Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 792
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Fungal Genet Biol ; 172: 103895, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679292

RESUMO

Botrytis cinerea is a necrotrophic pathogen that infects across a broad range of plant hosts, including high-impact crop species. Its generalist necrotrophic behavior stems from its ability to detoxify structurally diverse phytoalexins. The current study aims to provide evidence of the ability of B. cinerea to tolerate the sesquiterpenoid phytoalexin rishitin, which is produced by potato and tomato. While the growth of potato pathogens Phytophthora infestans (late blight) and Alternaria solani (early blight) was severely inhibited by rishitin, B. cinerea was tolerant to rishitin. After incubation of rishitin with the mycelia of B. cinerea, it was metabolized to at least six oxidized forms. Structural analysis of these purified rishitin metabolites revealed a variety of oxidative metabolism including hydroxylation at C7 or C12, ketone formation at C5, and dihydroxylation at the 10,11-olefin. Six rishitin metabolites showed reduced toxicity to P. infestans and A. solani, indicating that B. cinerea has at least 5 distinct enzymatic reactions to detoxify rishitin. Four host-specialized phytopathogenic Botrytis species, namely B. elliptica, B. allii, B. squamosa, and B. tulipae also had at least a partial ability to metabolize rishitin as B. cinerea, but their metabolic capacity was significantly weaker than that of B. cinerea. These results suggest that the ability of B. cinerea to rapidly metabolize rishitin through multiple detoxification mechanisms could be critical for its pathogenicity in potato and tomato.


Assuntos
Botrytis , Fitoalexinas , Phytophthora infestans , Doenças das Plantas , Sesquiterpenos , Botrytis/metabolismo , Botrytis/genética , Botrytis/efeitos dos fármacos , Sesquiterpenos/metabolismo , Doenças das Plantas/microbiologia , Phytophthora infestans/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/crescimento & desenvolvimento , Phytophthora infestans/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Inativação Metabólica , Alternaria/metabolismo , Alternaria/genética , Redes e Vias Metabólicas , Solanum tuberosum/microbiologia
2.
Langmuir ; 40(31): 16511-16520, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39072506

RESUMO

An intelligent delivery nanoformulation could enhance the utilization efficacy, uptake, and translocation of pesticides in plants. Herein, a redox/pH-triggered and fluorescent smart delivery nanoformulation was designed and constructed by using hollow mesoporous organosilica nanoparticles (HMONs) and ZnO quantum dots as the nanocarrier and capping agent, respectively. Boscalid was further loaded to generate Boscalid@HMONs@ZnO with a loading rate of 9.8% for controlling Botrytis cinerea (B. cinerea). The quantity of boscalid released by Boscalid@HMONs@ZnO in a glutathione environment or at pH 3.0 was 1.3-fold and 1.9-fold higher than that in a neutral condition. Boscalid@HMONs@ZnO has 1.7-fold the toxicity index of boscalid technical against B. cinerea in antifungal experiments. Pot experiments revealed that the efficacy of Boscalid@HMONs@ZnO was significantly enhanced more than 1.27-fold compared to commercially available water-dispersible granules of boscalid. Due to the fluorescence properties of Boscalid@HMONs@ZnO, pesticide transport's real-time monitoring of pesticide translocation in tomato plants could be observed by confocal laser scanning microscopy. Fluorescence images revealed that HMONs@ZnO had been effectively transported via treated leaves or roots in tomato plants. This research showed the successful application of HMONs@ZnO as a nanocarrier for controlling disease and offered an effective avenue to explore the real-time tracking of pesticide translocation in plants.


Assuntos
Botrytis , Nanopartículas , Oxirredução , Óxido de Zinco , Botrytis/efeitos dos fármacos , Nanopartículas/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Concentração de Íons de Hidrogênio , Corantes Fluorescentes/química , Compostos de Bifenilo/química , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Solanum lycopersicum/química , Praguicidas/química , Praguicidas/toxicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Liberação Controlada de Fármacos , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Niacinamida/análogos & derivados
3.
Photochem Photobiol Sci ; 23(6): 1117-1128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750328

RESUMO

Botrytis cinerea is a severe threat in agriculture, as it can infect over 200 different crop species with gray mold affecting food yields and quality. The conventional treatment using fungicides lead to emerging resistance over the past decades. Here, we introduce Photodynamic Inactivation (PDI) as a strategy to combat B. cinerea infections, independent of fungicide resistance. PDI uses photoactive compounds, which upon illumination create reactive oxygen species toxic for killing target organisms. This study focuses on different formulations of sodium-magnesium-chlorophyllin (Chl, food additive E140) as photoactive compound in combination with EDTA disodium salt dihydrate (Na2EDTA) as cell-wall permeabilizer and a surfactant. In an in vitro experiment, three different photosensitizers (PS) with varying Chl and Na2EDTA concentrations were tested against five B. cinerea strains with different resistance mechanisms. We showed that all B. cinerea mycelial spheres of all tested strains were eradicated with concentrations as low as 224 µM Chl and 3.076 mM Na2EDTA (LED illumination with main wavelength of 395 nm, radiant exposure 106 J cm-2). To further test PDI as a Botrytis treatment strategy in agriculture a greenhouse trial was performed on B. cinerea infected bell pepper plants (Capsicum annum L). Two different rates (560 or 1120 g Ha-1) of PS formulation (0.204 M Chl and 1.279 M Na2EDTA) and a combination of PS formulation with 0.05% of the surfactant BRIJ L4 (560 g Ha-1) were applied weekly for 4 weeks by spray application. Foliar lesions, percentage of leaves affected, percentage of leaf area diseased and AUDPC were significantly reduced, while percentage of marketable plants were increased by all treatments compared to a water treated control, however, did not statistically differ from each other. No phytotoxicity was observed in any treatment. These results add to the proposition of employing PDI with the naturally sourced PS Chl in agricultural settings aimed at controlling B. cinerea disease. This approach seems to be effective regardless of the evolving resistance mechanisms observed in response to conventional antifungal treatments.


Assuntos
Botrytis , Fármacos Fotossensibilizantes , Botrytis/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Ácido Edético/farmacologia , Ácido Edético/química , Farmacorresistência Fúngica/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Agricultura , Clorofilídeos , Testes de Sensibilidade Microbiana , Luz
4.
Appl Microbiol Biotechnol ; 108(1): 398, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940906

RESUMO

Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.


Assuntos
Biofilmes , Botrytis , Fragaria , Proteínas Fúngicas , Hifas , Proteínas de Membrana , Doenças das Plantas , Botrytis/patogenicidade , Botrytis/genética , Botrytis/crescimento & desenvolvimento , Botrytis/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Virulência , Hifas/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Doenças das Plantas/microbiologia , Fragaria/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Vitis/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Deleção de Genes
5.
Phytopathology ; 114(5): 1068-1074, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105240

RESUMO

Succinate dehydrogenase inhibitor (SDHI) fungicides are the most commonly and effectively used class of fungicides for controlling gray mold. Among them, only boscalid has been registered in China for controlling grape gray mold, whereas isofetamid and pydiflumetofen are two new SDHI fungicides that have demonstrated high efficacy against various fungal diseases. However, the sensitivity of Botrytis cinerea isolates from vineyards in China to these three fungicides is currently unknown. In this study, the sensitivity of 55 B. cinerea isolates from vineyards to boscalid, isofetamid, and pydiflumetofen was determined, with the effective concentrations for inhibiting 50% of spore germination (EC50) values ranging from 1.10 to 393, 0.0300 to 42.0, and 0.0990 to 25.5 µg ml-1, respectively. The resistance frequencies for boscalid, isofetamid, and pydiflumetofen were 60.0, 7.2, and 12.8%, respectively. Three mutations (H272R, H272Y, and P225F) were detected in the SdhB subunit, with H272R being the most prevalent (75.7%), followed by H272Y (16.2%) and P225F (8.1%). All three mutations are associated with resistance to boscalid, and of them, H272R mutants exhibited high resistance. Only P225F and H272Y mutants exhibited resistance to isofetamid and pydiflumetofen, respectively. A weakly positive cross-resistance relationship was observed between boscalid and pydiflumetofen (r = 0.38, P < 0.05). Additionally, the H272R mutants showed no significant fitness costs, whereas the remaining mutants exhibited reduced mycelial growth (P225F) and sporulation (H272Y and P225F). These results suggest that isofetamid and pydiflumetofen are effective fungicides against B. cinerea in vineyards, but appropriate rotation strategies must be implemented to reduce the selection of existing SDHI-resistant isolates.


Assuntos
Compostos de Bifenilo , Botrytis , Farmacorresistência Fúngica , Fungicidas Industriais , Niacinamida , Doenças das Plantas , Vitis , Botrytis/efeitos dos fármacos , Botrytis/genética , Fungicidas Industriais/farmacologia , China , Vitis/microbiologia , Doenças das Plantas/microbiologia , Compostos de Bifenilo/farmacologia , Farmacorresistência Fúngica/genética , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Succinato Desidrogenase/genética , Succinato Desidrogenase/antagonistas & inibidores , Esporos Fúngicos/efeitos dos fármacos , Benzamidas/farmacologia , Piridinas/farmacologia , Fazendas , Mutação , Norbornanos , Pirazóis
6.
Phytopathology ; 114(4): 770-779, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598410

RESUMO

Gray mold caused by Botrytis cinerea is among the 10 most serious fungal diseases worldwide. Fludioxonil is widely used to prevent and control gray mold due to its low toxicity and high efficiency; however, resistance caused by long-term use has become increasingly prominent. Therefore, exploring the resistance mechanism of fungicides provides a theoretical basis for delaying the occurrence of diseases and controlling gray mold. In this study, fludioxonil-resistant strains were obtained through indoor drug domestication, and the mutation sites were determined by sequencing. Strains obtained by site-directed mutagenesis were subjected to biological analysis, and the binding modes of fludioxonil and iprodione to Botrytis cinerea Bos1 BcBos1 were predicted by molecular docking. The results showed that F127S, I365S/N, F127S + I365N, and I376M mutations on the Bos1 protein led to a decrease in the binding energy between the drug and BcBos1. The A1259T mutation did not lead to a decrease in the binding energy, which was not the cause of drug resistance. The biological fitness of the fludioxonil- and point mutation-resistant strains decreased, and their growth rate, sporulation rate, and pathogenicity decreased significantly. The glycerol content of the sensitive strains was significantly lower than that of the resistant strains and increased significantly after treatment with 0.1 µg/ml of fludioxonil, whereas that of the resistant strains decreased. The osmotic sensitivity of the resistant strains was significantly lower than that of the sensitive strains. Positive cross-resistance was observed between fludioxonil and iprodione. These results will help to understand the resistance mechanism of fludioxonil in Botrytis cinerea more deeply.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Botrytis , Dioxóis , Farmacorresistência Fúngica , Proteínas Fúngicas , Fungicidas Industriais , Histidina Quinase , Hidantoínas , Pirróis , Botrytis/genética , Botrytis/efeitos dos fármacos , Botrytis/enzimologia , Dioxóis/farmacologia , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidantoínas/farmacologia , Pirróis/farmacologia , Pirróis/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Doenças das Plantas/microbiologia , Simulação de Acoplamento Molecular , Mutação , Mutagênese Sítio-Dirigida
7.
Phytopathology ; 114(7): 1515-1524, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38489213

RESUMO

Biological control agent Bacillus subtilis formulated as Theia is registered for control of fungal and bacterial diseases of fruit crops. Combinations of Theia and strategic concentrations of two demethylation inhibitor (DMI) fungicides were investigated to explore potential synergisms. Bacteria were cultured in nutrient broth and combined with technical grades and two formulations of propiconazole (emulsifiable concentrate [EC] and wettable powder) and metconazole (EC and water-dispersible granule) at 0, 10, 50, 100, and 150 µg/ml of active ingredient. After cocultivation, the optical density (OD600) and colony forming units (CFU/ml) were evaluated. In contrast to EC formulations, the wettable powder or water-dispersible granule formulations at 10 or 50 µg/ml of both DMIs did not affect vegetative cell growth. The mixture of Theia and each formulated DMI at 50 µg/ml of active ingredient resulted in a significant reduction of Monilinia fructicola lesion development on apple, Colletotrichum siamense lesion development on cherry, and Botrytis cinerea lesion development on cherry. The combination of Theia with EC formulations showed weaker disease reduction due to antagonism. Only Theia plus non-EC formulated propiconazole and metconazole significantly reduced brown rot disease incidence of apple compared with the respective solo treatments and anthracnose disease incidence of cherry compared with the untreated control. Our results indicated that at least some DMI fungicides possess bactericidal effects depending on the formulation and concentration. The combination of Theia with a lower-than-label-rate concentration (50 µg/ml) of the DMI fungicides propiconazole and metconazole showed potential for synergistic effects, especially when non-EC formulations were used.


Assuntos
Bacillus subtilis , Botrytis , Frutas , Fungicidas Industriais , Doenças das Plantas , Triazóis , Fungicidas Industriais/farmacologia , Bacillus subtilis/efeitos dos fármacos , Triazóis/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Botrytis/efeitos dos fármacos , Frutas/microbiologia , Produtos Agrícolas/microbiologia , Colletotrichum/efeitos dos fármacos , Colletotrichum/crescimento & desenvolvimento , Ascomicetos/efeitos dos fármacos , Ascomicetos/fisiologia , Ascomicetos/crescimento & desenvolvimento
8.
Curr Microbiol ; 81(10): 327, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181975

RESUMO

Application of actinobacteria has grown exponentially in recent years in sustainable agricultural. Most actinobacterial inoculants are tailored to function as either biocontrol agents or biofertilizers. Hence, there is the need to obtain and include multifunctional actinobacterial strains in inocula formulations. In this research, 90 actinobacterial isolates were isolated from rhizospheric and non-rhizospheric soils of Algerian Saharan arid regions and were screened for their activity against the phytopathogenic fungi Alternaria alternata, Aspergillus flavus, Botrytis cinerea, Fusarium oxysporum, and Fusarium solani. Five isolates that inhibited at least three of these fungi were characterized according to morphological, environmental and biochemical parameters, and were preliminarily identified as Streptomyces enissocaesilis A1, Streptomyces olivoverticillatus A5, Streptomyces erumpens A6, Streptomyces cavourensis A8, and Streptomyces microflavus A20. These strains were then screened for plant growth promoting activities. All strains produced siderophores, hydrocyanic acid, ammonia and the auxin indole-3-acetic acid (IAA) and were capable of solubilizing phosphate. The highest producer of siderophores (69.19 percent siderophore units), ammonia (70.56 µg mL-1) and IAA (148.76 µg mL-1) was strain A8, A20, and A5, respectively. These findings showed that the five actinobacteria are multipurpose strains with simultaneous antifungal and plant growth promoting activities and have the potential to be used for sustainable agricultural practices, particularly in arid regions.


Assuntos
Actinobacteria , Antifúngicos , Microbiologia do Solo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Actinobacteria/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/crescimento & desenvolvimento , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Streptomyces/classificação , Streptomyces/isolamento & purificação , Streptomyces/genética , Streptomyces/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Filogenia , Argélia , Desenvolvimento Vegetal , Antibiose , África do Norte
9.
Biotechnol Lett ; 46(5): 751-766, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38811460

RESUMO

Objectives To screen high active volatile organic compounds (VOCs)-producing Trichoderma isolates against strawberry gray mold caused by Botrytis cinerea, and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine Trichoderma isolates (Trichoderma atroviride T1 and T3; Trichoderma harzianum T2, T4 and T5; T6, T7, T8 and T9 identified as Trichoderma asperellum in this work) significantly inhibited the mycelial growth (13.9-63.0% reduction) and conidial germination (17.6-96.3% reduction) of B. cinerea, the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of B. cinerea, completely protected the leaves from B. cinerea infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of B. cinerea, thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC-MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by Trichoderma spp. T. asperellum T7 showed high biofumigant activity against mycelial growth especially conidial germination of B. cinerea and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen's plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold.


Assuntos
Botrytis , Fragaria , Frutas , Doenças das Plantas , Trichoderma , Compostos Orgânicos Voláteis , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Fragaria/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Frutas/microbiologia , Trichoderma/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Agentes de Controle Biológico/farmacologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Armazenamento de Alimentos/métodos
10.
Food Microbiol ; 123: 104583, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038889

RESUMO

Gray mold, caused by Botrytis cinerea, is a prevalent postharvest disease of apple that limits their shelf life, resulting in significant economic losses. The use of antagonistic microorganisms has been shown to be an effective approach for managing postharvest diseases of fruit. In the present study, an endophytic yeast strain PGY-2 was isolated from apples and evaluated for its biocontrol efficacy against gray mold and its mechanisms of action. Results indicated that strain PGY-2, identified as Bullera alba, reduced the occurrence of gray mold on apples and significantly inhibited lesion development in pathogen-inoculated wounds. Gray mold control increased with the use of increasing concentrations of PGY-2, with the best disease control observed at 108 cells/mL. Notably, Bullera alba PGY-2 did not inhibit the growth of Botrytis cinerea in vitro indicating that the yeast antagonist did not produce antimicrobial compounds. The rapid colonization and stable population of PGY-2 in apple wounds at 4 °C and 25 °C confirmed its ability to compete with pathogens for nutrients and space. PGY-2 also had a strong ability to form a biofilm and enhanced the activity of multiple defense-related enzymes (POD, PPO, APX, SOD, PAL) in host tissues. Our study is the first time to report the use of Bullera alba PGY-2 as a biocontrol agent for postharvest diseases of apple and provide evidence that Bullera alba PGY-2 represents an endophytic antagonistic yeast with promising biocontrol potential and alternative to the use of synthetic, chemical fungicides for the control of postharvest gray mold in apples.


Assuntos
Antibiose , Botrytis , Endófitos , Frutas , Malus , Doenças das Plantas , Malus/microbiologia , Botrytis/crescimento & desenvolvimento , Botrytis/fisiologia , Botrytis/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Endófitos/fisiologia , Endófitos/isolamento & purificação , Frutas/microbiologia , Leveduras/fisiologia , Leveduras/isolamento & purificação , Biofilmes/crescimento & desenvolvimento
11.
An Acad Bras Cienc ; 96(suppl 2): e20240255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39194008

RESUMO

The use of yeasts has been explored as an efficient alternative to fungicide application in the treatment and prevention of post-harvest fruit deterioration. Here, we evaluated the biocontrol abilities of the Antarctic yeast strain Debaryomyces hansenii UFT8244 against the post-harvest phytopathogenic fungi Botrytis cinerea and Rhizopus stolonifer for the protection and preservation of strawberry fruit. The strongest inhibition of germination of B. cinerea (57%) was observed at 0 °C, followed by 40% at 25 °C. In addition, germ tubes and hyphae of B. cinerea were strongly surrounded and colonized by D. hansenii. Production of the enzymes ß-1,3-glucanase, chitinase and protease by D. hansenii was detected in the presence of phytopathogenic fungus cell walls. The activity of ß-1,3-glucanase was highest on day 12 of incubation and remained high until day 15. Chitinase and protease activities reached their highest levels on the day 15 of incubation. D. hansenii additionally demonstrated the ability to resist oxidative stress. Our data demonstrated that the main biocontrol mechanisms displayed by D. hansenii were the control of phytopathogenic fungal spore germination, production of antifungal enzymes and resistance to oxidative stress. We conclude that isolate D. hansenii UFT8422 should be further investigated for use at commercial scales at low temperatures.


Assuntos
Botrytis , Fragaria , Fragaria/microbiologia , Botrytis/efeitos dos fármacos , Botrytis/fisiologia , Rhizopus/fisiologia , Rhizopus/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Quitinases/metabolismo , Controle Biológico de Vetores/métodos , Regiões Antárticas , Debaryomyces/fisiologia , Agentes de Controle Biológico/farmacologia
12.
Pestic Biochem Physiol ; 201: 105884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685250

RESUMO

Botrytis cinerea is one of the most destructive pathogens worldwide. It can damage over 200 crops, resulting in significant yield and quality losses. Cyclobutrifluram, a new generation of succinate dehydrogenase inhibitors, exhibits excellent inhibitory activity against B. cinerea. However, the baseline sensitivity and resistance of B. cinerea to cyclobutrifluram remains poorly understood. This study was designed to monitor the sensitivity frequency distribution, assess the resistance risk, and clarify the resistance mechanism of B. cinerea to cyclobutrifluram. The baseline sensitivity of B. cinerea isolates to cyclobutrifluram was 0.89 µg/mL. Cyclobutrifluram-resistant B. cinerea populations are present in the field. Six resistant B. cinerea isolates investigated in this study possessed enhanced compound fitness index compared to the sensitive isolates according to mycelial growth, mycelial dry weight, conidiation, conidial germination rate, and pathogenicity. Cyclobutrifluram exhibited no cross-resistance with tebuconazole, fludioxonil, cyprodinil, or iprodione. Sequence alignment revealed that BcSDHB from cyclobutrifluram-resistant B. cinerea isolates had three single substitutions (P225F, N230I, or H272R). Molecular docking verified that these mutations in BcSDHB conferred cyclobutrifluram resistance in B. cinerea. In conclusion, the resistance risk of B. cinerea to cyclobutrifluram is high, and the point mutations in BcSDHB (P225F, N230I, or H272R) confer cyclobutrifluram resistance in B. cinerea. This study provided important insights into cyclobutrifluram resistance in B. cinerea and offered valuable information for monitoring and managing cyclobutrifluram resistance in the future.


Assuntos
Botrytis , Farmacorresistência Fúngica , Fungicidas Industriais , Norbornanos , Mutação Puntual , Pirazóis , Botrytis/efeitos dos fármacos , Botrytis/genética , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , China , Succinato Desidrogenase/genética , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia
13.
Pestic Biochem Physiol ; 203: 106007, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084802

RESUMO

Gray mold, caused by Botrytis cinerea is an intractable fungal disease that causes extensive damage to agricultural products. In the search for novel antifungal active ingredients, we discovered a linear pyranocoumarin Pd-D-V was effective against B. cinerea in both in vitro and in vivo assays. Furthermore, this study investigated the effects of Ca2+ and the Ca2+-calcineurin signaling pathway on its antifungal activity against B. cinerea. The results indicated that Pd-D-V reduced the concentration of Ca2+ in the mycelia of B. cinerea; CaCl2, the Ca2+ channel blocker verapamil, or the calcineurin inhibitor cyclosporin A could affect the sensitivity of Pd-D-V against B. cinerea; the expression of genes (Bccch1, Bcmid1, BccnA, Bccnb1, Bcpmc1, and Bcpmr1) of the Ca2+-calcineurin signaling pathway decreased after Pd-D-V treatment. In summary, Pd-D-V is compound for developing fungicides against B. cinerea. Pd-D-V can reduce intracellular Ca2+ concentration and disturb Ca2+ homeostasis. The Ca2+-calcineurin signaling pathway is important in the antifungal activity of Pd-D-V against B. cinerea.


Assuntos
Botrytis , Calcineurina , Cálcio , Transdução de Sinais , Botrytis/efeitos dos fármacos , Calcineurina/metabolismo , Cálcio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antifúngicos/farmacologia , Cumarínicos/farmacologia , Fungicidas Industriais/farmacologia
14.
Pestic Biochem Physiol ; 202: 105932, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879298

RESUMO

The marine antifungal peptide epinecidin-1 (EPI) have been shown to inhibit Botrytis cinerea growth, while the molecular mechanism have not been explored based on omics technology. This study aimed to investigate the molecular mechanism of EPI against B. cinerea by transcriptome technology. Our findings indicated that a total of 1671 differentially expressed genes (DEGs) were detected in the mycelium of B. cinerea treated with 12.5 µmol/L EPI for 3 h, including 773 up-regulated genes and 898 down-regulated genes. Cluster analysis showed that DEGs (including steroid biosynthesis, (unsaturated) fatty acid biosynthesis) related to cell membrane metabolism were significantly down-regulated, and almost all DEGs involved in DNA replication were significantly inhibited. In addition, it also induced the activation of stress-related pathways, such as the antioxidant system, ATP-binding cassette transporter (ABC) and MAPK signaling pathways, and interfered with the tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathways related to mitochondrial function. The decrease of mitochondrial related enzyme activities (succinate dehydrogenase, malate dehydrogenase and adenosine triphosphatase), the decrease of mitochondrial membrane potential and the increase content of hydrogen peroxide further confirmed that EPI treatment may lead to mitochondrial dysfunction and oxidative stress. Based on this, we speculated that EPI may impede the growth of B. cinerea through its influence on gene expression, and may lead to mitochondrial dysfunction and oxidative stress.


Assuntos
Antifúngicos , Peptídeos Catiônicos Antimicrobianos , Botrytis , Transcriptoma , Transcriptoma/fisiologia , Antifúngicos/metabolismo , Peptídeos Catiônicos Antimicrobianos/toxicidade , Botrytis/efeitos dos fármacos , Botrytis/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Peróxido de Hidrogênio , Expressão Gênica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Mitocôndrias , Estresse Oxidativo
15.
Pestic Biochem Physiol ; 203: 105995, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084769

RESUMO

Gray mold disease, caused by Botrytis cinerea is a major postharvest disease impacting fruits such as strawberries and tomatoes. This study explores the use of volatile organic compounds (VOCs) produced by Bacillus spp. as eco-friendly biocontrol agents against B. cinerea. In vitro experiments demonstrated that VOCs from Bacillus sp. LNXM12, B. thuringiensis GBAC46, and B. zhanghouensis LLTC93-VOCs inhibited fungal growth by 61.2%, 40.5%, and 21.6%, respectively, compared to the control. LNXM12 was selected for further experiments due to its highest control efficacy of 58.3% and 76.6% on tomato and strawberry fruits, respectively. The LNXM12 VOCs were identified through gas chromatography-mass spectrometry (GC-MS) analysis, and 22 VOCs were identified. Synthetic VOCs with the highest probability percentage, namely ethyloctynol, 3-methyl-2-pentanone (3M2P), 1,3-butadiene-N, N-dimethylformamide (DMF), and squalene were used in experiments. The results showed that the synthetic VOCs ethyloctynol and 3M2P were highly effective, with an inhibition rate of 56.8 and 57.1% against fungal mycelium radial growth at 120 µg/mL on agar plates. Trypan blue staining revealed strongly disrupted, deeper blue, and lysed mycelium in VOC-treated B. cinerea. The scanning and transmission electron microscope (SEM and TEM) results showed that fungal mycelium was smaller, irregular, and shrunken after synthetic VOC treatments. Furthermore, the synthetic VOCs Ethyloctynol and 3M2P revealed high control efficacy on tomatoes and strawberries infected by B. cinerea. The control efficacy on leaves was 67.2%, 66.1% and 64.5%, 78.4% respectively. Similarly, the control efficiency on fruits was 45.5%, 67.3% and 46.3% 65.1%. The expression of virulence genes in B. cinerea was analyzed, and the results revealed that selected genes BcSpl1, BcXyn11A, BcPG2, BcNoxB, BcNoxR, and BcPG1 were downregulated after VOCs treatment. The overall result revealed novel mechanisms by which Bacillus sp. volatiles control postharvest gray mold disease.


Assuntos
Bacillus , Botrytis , Fragaria , Doenças das Plantas , Solanum lycopersicum , Compostos Orgânicos Voláteis , Botrytis/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/química , Solanum lycopersicum/microbiologia , Fragaria/microbiologia , Bacillus/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Antifúngicos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Fungicidas Industriais/farmacologia , Agentes de Controle Biológico/farmacologia , Frutas/microbiologia , Frutas/química
16.
Pestic Biochem Physiol ; 202: 105956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879338

RESUMO

Pepper southern blight, caused by Sclerotium rolfsii, is a devastating soil-borne disease resulting in significant loss to pepper, Capsicum annuum L. production. Here, we isolated an antagonistic bacterial strain XQ-29 with antifungal activity against S. rolfsii from rhizospheric soil of pepper. Combining the morphological and biochemical characteristics with the 16S rDNA sequencing, XQ-29 was identified as Streptomyces griseoaurantiacus. It exhibited an inhibition of 96.83% against S. rolfsii and displayed significant inhibitory effects on Botrytis cinerea, Phytophthora capsica and Rhizoctonia solani. Furthermore, XQ-29 significantly reduced the pepper southern blight by 100% and 70.42% during seedling and growth stages, respectively. The antifungal mechanism involved altering the mycelial morphology, disrupting cell wall and membrane integrity, accompanied by accumulation of reactive oxygen species and lipid peroxidation in S. rolfsii mycelia. Furthermore, XQ-29 promoted growth and stimulated resistance of pepper plants by increasing defense-related enzyme activities and upregulating defense-related genes. Correspondingly, XQ-29 harbors numerous functional biosynthesis gene clusters in its genome, including those for siderophores and melanin production. The metabolic constituents present in the ethyl acetate extracts, which exhibited an EC50 value of 85.48 ± 1.62 µg/mL, were identified using LC-MS. Overall, XQ-29 demonstrates significant potential as a biocontrol agent against southern blight disease.


Assuntos
Botrytis , Capsicum , Doenças das Plantas , Rhizoctonia , Streptomyces , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Capsicum/microbiologia , Streptomyces/genética , Streptomyces/fisiologia , Botrytis/efeitos dos fármacos , Botrytis/fisiologia , Rhizoctonia/fisiologia , Rhizoctonia/efeitos dos fármacos , Basidiomycota/fisiologia , Phytophthora/fisiologia , Phytophthora/efeitos dos fármacos , Agentes de Controle Biológico/farmacologia , Antifúngicos/farmacologia
17.
Chem Biodivers ; 21(5): e202400311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494946

RESUMO

Phytopathogenic fungi is the most devastating reason for the decrease of the agricultural production and food safety. To develop new fungicidal agents for resistance concerning, a novel series of aminocoumarin derivatives were synthesized and their fungicidal activity were investigated both in vitro and in vivo. Transmission electron microscope (TEM), scanning electron microscope (SEM), RNA-Seq, 3D-QSAR and molecular docking were applied to reveal the underlying anti-fungal mechanisms. Most of the compounds exhibited significant fungicidal activity. Notably, compound 10c had a more extensive fungicidal effect than positive control. TEM indicated that compound 10c could cause abnormal morphology of cell walls, vacuoles and release of cellular contents. Transcriptional analysis data indicated that 895 and 653 out of 1548 differential expressed genes (DEGs) were up-regulated and down-regulated respectively. The Go and KEGG enrichment indicated that the coumarin derivatives could induce significant changes of succinate dehydrogenase (SDH), Acetyl-coenzyme A synthetase (ACCA) and pyruvate dehydrogenase (PDH) genes, which contributed to the disorders of glucolipid metabolism and the dysfunction of mitochondrial. The results demonstrated that aminocoumarins with schiff-base as core moieties could be the promising lead compounds for the discovery of novel fungicides.


Assuntos
Cumarínicos , Desenho de Fármacos , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Estrutura Molecular , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Relação Quantitativa Estrutura-Atividade , Botrytis/efeitos dos fármacos
18.
Chem Biodivers ; 21(5): e202400027, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602839

RESUMO

Garlic oil has a wide range of biological activities, and its broad-spectrum activity against phytopathogenic fungi still has the potential to be explored. In this study, enzymatic treatment of garlic resulted in an increase of approximately 50 % in the yield of essential oil, a feasible GC-MS analytical program for garlic oil was provided. Vacuum fractionation of the volatile oil and determination of its inhibitory activity against 10 fungi demonstrated that garlic oil has good antifungal activity. The antifungal activity levels were ranked as diallyl trisulfide (S-3)>diallyl disulfide (S-2)>diallyl monosulfide (S-1), with an EC50 value of S-3 against Botrytis cinerea reached 8.16 mg/L. Following the structural modification of compound S-3, a series of derivatives, including compounds S-4~7, were synthesized and screened for their antifungal activity. The findings unequivocally demonstrated that the compound dimethyl trisulfide (S-4) exhibited exceptional antifungal activity. The EC50 of S-4 against Sclerotinia sclerotiorum reached 6.83 mg/L. SEM, In vivo experiments, and changes in mycelial nucleic acids, soluble proteins and soluble sugar leakage further confirmed its antifungal activity. The study indicated that the trisulfide bond structure was the key to good antifungal activity, which can be developed into a new type of green plant-derived fungicide for plant protection.


Assuntos
Compostos Alílicos , Antifúngicos , Alho , Testes de Sensibilidade Microbiana , Óleos Voláteis , Sulfetos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/síntese química , Sulfetos/farmacologia , Sulfetos/química , Alho/química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Compostos Alílicos/farmacologia , Compostos Alílicos/química , Compostos Alílicos/isolamento & purificação , Compostos Alílicos/síntese química , Destilação , Desenho de Fármacos , Botrytis/efeitos dos fármacos , Relação Estrutura-Atividade , Ascomicetos/efeitos dos fármacos , Estrutura Molecular
19.
Chem Biodivers ; 21(6): e202400583, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590217

RESUMO

Plant disease control mainly relies on pesticides. In this study, a series of coumarin derivatives containing hydrazone moiety were designed and synthesized. The synthesized compounds were characterized and used to evaluate the antifungal activity against four pathogens, Botrytis cinerea, Alternaria solani, Fusarium oxysporum, and Alternaria alternata. The results showed that the inhibition rate of some compounds at 100 µg/mL in 96 hours reached around 70 % against A. alternata, higher than that of the positive control. The corresponding EC50 values were found at around 30 µg/mL. Finally, the compound 3 b was screened out with the lowest EC50 value (19.49 µg/mL). The analysis of SEM and TEM confirmed that the compound 3 b can obviously damage the morphological structure of hyphae, resulting in the depletion of the cells by the destruction of morphological matrix and leakage of contents. RNA sequencing showed that compounds 3 b mainly affected the pentose phosphate pathway, which caused to destroy the layer of mitochondrial structure. Molecular docking showed that compounds 3 b fitted the binding pocket of yeast transketolase and interacted with lysine at the hydrazone structure. Our results suggested that the introduction of hydrazone was an effective strategy for the design of novel bioactive compounds.


Assuntos
Alternaria , Antifúngicos , Botrytis , Cumarínicos , Fusarium , Hidrazonas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Fusarium/efeitos dos fármacos , Relação Estrutura-Atividade , Botrytis/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga
20.
Plant Dis ; 108(6): 1481-1485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38301218

RESUMO

The main phytosanitary problem for table grape production in Chile is gray mold caused by the fungus Botrytis cinerea. To manage this issue, the primary method utilized is chemical control. Fludioxonil, a phenylpyrrole, is highly effective in controlling B. cinerea and other plant pathogens. Consistently, there have been no field reports of reduced efficacy of fludioxonil; however, subpopulations with reduced sensitivity to fludioxonil are on the rise globally, as per increasing reports. Our study involved a large-scale evaluation of B. cinerea's sensitivity to fludioxonil in the Central Valley of Chile's primary table grape production area during the growing seasons from 2015 to 2018. Out of 2,207 isolates, only 1.04% of the isolates (n = 23) exceeded the sensitivity threshold value of 1 µg/ml. Remarkably, 95.7% are concentrated in a geographic region (Valparaíso Region). Isolates with reduced sensitivity to fludioxonil showed growth comparable with sensitive isolates and even more robust growth under nutritional deficit, temperature, or osmotic stress, suggesting greater environmental adaptation. When table grape detached berries were stored at 0°C, isolates less sensitive to fludioxonil caused larger lesions than sensitive isolates (2.82 mm compared with 1.48 mm). However, the lesions generated by both types of isolates were equivalent at room temperature. This study found no cross-resistance between fludioxonil and fenhexamid, an essential fungicide integrated with fludioxonil in Chilean B. cinerea control programs. All the Chilean isolates with reduced sensitivity to fludioxonil were controlled by the fludioxonil/cyprodinil mixture, a commonly employed form of fludioxonil. The cyprodinil sensitivity in the isolates with reduced sensitivity to fludioxonil explains their low field frequency despite their null fitness penalties. However, the emergence of fludioxonil-resistant isolates inside the Chilean B. cinerea population demands a comprehensive analysis of their genetic bases, accompanied by monitoring tools that allow the permanence of field fludioxonil efficacy.


Assuntos
Botrytis , Dioxóis , Fungicidas Industriais , Doenças das Plantas , Pirróis , Vitis , Botrytis/efeitos dos fármacos , Botrytis/genética , Chile , Fungicidas Industriais/farmacologia , Pirróis/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Dioxóis/farmacologia , Vitis/microbiologia , Farmacorresistência Fúngica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA