Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Behav Pharmacol ; 35(4): 227-238, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651981

RESUMO

We have previously reported that two inhibitors of an E3 ligase S-phase kinase-associated protein 2 (Skp2), SMIP004 and C1, have an antidepressant-like effect in non-stressed and chronically stressed mice. This prompted us to ask whether other Skp2 inhibitors could also have an antidepressant effect. Here, we used NSC689857, another Skp2 inhibitor, to investigate this hypothesis. The results showed that administration of NSC689857 (5 mg/kg) produced an antidepressant-like effect in a time-dependent manner in non-stressed male mice, which started 8 days after drug administration. Dose-dependent analysis showed that administration of 5 and 10 mg/kg, but not 1 mg/kg, of NSC689857 produced antidepressant-like effects in both non-stressed male and female mice. Administration of NSC689857 (5 mg/kg) also induced antidepressant-like effects in non-stressed male mice when administered three times within 24 h (24, 5, and 1 h before testing) but not when administered acutely (1 h before testing). In addition, NSC689857 and fluoxetine coadministration produced additive antidepressant-like effects in non-stressed male mice. These effects of NSC689857 were not associated with the changes in locomotor activity. Administration of NSC689857 (5 mg/kg) also attenuated depression-like behaviors in male mice induced by chronic social defeat stress, suggesting therapeutic potential of NSC689857 in depression. Overall, these results suggest that NSC689857 is capable of exerting antidepressant-like effects in both non-stressed and chronically stressed mice.


Assuntos
Antidepressivos , Benzotiepinas , Relação Dose-Resposta a Droga , Proteínas Quinases Associadas a Fase S , Animais , Feminino , Masculino , Camundongos , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Fluoxetina/farmacologia , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Estresse Psicológico/tratamento farmacológico
2.
J Pediatr Gastroenterol Nutr ; 78(3): 506-513, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334237

RESUMO

OBJECTIVE: Maralixibat, an ileal bile acid transporter inhibitor, is the first drug approved by the U.S. Food and Drug Administration for the treatment of cholestatic pruritus in patients aged ≥3 months with Alagille syndrome (ALGS). Approval was based on reductions in pruritus from the pivotal ICONIC trial, information from two additional trials (ITCH and IMAGO), and long-term extension studies. Although participants in these trials met strict inclusion and exclusion criteria, patients have received maralixibat under broader circumstances as part of an expanded access program or commercially. The expanded access and postapproval settings inform a real-world understanding of effectiveness and safety. The objective was to report on the use of maralixibat in the real-world setting in eight patients who otherwise would not have met entrance criteria for the clinical trials, providing unique insights into its effectiveness in the management of ALGS. METHODS: We reviewed records of patients with ALGS who received maralixibat but would have been excluded from trials due to surgical biliary diversion, reduction of antipruritic/cholestatic concomitant medications, administration of medication through a gastrostomy or nasogastric tube, or use in patients under consideration for transplantation. RESULTS: Maralixibat appeared to be effective with reductions in pruritus compared to baseline. Consistent with clinical trials, maralixibat was well tolerated without appreciable gastrointestinal complications. Liver enzyme elevations were observed but were interpreted as consistent with normal fluctuations observed in ALGS, with no increases in bilirubin. CONCLUSION: Maralixibat may be effective and well tolerated in patients with ALGS in broader clinical contexts than previously reported.


Assuntos
Síndrome de Alagille , Benzotiepinas , Colestase , Humanos , Síndrome de Alagille/complicações , Síndrome de Alagille/tratamento farmacológico , Síndrome de Alagille/cirurgia , Colestase/tratamento farmacológico , Colestase/complicações , Estudos Longitudinais , Prurido/tratamento farmacológico , Prurido/etiologia , Ensaios Clínicos como Assunto , Lactente
3.
Epilepsia ; 63(5): 1211-1224, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35188269

RESUMO

OBJECTIVE: STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase. Membrane-bound STEP61 is the only isoform expressed in hippocampus and cortex. Genetic deletion of STEP enhances excitatory synaptic currents and long-term potentiation in the hippocampus. However, whether STEP61 affects seizure susceptibility is unclear. Here we investigated the effects of STEP inhibitor TC-2153 on seizure propensity in a murine model displaying kainic acid (KA)-induced status epilepticus and its effect on hippocampal excitability. METHODS: Adult male and female C57BL/6J mice received intraperitoneal injection of either vehicle (2.8% dimethylsulfoxide [DMSO] in saline) or TC-2153 (10 mg/kg) and then either saline or KA (30 mg/kg) 3 h later before being monitored for behavioral seizures. A subset of female mice was ovariectomized (OVX). Acute hippocampal slices from Thy1-GCaMP6s mice were treated with either DMSO or TC-2153 (10 µM) for 1 h, and then incubated in artificial cerebrospinal fluid (ACSF) and potassium chloride (15 mM) for 2 min prior to live calcium imaging. Pyramidal neurons in dissociated rat hippocampal culture (DIV 8-10) were pre-treated with DMSO or TC-2153 (10 µM) for 1 h before whole-cell patch-clamp recording. RESULTS: TC-2153 treatment significantly reduced KA-induced seizure severity, with greater trend seen in female mice. OVX abolished this TC-2153-induced decrease in seizure severity in female mice. TC-2153 application significantly decreased overall excitability of acute hippocampal slices from both sexes. Surprisingly, TC-2153 treatment hyperpolarized resting membrane potential and decreased firing rate, sag voltage, and hyperpolarization-induced current (Ih ) of cultured hippocampal pyramidal neurons. SIGNIFICANCE: This study is the first to demonstrate that pharmacological inhibition of STEP with TC-2153 decreases seizure severity and hippocampal activity in both sexes, and dampens hippocampal neuronal excitability and Ih . We propose that the antiseizure effects of TC-2153 are mediated by its unexpected action on suppressing neuronal intrinsic excitability.


Assuntos
Dimetil Sulfóxido , Hipocampo , Animais , Benzotiepinas , Dimetil Sulfóxido/efeitos adversos , Dimetil Sulfóxido/metabolismo , Feminino , Ácido Caínico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Convulsões/induzido quimicamente , Convulsões/metabolismo
4.
J Hepatol ; 73(2): 231-240, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32234329

RESUMO

BACKGROUND & AIMS: Volixibat is an inhibitor of the apical sodium-dependent bile acid transporter (ASBT) that has been hypothesized to improve non-alcoholic steatohepatitis (NASH) by blocking bile acid reuptake and stimulating hepatic bile acid production. We studied the safety, tolerability and efficacy of volixibat in patients with NASH. METHODS: In this double-blind, phase II dose-finding study, adults with ≥5% steatosis and NASH without cirrhosis (N = 197) were randomized to receive volixibat (5, 10 or 20 mg) or placebo once daily for 48 weeks. The endpoints of a predefined interim analysis (n = 80), at week 24, were: ≥5% reduction in MRI-proton density fat fraction and ≥20% reduction in serum alanine aminotransferase levels. The primary endpoint was a ≥2-point reduction in non-alcoholic fatty liver disease activity score without worsening fibrosis at week 48. RESULTS: Volixibat did not meet either interim endpoint; the study was terminated owing to lack of efficacy. In participants receiving any volixibat dose, mean serum 7-alpha-hydroxy-4-cholesten-3-one (C4; a biomarker of bile acid synthesis) increased from baseline to week 24 (+38.5 ng/ml [SD 53.18]), with concomitant decreases in serum total cholesterol (-14.5 mg/dl [SD 28.32]) and low-density lipoprotein cholesterol (-16.1 mg/dl [SD 25.31]). These changes were generally dose-dependent. On histological analysis, a greater proportion of participants receiving placebo (38.5%, n = 5/13) than volixibat (30.0%, n = 9/30) met the primary endpoint. Treatment-emergent adverse events (TEAEs) were mainly mild or moderate. No serious TEAEs were related to volixibat. Diarrhoea was the most common TEAE overall and the most common TEAE leading to discontinuation. CONCLUSIONS: Increased serum C4 and decreased serum cholesterol levels provide evidence of target engagement. However, inhibition of ASBT by volixibat did not elicit a liver-related therapeutic benefit in adults with NASH. LAY SUMMARY: A medicine called volixibat has previously been shown to reduce cholesterol levels in the blood. This study investigated whether volixibat could reduce the amount of fat in the liver and reduce liver injury in adults with an advanced form of non-alcoholic fatty liver disease. Volixibat did not reduce the amount of fat in the liver, nor did it have any other beneficial effect on liver injury. Participants in the study generally tolerated the side effects of volixibat and, as in previous studies, the main side effect was diarrhoea. These results show that volixibat is not an effective treatment for people with fatty liver disease. CLINICAL TRIAL IDENTIFIER: NCT02787304.


Assuntos
Alanina Transaminase/sangue , Benzotiepinas , Colestenonas/sangue , Colesterol/sangue , Glicosídeos , Fígado , Hepatopatia Gordurosa não Alcoólica , Benzotiepinas/administração & dosagem , Benzotiepinas/efeitos adversos , Biomarcadores/sangue , Método Duplo-Cego , Feminino , Glicosídeos/administração & dosagem , Glicosídeos/efeitos adversos , Humanos , Reguladores do Metabolismo de Lipídeos/administração & dosagem , Reguladores do Metabolismo de Lipídeos/efeitos adversos , Fígado/diagnóstico por imagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Gravidade do Paciente , Simportadores/antagonistas & inibidores , Resultado do Tratamento
5.
J Enzyme Inhib Med Chem ; 35(1): 245-254, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31790605

RESUMO

A new series of homosulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) possessing various substitution patterns and moieties in the 7, 8 or 9 position of the heterocylic ring were prepared by original procedures and investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human (h) hCA I, II, IX and XII. The 8-substituted homosulfocoumarins were the most effective hCA IX/XII inhibitors followed by the 7-substituted derivatives, whereas the substitution pattern in position 9 led to less effective binders for the transmembrane, tumour-associated isoforms IX/XII. The cytosolic isoforms hCA I and II were not inhibited by these compounds, similar to the sulfocoumarins/coumarins investigated earlier. As hCA IX and XII are validated anti-tumour targets, with one sulphonamide (SLC-0111) in Phase Ib/II clinical trials, finding derivatives with better selectivity for inhibiting the tumour-associated isoforms over the cytosolic ones, as the homosulfocoumarins reported here, is of crucial importance.


Assuntos
Benzotiepinas/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Benzotiepinas/síntese química , Benzotiepinas/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707818

RESUMO

Tyrosine phosphatase STEP (striatal-enriched tyrosine protein phosphatase) is a brain-specific protein phosphatase and is involved in the pathogenesis of many neurodegenerative diseases. Here, we examined the impact of STEP on the development of age-related macular degeneration (AMD)-like pathology in senescence-accelerated OXYS rats. Using OXYS and Wistar rats (control), we for the first time demonstrated age-dependent changes in Ptpn5 mRNA expression, STEP46 and STEP61 protein levels, and their phosphatase activity in the retina. The increases in STEP protein levels and the decrease of total and STEP phosphatase activities in the retina (as compared with Wistar rats) preceded the manifestation of clinical signs of AMD in OXYS rats (age 20 days). There were no differences in these retinal parameters between 13-month-old Wistar rats and OXYS rats with pronounced signs of AMD. Inhibition of STEP with TC-2153 during progressive AMD-like retinopathy (from 9 to 13 months of age) reduced the thickness of the retinal inner nuclear layer, as evidenced by a decreased amount of parvalbumin-positive amacrine neurons. Prolonged treatment with TC-2153 had no effect on Ptpn5 mRNA expression, STEP46 and STEP61 protein levels, and their phosphatase activity in the OXYS retina. Thus, TC-2153 may negatively affect the retina through mechanisms unrelated to STEP.


Assuntos
Envelhecimento/metabolismo , Regulação da Expressão Gênica/genética , Degeneração Macular/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Retina/metabolismo , Doenças Retinianas/metabolismo , Envelhecimento/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzotiepinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Senescência Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Degeneração Macular/patologia , Masculino , Fator de Crescimento Neural/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Proteínas Tirosina Fosfatases não Receptoras/genética , Ratos , Ratos Wistar , Doenças Retinianas/enzimologia , Doenças Retinianas/genética
7.
Neurochem Res ; 44(12): 2832-2842, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31691882

RESUMO

Sepsis-associated encephalopathy (SAE) is a potentially irreversible acute cognitive dysfunction with unclear mechanism. Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase which normally opposes synaptic strengthening by regulating key signaling molecules involved in synaptic plasticity and neuronal function. Thus, we hypothesized that abnormal STEP signaling pathway was involved in sepsis-induced cognitive impairment evoked by lipopolysaccharides (LPS) injection. The levels of STEP, phosphorylation of GluN2B (pGluN2B), the kinases extracellular signal-regulated kinase 1/2 (pERK), cAMP-response element binding protein (CREB), synaptophysin, brain derived neurotrophic factor (BDNF), and post-synaptic density protein 95 (PSD95) in the hippocampus, prefrontal cortex, and striatum were determined at the indicated time points. In the present study, we found that STEP levels were significantly increased in the hippocampus, prefrontal cortex, and striatum following LPS injection, which might resulted from the disruption of the ubiquitin-proteasome system. Notably, a STEP inhibitor TC-2153 treatment alleviated sepsis-induced memory impairment by increasing phosphorylation of GluN2B and ERK1/2, CREB/BDNF, and PSD95. In summary, our results support the key role of STEP in sepsis-induced memory impairment in a mouse model of SAE, whereas inhibition of STEP may provide a novel therapeutic approach for this disorder and possible other neurodegenerative diseases.


Assuntos
Transtornos da Memória/fisiopatologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Encefalopatia Associada a Sepse/fisiopatologia , Transdução de Sinais/fisiologia , Animais , Benzotiepinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Estriado/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína 4 Homóloga a Disks-Large/química , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo , Lipopolissacarídeos , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Transtornos da Memória/induzido quimicamente , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Encefalopatia Associada a Sepse/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos
8.
BMC Gastroenterol ; 18(1): 3, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304731

RESUMO

BACKGROUND: Pathogenesis in non-alcoholic steatohepatitis (NASH) involves abnormal cholesterol metabolism and hepatic accumulation of toxic free cholesterol. Apical sodium-dependent bile acid transporter (ASBT) inhibition in the terminal ileum may facilitate removal of free cholesterol from the liver by reducing recirculation of bile acids (BAs) to the liver, thereby stimulating new BA synthesis from cholesterol. The aim of this phase 1 study in adult healthy volunteers (HVs) and patients with type 2 diabetes mellitus (T2DM) was to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of ASBT inhibition with volixibat (SHP626; formerly LUM002). METHODS: Participants were randomised 3:1 to receive once-daily oral volixibat (0.5 mg, 1 mg, 5 mg or 10 mg) or placebo for 28 days in two cohorts (HV and T2DM). Assessments included safety, faecal BA and serum 7α-hydroxy-4-cholesten-3-one (C4; BA synthesis biomarker). RESULTS: Sixty-one individuals were randomised (HVs: placebo, n = 12; volixibat, n = 38; T2DM: placebo, n = 3; volixibat, n = 8). No deaths or treatment-related serious adverse events were reported. Mild or moderate gastrointestinal adverse events were those most frequently reported with volixibat. With volixibat, mean total faecal BA excretion on day 28 was ~1.6-3.2 times higher in HVs (643.73-1239.3 µmol/24 h) and ~8 times higher in T2DM (1786.0 µmol/24 h) than with placebo (HVs: 386.93 µmol/24 h; T2DM: 220.00 µmol/24 h). With volixibat, mean C4 concentrations increased by ~1.3-5.3-fold from baseline to day 28 in HVs and by twofold in T2DM. CONCLUSIONS: Volixibat was generally well tolerated. Increased faecal BA excretion and serum C4 levels support the mechanistic rationale for exploring ASBT inhibition in NASH. The study was registered with the Dutch clinical trial authority (Centrale Commissie Mensgebonden Onderzoek; trial registration number NL44732.056.13; registered 24 May 2013).


Assuntos
Benzotiepinas/administração & dosagem , Benzotiepinas/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicosídeos/administração & dosagem , Glicosídeos/efeitos adversos , Glicoproteínas de Membrana/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Simportadores/antagonistas & inibidores , Adolescente , Adulto , Idoso , Benzotiepinas/farmacocinética , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/metabolismo , Glicemia/metabolismo , Colestenonas/sangue , Diabetes Mellitus Tipo 2/metabolismo , Método Duplo-Cego , Fezes/química , Feminino , Glicosídeos/farmacocinética , Homeostase , Humanos , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Addict Biol ; 23(1): 219-229, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28349660

RESUMO

Cocaine self-administration in rats results in dysfunctional neuroadaptations in the prelimbic (PrL) cortex during early abstinence. Central to these adaptations is decreased phospho-extracellular signal-regulated kinase (p-ERK), which plays a key role in cocaine seeking. Normalizing ERK phosphorylation in the PrL cortex immediately after cocaine self-administration decreases subsequent cocaine seeking. The disturbance in ERK phosphorylation is accompanied by decreased phosphorylation of striatal-enriched protein tyrosine phosphatase (STEP), indicating increased STEP activity. STEP is a well-recognized ERK phosphatase but whether STEP activation during early abstinence mediates the decrease in p-ERK and is involved in relapse is unknown. Here, we show that a single intra-PrL cortical microinfusion of the selective STEP inhibitor, TC-2153, immediately after self-administration suppressed post-abstinence context-induced relapse under extinction conditions and cue-induced reinstatement, but not cocaine prime-induced drug seeking or sucrose seeking. Moreover, an intra-PrL cortical TC-2153 microinfusion immediately after self-administration prevented the cocaine-induced decrease in p-ERK within the PrL cortex during early abstinence. Interestingly, a systemic TC-2153 injection at the same timepoint failed to suppress post-abstinence context-induced relapse or cue-induced reinstatement, but did suppress cocaine prime-induced reinstatement. These data indicate that the STEP-induced ERK dephosphorylation in the PrL cortex during early abstinence is a critical neuroadaptation that promotes relapse to cocaine seeking and that systemic versus intra-PrL cortical inhibition of STEP during early abstinence differentially suppresses cocaine seeking.


Assuntos
Benzotiepinas/farmacologia , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Animais , MAP Quinases Reguladas por Sinal Extracelular , Masculino , Fosfoproteínas , Córtex Pré-Frontal , Ratos , Ratos Sprague-Dawley , Autoadministração
10.
Bull Exp Biol Med ; 164(5): 620-623, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29577201

RESUMO

We compared the effect of a new potential antidepressant 8-trifluoromethyl 1,2,3,4,5-benzopentathiepine-6-amine hydrochloride (TC-2153) and classical antidepressant fluoxetine in a dose of 0.25 mg/liter on the behavior of Danio rerio in the "novel tank" test and content of biogenic amines and their metabolites in the brain. Fluoxetine alone and TC-2153 alone significantly increased the time spent in the upper part of the tank and insignificantly reduced motor activity. Combined exposure of fishes in the solution containing potential and classical antidepressants potentiated their effects on both parameters. The compounds did not affect brain contents of serotonin, dopamine, and norepinephrine. At the same time, fluoxetine, but not TC-2153, reduced brain content of the main serotonin metabolite 5-hydroxyindole acetic acid.


Assuntos
Antidepressivos/farmacologia , Benzotiepinas/farmacologia , Aminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fluoxetina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo , Peixe-Zebra
11.
PLoS Biol ; 12(8): e1001923, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25093460

RESUMO

STEP (STriatal-Enriched protein tyrosine Phosphatase) is a neuron-specific phosphatase that regulates N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking, as well as ERK1/2, p38, Fyn, and Pyk2 activity. STEP is overactive in several neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease (AD). The increase in STEP activity likely disrupts synaptic function and contributes to the cognitive deficits in AD. AD mice lacking STEP have restored levels of glutamate receptors on synaptosomal membranes and improved cognitive function, results that suggest STEP as a novel therapeutic target for AD. Here we describe the first large-scale effort to identify and characterize small-molecule STEP inhibitors. We identified the benzopentathiepin 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (known as TC-2153) as an inhibitor of STEP with an IC50 of 24.6 nM. TC-2153 represents a novel class of PTP inhibitors based upon a cyclic polysulfide pharmacophore that forms a reversible covalent bond with the catalytic cysteine in STEP. In cell-based secondary assays, TC-2153 increased tyrosine phosphorylation of STEP substrates ERK1/2, Pyk2, and GluN2B, and exhibited no toxicity in cortical cultures. Validation and specificity experiments performed in wild-type (WT) and STEP knockout (KO) cortical cells and in vivo in WT and STEP KO mice suggest specificity of inhibitors towards STEP compared to highly homologous tyrosine phosphatases. Furthermore, TC-2153 improved cognitive function in several cognitive tasks in 6- and 12-mo-old triple transgenic AD (3xTg-AD) mice, with no change in beta amyloid and phospho-tau levels.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/enzimologia , Inibidores Enzimáticos/uso terapêutico , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Benzotiepinas/farmacologia , Benzotiepinas/uso terapêutico , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Córtex Cerebral/patologia , Transtornos Cognitivos/complicações , Transtornos Cognitivos/patologia , Cisteína/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Especificidade por Substrato/efeitos dos fármacos
12.
Cell Mol Life Sci ; 73(7): 1503-14, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26450419

RESUMO

Brain-derived neurotrophic factor (BDNF) and STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61) have opposing functions in the brain, with BDNF supporting and STEP61 opposing synaptic strengthening. BDNF and STEP61 also exhibit an inverse pattern of expression in a number of brain disorders, including schizophrenia (SZ). NMDAR antagonists such as phencyclidine (PCP) elicit SZ-like symptoms in rodent models and unaffected individuals, and exacerbate psychotic episodes in SZ. Here we characterize the regulation of BDNF expression by STEP61, utilizing PCP-treated cortical culture and PCP-treated mice. PCP-treated cortical neurons showed both an increase in STEP61 levels and a decrease in BDNF expression. The reduction in BDNF expression was prevented by STEP61 knockdown or use of the STEP inhibitor, TC-2153. The PCP-induced increase in STEP61 expression was associated with the inhibition of CREB-dependent BDNF transcription. Similarly, both genetic and pharmacologic inhibition of STEP prevented the PCP-induced reduction in BDNF expression in vivo and normalized PCP-induced hyperlocomotion and cognitive deficits. These results suggest a mechanism by which STEP61 regulates BDNF expression, with implications for cognitive functioning in CNS disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Fenciclidina/uso terapêutico , Proteínas Tirosina Fosfatases/metabolismo , Animais , Benzotiepinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/análise , Proteína de Ligação a CREB/antagonistas & inibidores , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Células Cultivadas , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Regulação para Baixo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Atividade Motora/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Fenciclidina/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/genética , Interferência de RNA , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Ubiquitinação
13.
J Neurochem ; 136(2): 285-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26316048

RESUMO

Brain-derived neurotrophic factor (BDNF) regulates synaptic strengthening and memory consolidation, and altered BDNF expression is implicated in a number of neuropsychiatric and neurodegenerative disorders. BDNF potentiates N-methyl-D-aspartate receptor function through activation of Fyn and ERK1/2. STriatal-Enriched protein tyrosine Phosphatase (STEP) is also implicated in many of the same disorders as BDNF but, in contrast to BDNF, STEP opposes the development of synaptic strengthening. STEP-mediated dephosphorylation of the NMDA receptor subunit GluN2B promotes internalization of GluN2B-containing NMDA receptors, while dephosphorylation of the kinases Fyn, Pyk2, and ERK1/2 leads to their inactivation. Thus, STEP and BDNF have opposing functions. In this study, we demonstrate that manipulation of BDNF expression has a reciprocal effect on STEP61 levels. Reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. Moreover, a newly identified STEP inhibitor reverses the biochemical and motor abnormalities in BDNF(+/-) mice. In contrast, increased BDNF signaling upon treatment with a tropomyosin receptor kinase B agonist results in degradation of STEP61 and a subsequent increase in the tyrosine phosphorylation of STEP substrates in cultured neurons and in mouse frontal cortex. These findings indicate that BDNF-tropomyosin receptor kinase B signaling leads to degradation of STEP61 , while decreased BDNF expression results in increased STEP61 activity. A better understanding of the opposing interaction between STEP and BDNF in normal cognitive functions and in neuropsychiatric disorders will hopefully lead to better therapeutic strategies. Altered expression of BDNF and STEP61 has been implicated in several neurological disorders. BDNF and STEP61 are known to regulate synaptic strengthening, but in opposite directions. Here, we report that reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. In contrast, activation of TrkB receptor results in the degradation of STEP61 and reverses hyperlocomotor activity in BDNF(+/-) mice. Moreover, inhibition of STEP61 by TC-2153 is sufficient to enhance the Tyr phosphorylation of STEP substrates and also reverses hyperlocomotion in BDNF(+/-) mice. These findings give us a better understanding of the regulation of STEP61 by BDNF in normal cognitive functions and in neuropsychiatric disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação para Baixo/fisiologia , Neurônios/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Benzotiepinas/farmacologia , Encéfalo/citologia , Fator Neurotrófico Derivado do Encéfalo/genética , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Embrião de Mamíferos , Feminino , Flavonas/farmacologia , Leupeptinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Neurônios/efeitos dos fármacos , Proteínas Tirosina Fosfatases/genética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
14.
Bioorg Med Chem Lett ; 25(5): 1044-6, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25666825

RESUMO

Striatal-enriched protein tyrosine phosphatase (STEP) is a brain specific protein tyrosine phosphatase that has been implicated in many neurodegenerative diseases, such as Alzheimer's disease. We recently reported the benzopentathiepin TC-2153 as a potent inhibitor of STEP in vitro, cells and animals. Herein, we report the synthesis and evaluation of TC-2153 analogs in order to define what structural features are important for inhibition and to identify positions tolerant of substitution for further study. The trifluoromethyl substitution is beneficial for inhibitor potency, and the amine is tolerant of acylation, and thus provides a convenient handle for introducing additional functionality such as reporter groups.


Assuntos
Benzotiepinas/química , Benzotiepinas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Animais , Benzotiepinas/síntese química , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/enzimologia , Inibidores Enzimáticos/síntese química , Halogenação , Metilação , Camundongos , Proteínas Tirosina Fosfatases/metabolismo , Ratos
15.
Org Biomol Chem ; 13(44): 10904-16, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26369372

RESUMO

An efficient synthesis of thioglycosylated benzo[e][1,4]oxathiepin-5-one and benzothiazepinone derivatives by a sequence of palladium-catalyzed glycosyl thiol arylation followed by deprotection-lactonization reactions has been reported. This diversity-oriented strategy enabled access to unknown complex cyclic scaffolds with polyhydroxylated appendages of biological interest.


Assuntos
Benzotiepinas/química , Lactonas/química , Paládio/química , Compostos de Sulfidrila/química , Tiazepinas/química , Catálise , Glicosilação
16.
Artigo em Russo | MEDLINE | ID: mdl-25966577

RESUMO

Behavioral effects of classic antidepressants, fluoxetine and imipramine, and new psychotropic benzopentathiepin TC-2153 (20 mg/kg, per os) were studied on mice differing in the predisposition to catalepsy-noncataleptic AKR strain and cataleptic strains CBA and AKR.CBA-D13Mit76 (D13). Mice of D13 strain was created by transferring the CBA-allele of major locus of catalepsy to AKR genome. In the forced swim test (FST) fluoxetine showed antidepressant effect on mice of all three strains, imipramine was effective only in D13 mice, while TC-2153 produced antidepressant effect on AKR and D13 mice. Unlike to imipramine and fluoxetine, TC-2153 did not produce negative side effects in the open field and elevated plus-maze tests. Thus, TC-2153 produces antidepressant effects similar to imipramine and fluoxetine, without any visible negative side effect on locomotory activity and anxiety. The D13 mice in the FST showed high sensitivity to the studied drugs in comparison to the parent strains and can be used as new genetic model for investigation of the mechanism of antidepressant effects.


Assuntos
Antidepressivos/administração & dosagem , Ansiedade/tratamento farmacológico , Catalepsia/tratamento farmacológico , Predisposição Genética para Doença , Animais , Ansiedade/genética , Ansiedade/fisiopatologia , Benzotiepinas/administração & dosagem , Catalepsia/genética , Catalepsia/fisiopatologia , Fluoxetina/administração & dosagem , Genótipo , Humanos , Imipramina/administração & dosagem , Camundongos
17.
Biol Pharm Bull ; 37(1): 130-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24162843

RESUMO

KW-7158 is a novel therapeutic candidate for treating overactive bladder (OAB) with a unique mode of action: suppression of sensory afferent nerves. However, the molecular target of this compound remains unknown. We herein report the identification of the KW-7158 target to be equilibrative nucleoside transporter-1 (ENT1). A membrane protein expression library of ca. 7000 genes was expressed in a dorsal root ganglion cell line, which we had previously generated, and subjected to screening for binding with a fluorescent derivative that retains high binding activity to the target. The screening revealed that only cells transfected with an ENT1 expression vector exhibited significant binding. We next performed [(3)H]KW-7158 binding experiments and an adenosine influx assay and found that KW-7158 binds to and inhibits ENT1. To further demonstrate the pharmacological relevance, we evaluated other known ENT1 inhibitors (nitrobenzylthioinosine, dipyridamole, draflazine) in an in vitro bladder strip contraction assay and the rat spinal cord injury OAB model. We found that all of the inhibitors exhibited anti-OAB activities, of which the potencies were comparable to that of adenosine influx inhibition in vitro. These studies demonstrated that the pharmacological target of KW-7158 is ENT1, at least in the rat OAB model. Our results will aid understanding of the precise mechanism of action of this drug and may also shed new light on the use of the adenosine pathway for the treatment of OAB.


Assuntos
Benzotiepinas/farmacologia , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Bexiga Urinária Hiperativa/metabolismo , Vias Aferentes , Animais , Benzotiepinas/uso terapêutico , Linhagem Celular , Feminino , Gânglios Espinais/metabolismo , Masculino , Ratos , Ratos Endogâmicos , Bexiga Urinária Hiperativa/tratamento farmacológico
19.
Xenobiotica ; 42(7): 649-59, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22324379

RESUMO

Species differences in the pharmacokinetics of KW-7158 [(2S)-(+)-3,3,3-Trifluoro-2-hydroxy-2-methyl-N-(5,5,10-trioxo-4,10-dihydrothieno[3,2-c][1]benzothiepin-9-yl)propanamide] were studied in in vivo and in vitro experiments. The exposure ratio of hydrolyzed metabolite (M2, primary metabolite in human plasma)/KW-7158 was higher than the ratio of thiophen-to-furan converted metabolite (M1)/KW-7158 in human subjects after oral administration, but the mouse, rat and dog studies gave opposite results. M2 was produced in the highest amount by the 9000g supernatant of small intestine, followed by that of liver and kidney in human subjects. After correction for protein contents, the results obtained suggested that the small intestine plays a major role in the metabolism to M2 for the first pass effect after oral administration of KW-7158. The formation of M2 was independent of the presence of NADPH and was inhibited by various esterase inhibitors. These observations suggested that the predominant enzymes or isozymes involved in the formation of M2 are esterases, which differ between humans and animals. Such differences may be one of the reasons for the species differences in the pharmacokinetics of KW-7158 between humans and animals.


Assuntos
Benzotiepinas/metabolismo , Benzotiepinas/farmacocinética , Adulto , Animais , Benzotiepinas/química , Cães , Inibidores Enzimáticos/metabolismo , Humanos , Hidrólise , Intestino Delgado/metabolismo , Isoenzimas/metabolismo , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Ratos , Especificidade da Espécie
20.
Drugs ; 82(1): 71-76, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34813049

RESUMO

Maralixibat (Livmarli™) is an orally-administered, small-molecule ileal bile acid transporter (IBAT) inhibitor being developed by Mirum Pharmaceuticals for the treatment of rare cholestatic liver diseases including Alagille syndrome (ALGS), progressive familial intrahepatic cholestasis (PFIC) and biliary atresia. Maralixibat received its first approval on 29 September 2021, in the USA, for use in the treatment of cholestatic pruritus in patients with ALGS 1 year of age and older. Maralixibat is also under regulatory review for ALGS in Europe, and clinical development for cholestatic liver disorders including ALGS in patients under 1 year of age, PFIC and biliary atresia is continuing in several other countries. This article summarises the milestones in the development of maralixibat leading to this first approval for ALGS.


Assuntos
Benzotiepinas , Proteínas de Transporte , Colestase Intra-Hepática , Glicoproteínas de Membrana , Humanos , Síndrome de Alagille/tratamento farmacológico , Atresia Biliar/tratamento farmacológico , Proteínas de Transporte/antagonistas & inibidores , Colestase Intra-Hepática/tratamento farmacológico , Ensaios Clínicos como Assunto , Aprovação de Drogas , Glicoproteínas de Membrana/antagonistas & inibidores , Estados Unidos , United States Food and Drug Administration , Benzotiepinas/administração & dosagem , Benzotiepinas/farmacologia , Benzotiepinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA