínas de Membrana/química , Proteínas de Plantas/química , Raízes de Plantas/enzimologia , Regulação da Expressão Gênica , Teste de Complementação Genética , Cinética , Espectrometria de Massas/métodos , Nitrogênio/química , Mapeamento de Interação de Proteínas , Isoformas de Proteínas , Estrutura Terciária de Proteína , Espectrometria de Fluorescência/métodos
12.
Proc Natl Acad Sci U S A ; 105(4): 1198-203, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18202181

RESUMO

Aquaporins and aquaglyceroporins form a family of pore proteins that facilitate the efficient and selective flux of small solutes across biological membranes. We studied the selectivity of aquaporin-1 (AQP1) and the bacterial glycerol facilitator, GlpF, for O(2), CO(2), NH(3), glycerol, urea, and water. Using molecular dynamics simulations, we calculated potentials of mean force for solute permeation along the aquaporin channels and compared them with the alternative pathway across the lipid bilayer. For small solutes permeating through AQP1, a remarkable anticorrelation between permeability and solute hydrophobicity was observed, whereas the opposite trend was observed for permeation through the membrane. This finding renders AQP1 a selective filter for small polar solutes, whereas GlpF was found to be highly permeable for small solutes and permeable for larger solutes. Surprisingly, not solute-channel but water-channel interactions were found to be the key determinant underlying the selectivity mechanism of aquaporins. Hence, a hydrophobic effect, together with steric restraints, determines the selectivity of aquaporins.


Assuntos
Aquagliceroporinas/química , Aquaporina 1/química , Amônia/química , Animais , Aquaporina 1/genética , Aquaporinas/química , Dióxido de Carbono/química , Bovinos , Biologia Computacional/métodos , Proteínas de Escherichia coli/química , Glicerol/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Oxigênio/química , Permeabilidade , Mutação Puntual , Transdução de Sinais/fisiologia , Soluções , Termodinâmica , Ureia/química , Água/química
13.
Sci Bull (Beijing) ; 66(15): 1550-1558, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654284

RESUMO

Human glycerol channel aquaporin 7 (AQP7) conducts glycerol release from adipocyte and enters the cells in pancreatic islets, muscles, and kidney tubules, and thus regulates glycerol metabolism in those tissues. Compared with other human aquaglyceroporins, AQP7 shows a less conserved "NPA" motif in the center cavity and a pair of aromatic residues at Ar/R selectivity filter. To understand the structural basis for the glycerol conductance, we crystallized the human AQP7 and determined the structure at 3.7 Å. A substrate binding pocket was found near the Ar/R filter where a glycerol molecule is bound and stabilized by R229. Glycerol uptake assay on human AQP7 as well as AQP3 and AQP10 demonstrated strong glycerol transportation activities at the physiological condition. The human AQP7 structure, in combination with the molecular dynamics simulation thereon, reveals a fully closed conformation with its permeation pathway strictly confined by the Ar/R filter at the exoplasmic side and the gate at the cytoplasmic side, and the binding of glycerol at the Ar/R filter plays a critical role in controlling the glycerol flux by driving the dislocation of the residues at narrowest parts of glycerol pathway in AQP7.


Assuntos
Aquagliceroporinas , Aquaporinas , Humanos , Glicerol/metabolismo , Aquaporinas/metabolismo , Aquagliceroporinas/química , Transporte Biológico , Adipócitos/metabolismo
14.
Biochimie ; 188: 20-34, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33689852

RESUMO

Aquaglyceroporins are a group of the aquaporin (AQP) family of transmembrane water channels. While AQPs facilitate the passage of water, small solutes, and gases across biological membranes, aquaglyceroporins allow passage of water, glycerol, urea and some other solutes. Thanks to their glycerol permeability, aquaglyceroporins are involved in energy homeostasis. This review provides an overview of what is currently known concerning the functional implication and control of aquaglyceroporins in tissues involved in energy metabolism, i.e. liver, adipose tissue and endocrine pancreas. The expression, role and (dys)regulation of aquaglyceroporins in disorders affecting energy metabolism, and the potential relevance of aquaglyceroporins as drug targets to treat the alterations of the energy balance is also addressed.


Assuntos
Aquagliceroporinas/fisiologia , Metabolismo Energético , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Animais , Aquagliceroporinas/química , Humanos , Fígado/metabolismo , Fígado/fisiopatologia , Pâncreas/metabolismo , Pâncreas/fisiopatologia
15.
Commun Biol ; 4(1): 953, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376792

RESUMO

Major Intrinsic Proteins (MIPs) are membrane channels that permeate water and other small solutes. Some trypanosomatid MIPs mediate the uptake of antiparasitic compounds, placing them as potential drug targets. However, a thorough study of the diversity of these channels is still missing. Here we place trypanosomatid channels in the sequence-function space of the large MIP superfamily through a sequence similarity network. This analysis exposes that trypanosomatid aquaporins integrate a distant cluster from the currently defined MIP families, here named aquaporin X (AQPX). Our phylogenetic analyses reveal that trypanosomatid MIPs distribute exclusively between aquaglyceroporin (GLP) and AQPX, being the AQPX family expanded in the Metakinetoplastina common ancestor before the origin of the parasitic order Trypanosomatida. Synteny analysis shows how African trypanosomes specifically lost AQPXs, whereas American trypanosomes specifically lost GLPs. AQPXs diverge from already described MIPs on crucial residues. Together, our results expose the diversity of trypanosomatid MIPs and will aid further functional, structural, and physiological research needed to face the potentiality of the AQPXs as gateways for trypanocidal drugs.


Assuntos
Aquagliceroporinas/genética , Aquaporinas/genética , Proteínas de Protozoários/genética , Trypanosomatina/genética , Sequência de Aminoácidos , Aquagliceroporinas/química , Aquaporinas/química , Proteínas de Protozoários/química , Alinhamento de Sequência , Trypanosomatina/química
16.
Biochemistry ; 49(2): 279-86, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20000688

RESUMO

Like many other alpha-helical membrane proteins, the monomeric Escherichia coli aquaglyceroporin GlpF associates within cellular membranes and forms higher-order oligomeric structures. A potential impact of the oligomeric state on the protein function remains enigmatic. We have analyzed the role of residues W42 and E43 in the oligomerization of the E. coli GlpF protein in vitro and in vivo. In contrast to W42, the polar glutamate residue at position 43 appears to be critical for oligomerization. While other polar residues can substitute for the function of E43, replacement of E43 with alanine results in a greatly reduced GlpF oligomerization propensity. The reduced interaction propensity of GlpF E43A correlates with an impaired in vivo function as well as a decreased in vivo stability. Therefore, E43 is critical for the proper oligomerization of GlpF, and protein oligomerization appears to be crucial for the channel function as well as for the in vivo stability of the protein.


Assuntos
Aquagliceroporinas/química , Ácido Glutâmico , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Clonagem Molecular , Cristalografia por Raios X , Estabilidade de Medicamentos , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Amplificação de Genes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Oligopeptídeos/química , Plasmídeos , Reação em Cadeia da Polimerase , Conformação Proteica , Triptofano/análise
17.
Phys Chem Chem Phys ; 12(25): 6579-82, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20463999

RESUMO

The fluctuation-dissipation theorem (FDT) of Brownian dynamics (BD) is applied to extract the equilibrium free-energy profile from the nonequilibrium, irreversible work measured in single-molecule pulling experiments. Two sets of in silico experiments are performed to explore the free-energy landscape of deca-alanine peptide as a function of its end-to-end distance and to determine the free-energy profile of water permeation through the channels of aquaglyceroporin GlpF. With a small number of pulling paths sampled, the BD-FDT is shown to produce accurate estimates of the free-energy profiles for both systems.


Assuntos
Aquagliceroporinas/química , Alanina/química , Simulação de Dinâmica Molecular , Peptídeos/química , Termodinâmica , Água/química
18.
Phys Chem Chem Phys ; 12(35): 10246-54, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20607193

RESUMO

The aquaglyceroporin from Plasmodium falciparum (PfAQP) is a potential drug target for the treatment of malaria. It efficiently conducts water and other small solutes, and is proposed to intervene in several crucial physiological processes during the parasitic life cycle. Despite the wealth of experimental data available, a dynamical and energetic description at the single-molecule level of the solute permeation through PfAQP has been lacking so far. Here we address this question by using equilibrium and umbrella sampling molecular dynamics simulations. We computed the water osmotic permeability coefficient, the pore geometry and the potential of mean force for the permeation of water, glycerol and urea. Our simulations show that the PfAQP, the human aquaporin 1 (hAQP1) and the Escherichia coli glycerol facilitator (GlpF) have nearly identical water permeabilities. The Arg196 residue at the ar/R region was found to play a crucial role regulating the permeation of water, glycerol and urea. The computed free energy barriers at the ar/R selectivity filter corroborate that PfAQP conducts glycerol at higher rates than urea, and suggest that PfAQP is a more efficient glycerol and urea channel than GlpF. Our results are consistent with a solute permeation mechanism for PfAQP which is similar to the one established for other members of the aquaglyceroporin family. In this mechanism, hydrophobic regions near the NPA motifs are the main water rate limiting barriers, and the replacement of water-arg196 interactions and solute-matching in the hydrophobic pocket at the ar/R region are the main determinants underlying selectivity for the permeation of solutes like glycerol and urea.


Assuntos
Aquagliceroporinas/química , Aquagliceroporinas/metabolismo , Plasmodium falciparum , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Transporte Biológico , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Permeabilidade , Porosidade , Conformação Proteica , Termodinâmica , Água/metabolismo
19.
Adv Exp Med Biol ; 679: 57-69, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20666224

RESUMO

Metalloids can severely harm human physiology in a toxicological sense if taken up from the environment in acute high doses or chronically. However, arsenic or antimony containing drugs are still being used as treatment and are often the sole regime for certain forms of cancer, mainly types of leukemia and diseases caused by parasites, such as sleeping sickness or leishmaniasis. In this chapter, we give an outline of the positive effects of arsenicals and antimonials against such diseases, we summarize data on uptake pathways through human and parasite aquaglyceroporins and we discuss the progress and options in the development of therapeutic aquaporin and aquaglyceroporin inhibitor compounds.


Assuntos
Aquagliceroporinas/química , Leucemia/terapia , Metais/química , Doenças Parasitárias/terapia , Animais , Aquagliceroporinas/uso terapêutico , Aquaporinas/química , Arsenicais/metabolismo , Transporte Biológico , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Parasitos/metabolismo , Permeabilidade
20.
Adv Exp Med Biol ; 679: 111-25, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20666228

RESUMO

Arsenic (As) is a toxic and highly abundant metalloid that endangers human health through drinking water and the food chain. The most common forms of As in the environment re arsenate [As(V)] and arsenite [As(III)]. As(V) is a nonfunctional phosphate analog that enters the food chain via plant phosphate transporters. Recently, evidence was provided that uptake of As(III)--the second most abundant As species in soils--is mediated by plant nodulin26-like intrinsic proteins (NIPs), a subfamily of plant major intrinsic proteins (MIPs). Specific NIPs are also essential for the uptake of the metalloids boron and silicon and aquaglyceroporins from microbes and mammals were shown to be the major routes of As uptake. Therefore As(III) transport through MIPs is a conserved and ancient feature. In this chapter we summarize the current view on As transport in plants and address the potential physiological significance of As(III) transport through NIPs.


Assuntos
Arsênio/metabolismo , Animais , Antimônio/química , Aquagliceroporinas/química , Arsênio/química , Transporte Biológico , Boro/química , Cadeia Alimentar , Camundongos , Modelos Biológicos , Modelos Químicos , Oryza/metabolismo , Fosfatos/química , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/química , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA