Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 925, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363209

RESUMO

BACKGROUND: Plant-specific TIFY proteins play crucial roles in regulating plant growth, development, and various stress responses. However, there is no information available about this family in Artemisia argyi, a well-known traditional medicinal plant with great economic value. RESULTS: A total of 34 AaTIFY genes were identified, including 4 TIFY, 22 JAZ, 5 PPD, and 3 ZML genes. Structural, motif scanning, and phylogenetic relationships analysis of these genes revealed that members within the same group or subgroup exhibit similar exon-intron structures and conserved motif compositions. The TIFY genes were unevenly distributed across the 15 chromosomes. Tandem duplication events and segmental duplication events have been identified in the TIFY family in A. argyi. These events have played a crucial role in the gene multiplication and compression of different subfamilies within the TIFY family. Promoter analysis revealed that most AaTIFY genes contain multiple cis-elements associated with stress response, phytohormone signal transduction, and plant growth and development. Expression analysis of roots and leaves using RNA-seq data revealed that certain AaTIFY genes showed tissue-specific expression patterns, and some AaTIFY genes, such as AaTIFY19/29, were found to be involved in regulating salt and saline-alkali stresses. In addition, RT-qPCR analysis showed that TIFY genes, especially AaTIFY19/23/27/29, respond to a variety of hormonal treatments, such as MeJA, ABA, SA, and IAA. This suggested that TIFY genes in A. argyi regulate plant growth and respond to different stresses by following different hormone signaling pathways. CONCLUSION: Taken together, our study conducted a comprehensive identification and analysis of the TIFY gene family in A. argyi. These findings suggested that TIFY might play an important role in plant development and stress responses, which laid a valuable foundation for further understanding the function of TIFY genes in multiple stress responses and phytohormone crosstalk in A. argyi.


Assuntos
Artemisia , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Artemisia/genética , Artemisia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Genoma de Planta , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regiões Promotoras Genéticas , Cromossomos de Plantas/genética
2.
Planta ; 259(3): 58, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308700

RESUMO

MAIN CONCLUSION: The study demonstrated that Artemisia pallens roots can be a source of terpene-rich essential oil and root-specific ApTPS1 forms germacrene A contributing to major root volatiles. Davana (Artemisia pallens Bess) is a valuable aromatic herb within the Asteraceae family, highly prized for its essential oil (EO) produced in the aerial parts. However, the root volatile composition, and the genes responsible for root volatiles have remained unexplored until now. Here, we show that A. pallens roots possess distinct oil bodies and yields ~ 0.05% of EO, which is primarily composed of sesquiterpenes ß-elemene, neryl isovalerate, ß-selinene, and α-selinene, and trace amounts of monoterpenes ß-myrcene, D-limonene. This shows that, besides aerial parts, roots of davana can also be a source of unique EO. Moreover, we functionally characterized a terpene synthase (ApTPS1) that exhibited high in silico expression in the root transcriptome. The recombinant ApTPS1 showed the formation of ß-elemene and germacrene A with E,E-farnesyl diphosphate (FPP) as a substrate. Detailed analysis of assay products revealed that ß-elemene was the thermal rearrangement product of germacrene A. The functional expression of ApTPS1 in Saccharomyces cerevisiae confirmed the in vivo germacrene A synthase activity of ApTPS1. At the transcript level, ApTPS1 displayed predominant expression in roots, with significantly lower level of expression in other tissues. This expression pattern of ApTPS1 positively correlated with the tissue-specific accumulation level of germacrene A. Overall, these findings provide fundamental insights into the EO profile of davana roots, and the contribution of ApTPS1 in the formation of a major root volatile.


Assuntos
Artemisia , Óleos Voláteis , Sesquiterpenos de Germacrano , Sesquiterpenos , Sesquiterpenos/metabolismo , Terpenos , Óleos Voláteis/química , Saccharomyces cerevisiae/metabolismo , Artemisia/genética , Artemisia/metabolismo
3.
Photosynth Res ; 159(2-3): 153-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37204684

RESUMO

Different light spectra from light-emitting diodes (LEDs) trigger species-specific adaptive responses in plants. We exposed Artemisia argyi (A. argyi) to four LED spectra: white (the control group), monochromatic red light (R), monochromatic blue light (B), or a mixture of R and B light of photon flux density ratio is 3 (RB), with equivalent photoperiod (14 h) and light intensity (160 µmol s-1 m-2). R light accelerated photomorphogenesis but decreased biomass, while B light significantly increased leaf area and short-term exposure (7 days) to B light increased total phenols and flavonoids. HPLC identified chlorogenic acid, 3,5-dicaffeoylquinic acid, gallic acid, jaceosidin, eupatilin, and taxol compounds, with RB and R light significantly accumulating chlorogenic acid, 3,5-dicaffeoylquinic acid, and gallic acid, and B light promoting jaceosidin, eupatilin, and taxol. OJIP measurements showed that B light had the least effect on the effective quantum yield ΦPSII, with higher rETR(II), Fv/Fm, qL and PIabs, followed by RB light. R light led to faster photomorphology but lower biomass than RB and B lights and produced the most inadaptability, as shown by reduced ΦPSII and enlarged ΦNPQ and ΦNO. Overall, short-term B light promoted secondary metabolite production while maintaining effective quantum yield and less energy dissipation.


Assuntos
Artemisia , Ácido Clorogênico/análogos & derivados , Artemisia/metabolismo , Fluorescência , Ácido Gálico , Clorofila/metabolismo , Paclitaxel
4.
Phytochem Anal ; 35(6): 1286-1293, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38665054

RESUMO

INTRODUCTION: Artemisia argyi Folium (AAF) is a traditional medicinal herb and edible plant. Analyzing the differential metabolites that affect the efficacy of AAF with different aging years is necessary. OBJECTIVE: The aim of the study was to investigate the changing trend and differential markers of volatile and nonvolatile metabolites of AAF from different aging years, which are necessary for application in clinical medicine. METHODOLOGY: Metabolites were analyzed using a widely targeted metabolomic approach based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography tandem mass spectrometry (GC-MS). RESULTS: A total of 153 volatile metabolites and 159 nonvolatile metabolites were identified. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) could clearly distinguish AAF aged for 1 year (AF-1), 3 years (AF-3), and 5 years (AF-5). Seven flavonoids and nine terpenoids were identified as biomarkers for tracking the aging years. CONCLUSIONS: The metabolomic method provided an effective strategy for tracking and identifying biomarkers of AAF from different aging years. This study laid the foundation for analysis of the biological activity of Artemisia argyi with different aging years.


Assuntos
Artemisia , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Compostos Orgânicos Voláteis , Artemisia/química , Artemisia/metabolismo , Metabolômica/métodos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Biomarcadores/análise , Análise de Componente Principal , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Flavonoides/análise , Flavonoides/metabolismo , Terpenos/análise , Terpenos/metabolismo , Análise Discriminante
5.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543011

RESUMO

Artemisia japonica Thunb. has been used as a traditional Chinese medicine and a vegetable for thousands of years in China. However, there are few reports on the chemical composition and biological activity of its leaves. Thus, this study aimed to evaluate the chemical composition, antioxidant and anti-inflammatory effects of water extracts of A. japonica leaves and their underlying mechanisms. A total of 48 compounds were identified in the water extract using UPLC-QTOF-MS2 analysis, with phenolic acids, particularly chlorogenic acid compounds, being the predominant components. The ethyl acetate fraction (EAF) contained most of the total phenolic content (385.4217 mg GAE/g) and displayed superior antioxidant capacity with the IC50DPPH•, IC50ABTS•+, and OD0.5reducing power at 10.987 µg/mL, 43.630 µg/mL and 26.883 µg/mL, respectively. Furthermore, EAF demonstrated potent antioxidant and anti-inflammatory effects in LPS-induced RAW264.7 cells by upregulating the Nrf2/HO-1 signal pathway. These findings highlight that A. japonica leaves possess remarkable abilities to mitigate inflammation and oxidative stress, suggesting their potential utilization as medicinal agents and food additives for promoting human health.


Assuntos
Antioxidantes , Artemisia , Humanos , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/farmacologia , Extratos Vegetais/química , Artemisia/metabolismo , Transdução de Sinais , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Água/farmacologia , Células RAW 264.7
6.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4407-4419, 2024 Aug.
Artigo em Zh | MEDLINE | ID: mdl-39307777

RESUMO

The MYB(v-myb avian myeloblastosis viral oncogene homolog) family of transcription factors is the largest class of genes among higher plant transcription factors, which can be divided into four subfamilies, with the R2R3-MYB being the most common subfamily type. R2R3-MYB transcription factors are widely involved in the regulation of organ development and secondary metabolite biosynthesis in plants. To investigate the role of R2R3-MYB family transcription factors in the synthesis of flavonoids and glandular trichome development in Artemisia argyi, this study screened and identified 92 R2R3-MYB transcription factors based on the whole genome data of A. argyi, and predicted their potential functions based on bioinformatics. The results showed that the amino acid lengths of the 92 transcription factors ranged from 168 to 547 aa, with relative molecular weights ranging from 19. 6 to 60. 5 kDa, all of which were hydrophilic proteins. Subcellular localization analysis showed that 89 AaMYB proteins were located in the nucleus, while three proteins were simultaneously located in the nucleus and cytoplasm. According to the classification of Arabidopsis R2R3-MYB family, the 92 A. argyi R2R3-MYB proteins were divided into 26 subfamilies, with similar gene structures within the same subfamily.Cis-acting element prediction results showed that light-responsive elements, methyl jasmonate elements, and abscisic acid elements were widely distributed in the promoter regions of R2R3-MYB genes. Transcriptome expression analysis results showed that the expression of AaMYB60, AaMYB63, and AaMYB86 in leaves was higher than that in stems and roots, indicating that these three transcription factors mainly function in leaves. Additionally, five candidate R2R3-MYB transcription factors involved in A. argyi flavonoid biosynthesis or glandular trichome development were selected through phylogenetic analysis. This study provides important genetic resources for the breeding of superior varieties and germplasm innovation of A. argyi in the future.


Assuntos
Artemisia , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Fatores de Transcrição , Artemisia/genética , Artemisia/metabolismo , Artemisia/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Sequência de Aminoácidos
7.
BMC Plant Biol ; 23(1): 288, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254042

RESUMO

BACKGROUND: Plants in the genus Artemisia are rich in active ingredients and specialized metabolites. Many of these compounds, especially flavonoids, have potential medicinal and nutritional applications, and are of growing interest to scientists due to their wide range of pharmacological and biological activities. Artemisia cultivars are commonly used as raw materials for medicine, food, and moxibustion in China. However, most of the metabolites produced by Artemisia species have not been identified, and few studies have addressed differences in active compounds between species and cultivars. RESULTS: We here investigated two Artemisia cultivars, 'Nanyangshiyong' (NYSY) and 'Nanyangyaoyong' (NYYY), which are commonly used in foods and moxibustion, respectively. NYSY and NYYY were confirmed to be Artemisia argyi cultivars. Total flavonoids contents and antioxidant activities were higher in NYYY than in NYSY. A total of 882 metabolites were identified in the samples; most of the potentially medicinally active compounds, especially flavonoids (e.g., flavone, flavonol, isoflavone, and anthocyanin), were up-regulated in NYYY compared to NYSY. Furthermore, most of the genes related to flavonoids biosynthesis were up-regulated in NYYY. Correlation analysis was used to identify putative members of transcription factor families that may regulate genes encoding key flavonoids biosynthesis enzymes. CONCLUSIONS: We found that the antioxidant activities and flavonoids contents significantly varied between two Artemisia cultivars of the same species. We also uncovered metabolomic and transcriptomic evidence of the molecular phenomena underlying those differences in flavonoids contents between the two Artemisia cultivars. This study provides a wealth of data for future utilization and improvements of Artemisia cultivars, and highlights a need to study the specific metabolite profiles of plants that are used in foods and medicines.


Assuntos
Artemisia , Artemisia/genética , Artemisia/metabolismo , Flavonoides/metabolismo , Transcriptoma , Antioxidantes/metabolismo , Perfilação da Expressão Gênica
8.
Fish Shellfish Immunol ; 140: 108962, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488037

RESUMO

The popularity of intensive fish farming has led to the emergence of fish diseases characterized by hepatobiliary syndrome. Artemisia argyi (A. argyi) essential oils have anti-inflammatory and anti-oxidant effects. However, their alleviating effects and mechanism on liver disease in fish are still unclear. Thus, adult zebrafish were used to construct an animal model to observe histopathological damages, determine biochemical parameters and expression of inflammatory cytokines and mRNAs in the PPAR-γ/NF-κB pathway, and conduct 16 S sequencing of intestinal microbiota. The results found that after treatment with A. argyi essential oil, the histopathological damage caused by ethanol was relieved; the CAT, SOD, and GSH levels were remarkably elevated, while the MDA level was obviously lowered (P < 0.05); the expression levels of IL-10 and IFN-γ mRNAs were enhanced, but the levels of IL-1ß, IL-6, PPAR-γ, NF-κB, and TNF-α mRNAs were reduced (P < 0.05) relative to the EtOH group. A. argyi essential oil remarkably attenuated the damage to intestinal tissue structure, and elevated the levels of Muc2, ZO-1, Claudin-1, and Occludin mRNA (P < 0.05). Sequencing of the gut flora showed that A. argyi essential oil significantly altered the composition of gut microbes compared with the EtOH group. In addition, KEGG and COG analyses also showed significant (P < 0.05) changes in acetate cycling metabolism in the EtOH group, catechol 2, 3-dioxygenase and nitroreductase were significantly increased (P < 0.001), and lipid metabolism and terpenoid synthesis were significantly elevated (P < 0.001) in A. argyi essential oil group. The results indicate that A. argyi essential oil could effectively relieve ethanol-caused histopathological damage of livers by modulating the composition of gut microbiota, thus inhibiting the level of IL-1ß and mRNAs in the PPAR-γ/NF-κB pathway, increasing the IL-10 level, reducing the oxidative stress. This may offer a rationale for further research on the rationality of A. argyi as a substitute for feed antibiotics in aquaculture.


Assuntos
Artemisia , Hepatopatias , Óleos Voláteis , Animais , Peixe-Zebra/metabolismo , Óleos Voláteis/farmacologia , Interleucina-10 , NF-kappa B/metabolismo , Artemisia/química , Artemisia/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Etanol
9.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047782

RESUMO

Artemisia argyi essence liquid (AL) is an aqueous solution extracted from A. argyi using CO2 supercritical fluid extraction. There have been few investigations on the aqueous solution of A. argyi extracted via CO2 supercritical fluid extraction. This study aimed to explore the moisturizing and antioxidant effects of AL and to clarify the potential mechanism underlying those effects. Expression levels of skin moisture-related components and the H2O2-induced oxidative stress responses in human keratinocyte cells were measured via quantitative RT-qPCR, Western blot, and immunofluorescence. Our results showed that AL enhanced the expression of AQP3 and HAS2 by activating the EGFR-mediated STAT3 and MAPK signaling pathways. In addition, AL can play an antioxidant role by inhibiting the NF-κB signaling pathway and activating the Nrf2/HO-1 signaling pathway, consequently increasing the expression of antioxidant enzymes (GPX1, SOD2) and decreasing the production of reactive oxygen species (ROS). This study revealed that AL could be used as a potential moisturizing and antioxidant cosmetic ingredient.


Assuntos
Antioxidantes , Artemisia , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Artemisia/metabolismo , Peróxido de Hidrogênio/metabolismo , Dióxido de Carbono/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Queratinócitos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
10.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175138

RESUMO

The biotransformation of vulgarin (1), an eudesmanolides-type sesquiterpene lactone obtained from Artemisia judaica, by the microorganism, Aspergillus niger, was carried out to give three more polar metabolites; 1-epi-tetrahydrovulgarin (1α,4α-dihydroxy-5αH,6,11ßH-eudesman-6,12-olide (2), 20% yield, 1α,4α-dihydroxyeudesm-2-en-5αH,6,11ßH-6,12-olide (3a), 10% yield, and C-1 epimeric mixture (3a, b), 4% yield, in a ratio of 4:1, 3a/3b. The structures of vulgarin and its metabolites were elucidated by 1 and 2D NMR spectroscopy in conjunction with HRESIMS. Metabolites (3a) and (3b) are epimers, and they are reported here for the first time as new metabolites obtained by biotransformation by selective reduction at C-1. Vulgarin and its metabolites were evaluated as anti-inflammatory agents using the human cyclooxygenase (COX) inhibitory assay. The obtained data showed that (1) exhibited a good preferential inhibitory activity towards COX-2 (IC50 = 07.21 ± 0.10) and had a moderate effect on COX-1 (IC50 = 11.32 ± 0.24). Meanwhile, its metabolite (3a) retained a selective inhibitory activity against COX-1 (IC50 = 15.70 ± 0.51). In conclusion, the results of this study revealed the necessity of the presence α, ß unsaturated carbonyl group in (1) for better COX-2 inhibitory activity. On the other hand, the selectivity of (1) as COX-1 inhibitor may be enhanced via the reduction of C-1 carbonyl group.


Assuntos
Artemisia , Sesquiterpenos , Humanos , Aspergillus niger/metabolismo , Artemisia/metabolismo , Sesquiterpenos/química , Lactonas/química , Estrutura Molecular
11.
Planta ; 255(5): 102, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35412154

RESUMO

MAIN CONCLUSION: Glandular trichomes of Artemisia argyi H. Lév. & Vaniot are the key tissues for the production of flavonoid and terpenoid metabolites. Artemisia argyi H. Lév. & Vaniot is an herbaceous perennial plant that has been widely used in traditional medicine for thousands of years. Glandular trichomes (GTs) and nonglandular trichomes (NGTs) have been reported on the leaf surface of A. argyi. The aim of this study was to elucidate the morphogenetic process and to analyze the metabolites of trichomes in A. argyi. The morphogenesis of GTs and NGTs was characterized using light, scanning, and transmission electron microscopy. The constituents of GTs were analyzed using laser microdissection combined with gas and liquid chromatography-mass spectrometry. Five developmental stages of two types of GTs and four developmental stages of one type of NGTs were observed. Two types of mature GT and one type of NGT were composed of 10, 5, and 4-6 cells, respectively. A large storage cavity was detected between the cuticle and cell walls in the first type of mature GT. Large nuclei, nucleoli, and mitochondria were observed in the basal and intermediate cells of the second type of GT. In addition, large vacuoles were observed in the basal and apical cells, and large nuclei were observed in the middle cells of NGTs. One monoterpene and seven flavonoids were identified in GTs of A. argyi. We suggest that GTs are the key tissues for the production of bioactive metabolites in A. argyi. This study provides an important theoretical basis and technical approach for clarifying the regulatory mechanisms for trichome development and bioactive metabolite biosynthesis in A. argyi.


Assuntos
Artemisia , Tricomas , Artemisia/metabolismo , Flavonoides/análise , Morfogênese , Folhas de Planta/metabolismo , Terpenos/metabolismo , Tricomas/metabolismo
12.
Mol Cell Biochem ; 477(10): 2345-2357, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35543857

RESUMO

Artemisia herba-alba (AHA) is a traditionally used plant to treat various diseases, including diabetes and metabolic dysfunctions. Plant extracts are generally explored empirically without a deeper assessment of their mechanism of action. Here, we describe a combinatorial study of biochemical, molecular, and bioinformatic (metabolite-protein pharmacology network) analyses to elucidate the mechanism of action of AHA and shed light on its multilevel effects in the treatment of diabetes-related advanced glycation end-products (AGE)-induced liver damages. The extract's polyphenols and flavonoids content were measured and then identified via LC-Q-TOF-MS/MS. Active compounds were used to generate a metabolite-target interaction network via Swiss Target Prediction and other databases. The extract was tested for its antiglycation and aggregation properties. Next, THLE-2 liver cells were challenged with AGEs, and the mechanistic markers were measured [TNF-α, IL-6, nitric oxide, total antioxidant capacity, lipid peroxidation (LPO), and caspase 3]. Metabolite and network screening showed the involvement of AHA in diabetes, glycation, liver diseases, aging, and apoptosis. Experimental confirmation showed that AHA inhibited protein modification and AGE formation. Additionally, AHA reduced inflammatory mediators (IL-6, TNFα), oxidative stress markers (NO, LPO), and apoptosis (Caspase 3). On the other hand, cellular total antioxidant capacity was restored to normal levels. The combinatorial study showed that AHA regulates AGE-induced liver damages through MAPK-AKT and AGE-RAGE signaling pathways. This report highlights the combination of experimental and network pharmacology for the exact elucidation of AHA mechanism of action as a multitarget option in the therapy of diabetes and AGEs-related diseases.


Assuntos
Artemisia , Diabetes Mellitus , Antioxidantes/farmacologia , Artemisia/metabolismo , Caspase 3/metabolismo , Diabetes Mellitus/tratamento farmacológico , Flavonoides/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Fígado/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo
13.
Fish Shellfish Immunol ; 131: 323-341, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228879

RESUMO

Artemisia vulgaris (A. vulgaris) is a traditional Chinese medicine widely distributed in China and contains many bioactive compounds with pharmacological effects. However, the anti-inflammatory effects and mechanism of essential oil from A. vulgaris on enteritis in fish are still unclear. In this study, in order to elucidate the underlying mechanism of essential oil from A. vulgaris on zebrafish enteritis, zebrafish were used for establishing animal models to observe the histopathological changes of intestines, determine the activities of immune-related enzymes and oxidative stress indicators, and the mRNA expression of genes in MyD88/TRAF6/NF-KB signaling pathways. The results showed that different doses of A. vulgaris essential oil could effectively alleviate zebrafish enteritis in a dose- and time-dependent manner by improving the intestinal histopathological damage, decreasing the intestinal oxidative stress, repairing the intestinal immune ability, changing the expression levels of IL-1ß, IL-10 and genes in MyD88/TRAF6/NF-κB pathway. In addition, co-treatment with oxazolone and MyD88 inhibitor could alleviate the morphological damage, the induction of oxidative stress, and the levels of immune-related enzymes and the mRNA expression of genes in MyD88/TRAF6/NF-κB signaling pathway. Moreover, essential oil from A. vulgaris had more significantly therapeutic effects on enteritis of male zebrafish than that of female zebrafish. This result will clarify the therapeutic effect and anti-inflammatory mechanism of essential oil from A. vulgaris on zebrafish enteritis, and provide a theoretical basis for further research on the rationality of A. vulgaris to replace feed antibiotics.


Assuntos
Artemisia , Enterite , Óleos Voláteis , Masculino , Feminino , Animais , Peixe-Zebra/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Artemisia/genética , Artemisia/metabolismo , Óleos Voláteis/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Enterite/tratamento farmacológico , Enterite/veterinária , Enterite/genética , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , RNA Mensageiro/metabolismo
14.
Environ Toxicol ; 37(11): 2793-2803, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35959841

RESUMO

Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease that results in joint destruction and disability in the adult population. RA is characterized by the accumulation and proliferation of fibroblast-like synoviocytes. Many pro-inflammatory mediators are associated with RA, such as interleukin (IL)-1ß, IL-6, IL-17, cyclooxygenase-2 (COX-2), and nuclear factor kappa B (NF-κB). Furthermore, IL-17 upregulates the production of other pro-inflammatory mediators, including IL-1ß and IL-6, and promotes the recruitment of neutrophils in RA. Artemisia argyi, a traditional Chinese herbal medicine, is used for the treatment of diseases associated with inflammation and microbial infections. In this study, synoviocytes (HIG-82) were treated with varying doses of A. argyi extract (AAE) following IL-17A stimulation. Proliferation of the IL-17A-stimulated cells was increased compared to that of the non-stimulated control cells. However, cell proliferation decreased significantly in a dose-dependent manner following AAE treatment. Treatment of IL-17A-stimulated cells with AAE resulted in decreased levels of phosphorylated (p)-NF-κB, p-IκB-α, and COX-2. Enzyme-linked immunosorbent assay results showed that IL-1ß and IL-6 levels were increased in the IL-17A-stimulated group but decreased in the AAE treatment group. Additionally, we found that AAE facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and promoted its nuclear translocation, thereby inducing the expression of heme oxygenase-1. Moreover, AAE did not attenuate IL-17A-induced inflammatory mediator production in the presence of ML385, an Nrf2-specific inhibitor. These results suggest that the downregulation of expression of pro-inflammatory cytokines and the transcription factor NF-κB by AAE may be a potential therapeutic strategy for reducing inflammation associated with RA.


Assuntos
Artemisia , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Sinoviócitos , Artemisia/metabolismo , Artrite Reumatoide/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Fibroblastos/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Sinoviócitos/metabolismo
15.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362193

RESUMO

The inhibition of synaptic glutamate release to maintain glutamate homeostasis contributes to the alleviation of neuronal cell injury, and accumulating evidence suggests that natural products can repress glutamate levels and associated excitotoxicity. In this study, we investigated whether eupatilin, a constituent of Artemisia argyi, affected glutamate release in rat cortical nerve terminals (synaptosomes). Additionally, we evaluated the effect of eupatilin in an animal model of kainic acid (KA) excitotoxicity, particularly on the levels of glutamate and N-methyl-D-aspartate (NMDA) receptor subunits (GluN2A and GluN2B). We found that eupatilin decreased depolarization-evoked glutamate release from rat cortical synaptosomes and that this effect was accompanied by a reduction in cytosolic Ca2+ elevation, inhibition of P/Q-type Ca2+ channels, decreased synapsin I Ca2+-dependent phosphorylation and no detectable effect on the membrane potential. In a KA-induced glutamate excitotoxicity rat model, the administration of eupatilin before KA administration prevented neuronal cell degeneration, glutamate elevation, glutamate-generating enzyme glutaminase increase, excitatory amino acid transporter (EAAT) decrease, GluN2A protein decrease and GluN2B protein increase in the rat cortex. Taken together, the results suggest that eupatilin depresses glutamate exocytosis from cerebrocortical synaptosomes by decreasing P/Q-type Ca2+ channels and synapsin I phosphorylation and alleviates glutamate excitotoxicity caused by KA by preventing glutamatergic alterations in the rat cortex. Thus, this study suggests that eupatilin can be considered a potential therapeutic agent in the treatment of brain impairment associated with glutamate excitotoxicity.


Assuntos
Artemisia , Síndromes Neurotóxicas , Ratos , Animais , Ácido Glutâmico/metabolismo , Sinapsinas/metabolismo , Artemisia/metabolismo , 4-Aminopiridina/farmacologia , Ratos Sprague-Dawley , Córtex Cerebral/metabolismo , Cálcio/metabolismo , Sinaptossomos/metabolismo , Exocitose , Ácido Caínico/farmacologia , Síndromes Neurotóxicas/metabolismo
16.
Molecules ; 27(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014428

RESUMO

Acinetobacter baumannii (A. baumannii) is one of the major representative aetiologies of recalcitrant nosocomial infections. Genotypic and phenotypic alterations in A. baumannii have resulted in a significant surge in multidrug resistance (MDR). Of all the factors responsible for the development of antimicrobial resistance (AMR), efflux protein pumps play a paramount role. In pursuit of a safe alternative for the prevention and control of A. baumannii infections, bioactive compounds from the aerial parts of the medicinal plant Artemisia pallens were studied. GC-MS analysis of the ethanol extract of A. pallens detected five major compounds: lilac alcohol A, spathulenol, lilac alcohol C, n-hexadecanoic acid, and vulgarin. In silico examinations were performed using the Schrödinger suite. Homology modelling was performed to predict the structure of the efflux protein of A. baumannii-LAC-4 strain (MDR Ab-EP). The identified bioactive compounds were analysed for their binding efficiency with MDR Ab-EP. High binding efficiency was observed with vulgarin with a glide score of -4.775 kcal/mol and stereoisomers of lilac alcohol A (-3.706 kcal/mol) and lilac alcohol C (-3.706 kcal/mol). Our molecular dynamic simulation studies unveiled the stability of the ligand-efflux protein complex. Vulgarin and lilac alcohol A possessed strong and stable binding efficiency with MDR Ab-EP. Furthermore, validation of the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the ligands strongly suggested that these compounds could serve as a lead molecule in the development of an alternate drug from A. pallens.


Assuntos
Acinetobacter baumannii , Artemisia , Acinetobacter baumannii/metabolismo , Antibacterianos/química , Artemisia/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Ligantes , Testes de Sensibilidade Microbiana
17.
Molecules ; 27(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431983

RESUMO

BACKGROUND: Immunological liver injury (ILI) is a common liver disease and lacks potent drugs for treatment. Artemisia argyi Lévl. et Vant. (A. argyi), a medicinal and edible homologous plant usually used in diet therapy to cure various liver diseases, provides a great option for the prevention of ILI. PURPOSE: To investigate the effect that ethyl acetate extract of A. argyi (AaEA) on Concanavalin A (ConA)-induced ILI and the mechanism of regulating Bax/Bcl-2 and TLR4/MyD88/NF-κB signaling pathways. METHODS: The chemical components of AaEA were studied by LC-MS. In animal experiments, the positive control group was administrated diammonium glycyrrhizinate (DIG, 100 mg/kg), while different doses of AaEA groups (AaEA-H, AaEA-M, AaEA-L) were pretreated with AaEA 2.00, 1.00, and 0.50 g/kg, respectively, by intragastric for seven days, once every day. Then, ConA (12.00 mg/kg) was used through tail intravenous injection to establish the ILI model. The blood samples and livers were collected to test the degree of liver dysfunction, inflammation, oxidative stress, histopathological changes, and cell apoptosis. Real-time PCR and Western blotting analysis were used to explain the mechanism of regulating Bax/Bcl-2 and TLR4/MyD88/NF-κB signaling pathways. RESULTS: The way in which AaEA prevents liver damage in immunological liver injury (ILI) mice caused by ConA was investigated for the first time. Pretreatment with AaEA reduced the expression of ALT, AST, and inflammatory factors (TNF-α and IFN-γ). Meanwhile, AaEA also reduced MDA levels but upregulated the contents of IL-4, SOD, and GSH-px, alleviating oxidative stress induced by ILI. Western blotting and real-time PCR analysis demonstrated that AaEA could regulate the expression level and relative mRNA expression of key proteins on Bax/Bcl-2 and TLR4/MyD88/NF-κB signaling pathways. Finally, 504 components from AaEA were identified by LC-MS analysis, mainly including flavones, phenolic acids, and terpenoids with anti-inflammatory and liver protective activities, which highlights the potential of AaEA for diet treatment of ILI. CONCLUSION: AaEA can work against ConA-induced ILI in mice by regulating Bax/Bcl-2 and TLR4/MyD88/NF-κB signaling pathways, which has the potential to be a great strategy for the prevention of ILI.


Assuntos
Artemisia , Hepatopatias , Camundongos , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Concanavalina A/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Artemisia/metabolismo , Transdução de Sinais
18.
Molecules ; 27(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35268738

RESUMO

A new flavonoid, Jusanin, (1) has been isolated from the aerial parts of Artemisia commutata. The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone. Being new in nature, the inhibition potential of 1 has been estimated against SARS-CoV-2 using different in silico techniques. Firstly, molecular similarity and fingerprint studies have been conducted for Jusanin against co-crystallized ligands of eight different SARS-CoV-2 essential proteins. The studies indicated the similarity between 1 and X77, the co-crystallized ligand SARS-CoV-2 main protease (PDB ID: 6W63). To confirm the obtained results, a DFT study was carried out and indicated the similarity of (total energy, HOMO, LUMO, gap energy, and dipole moment) between 1 and X77. Accordingly, molecular docking studies of 1 against the target enzyme have been achieved and showed that 1 bonded correctly in the protein's active site with a binding energy of -19.54 Kcal/mol. Additionally, in silico ADMET in addition to the toxicity evaluation of Jusanin against seven models have been preceded and indicated the general safety and the likeness of Jusanin to be a drug. Finally, molecular dynamics simulation studies were applied to investigate the dynamic behavior of the Mpro-Jusanin complex and confirmed the correct binding at 100 ns. In addition to 1, three other metabolites have been isolated and identified to be сapillartemisin A (2), methyl-3-[S-hydroxyprenyl]-cumarate (3), and ß-sitosterol (4).


Assuntos
Artemisia , Proteases 3C de Coronavírus , Flavonoides , SARS-CoV-2 , Animais , Humanos , Masculino , Ratos , Artemisia/química , Artemisia/metabolismo , Sítios de Ligação , Domínio Catalítico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , COVID-19/patologia , COVID-19/virologia , Teoria da Densidade Funcional , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/metabolismo , Flavonoides/farmacologia , Dose Letal Mediana , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/enzimologia , SARS-CoV-2/isolamento & purificação , Pele/efeitos dos fármacos , Pele/patologia
19.
Anal Bioanal Chem ; 413(2): 565-576, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33145645

RESUMO

A novel electrochemical sensor was constructed for the determination of artemisinin (ART) based on the inhibition of redox for hemin caused by ART. As far as we know, this strategy for ART determination may be proposed for the first time. In this work, untreated multi-walled carbon nanotubes were cast on the glassy carbon electrode (GCE) as conductive carrier. We prepared a bimetallic organic framework named FeGd-MOF and combined it with hemin by a simple physical mixed method. Then, we fabricated the working electrode by layer-by-layer modification and immobilization. The sensor measured by the differential pulse voltammetry (DPV) technique had calibration curves for the determination of ART, which was 0.3-350 µM with the correlation coefficient R2 = 0.9998. Furthermore, the obtained linear range could be practically used in real sample analysis such as dried leaves of Artemisia apiacea. Under the optimized condition, the electrochemical sensor exhibited high sensitivity, good stability, and excellent anti-interference performance. The limit of detection (LOD) for this sensor was 0.17 µM (signal to noise ratio, S/N = 3), which was much lower than that for some other reported electrochemical sensors. The recovery rates were in the range of 99.54-104.34% in real samples, indicating that the sensor had good repetition and high accuracy. Graphical abstract.


Assuntos
Artemisia/metabolismo , Artemisininas/análise , Técnicas Eletroquímicas/métodos , Eletroquímica/métodos , Hemina/análise , Nanotubos de Carbono/análise , Técnicas Biossensoriais , Soluções Tampão , Calibragem , Eletrodos , Concentração de Íons de Hidrogênio , Limite de Detecção , Metais , Microscopia Eletrônica de Varredura , Oxirredução , Reprodutibilidade dos Testes , Espectrofotometria
20.
Ecotoxicol Environ Saf ; 220: 112315, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015628

RESUMO

Particulate organic matter (POM) is an effective adsorbent for decreasing the contaminant of cadmium, but little is known about the relevant mechanisms under the effect of plant. In this work, POM were used to study the removal of Cd2+ in the initial concentration range of 0-4.46 mmol L-1 at pH 5.5, and the effect of Artemisia ordosica roots and pH on kinetics and equilibrium of cadmium adsorption on POM and soils were examined. The result indicated that adsorption kinetics fit well with the pseudo-second-order kinetic model, and the equilibrium data for Cd adsorption fit much well to the Langmuir model. The maximum adsorption capacity for POM at equilibrium corresponding to the monolayer coverage reached 0.287 mmol/g for Cd. The amount of Cd adsorbed in the POM and soil increased with the increase of pH from 4 to 8.5. The Artemisia ordosica roots decreased Cd adsorption in POM; instead, the adsorption capacity of soil for Cd was improved under the effect of Artemisia ordosica roots. The Fourier Transform Infrared spectroscopic (FTIR) analysis indicated that the complexation of POM and Cd was mainly through sulfhydryl, hydroxyl and carboxyl groups.


Assuntos
Artemisia/metabolismo , Cádmio/metabolismo , Material Particulado/química , Raízes de Plantas/metabolismo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Solo/química , Adsorção , Compostos Orgânicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA