RESUMO
OBJECTIVE: To investigate the clinical relevance of common myeloid progenitor (CMP) cells in breast tumor microenvironment (TME). BACKGROUND: The role of rare cells in TME is less studied. In Silico transcriptomic analyses of real-world data enable us to detect and quantify rare cells, including CMP cells. METHODS: A total of 5176 breast cancer (BC) patients from SCAN-B, METABRIC, and 5 single-cell sequence cohorts were analyzed using the xCell algorithm. The high group was defined as more than two-thirds of the CMP scores in each cohort. RESULTS: CMP cells consist of 0.07% to 0.25% of bulk breast tumor cells, more in estrogen receptor-positive (ER+) compared with triple-negative (TN) subtype (0.1% to 0.75%, 0.18% to 0.33% of immune cells, respectively). CMP cells did not correlate with any of the myeloid lineages or stem cells in TME. CMP infiltration was higher in smaller tumors, with lower Nottingham grade, and in ER+/HER2- than in TNBC consistently in both SCAN-B and METABRIC cohorts. High CMP was significantly associated with a lower risk of brain metastasis and with better survival, particularly in ER+/HER2-. High CMP enriched epithelial-to-mesenchymal transition and angiogenesis pathways, and less cell proliferation and DNA repair gene sets. High CMP ER+/HER2- was associated with less immune cell infiltration and cytolytic activity ( P <0.001). CMP infiltration correlated with neoadjuvant chemoimmunotherapy response for both ER+/HER2- and TNBC in the ISPY-2 cohort (AUC=0.69 and 0.74, respectively). CONCLUSIONS: CMP in BC is inversely associated with cell proliferation and brain metastasis, better response to immunotherapy, and survival. This is the first to report the clinical relevance of CMP infiltration in BC.
Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Imunoterapia , Microambiente Tumoral , Humanos , Feminino , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Neoplasias da Mama/mortalidade , Imunoterapia/métodos , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , Pessoa de Meia-IdadeRESUMO
The discovery of effective therapeutic treatments for cancer via cell differentiation instead of antiproliferation remains a great challenge. Cyclin-dependent kinase 2 (CDK2) inactivation, which overcomes the differentiation arrest of acute myeloid leukemia (AML) cells, may be a promising method for AML treatment. However, there is no available selective CDK2 inhibitor. More importantly, the inhibition of only the enzymatic function of CDK2 would be insufficient to promote notable AML differentiation. To further validate the role and druggability of CDK2 involved in AML differentiation, a suitable chemical tool is needed. Therefore, we developed first-in-class CDK2-targeted proteolysis-targeting chimeras (PROTACs), which promoted rapid and potent CDK2 degradation in different cell lines without comparable degradation of other targets, and induced remarkable differentiation of AML cell lines and primary patient cells. These data clearly demonstrated the practicality and importance of PROTACs as alternative tools for verifying CDK2 protein functions.
Assuntos
Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células Progenitoras Mieloides/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Triazóis/farmacologia , Antineoplásicos/síntese química , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Concentração Inibidora 50 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Células Progenitoras Mieloides/enzimologia , Células Progenitoras Mieloides/patologia , Piperazinas/farmacologia , Cultura Primária de Células , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade , Transcriptoma , Triazóis/síntese químicaRESUMO
In acute myeloid leukaemia, long-term survival is poor as most patients relapse despite achieving remission. Historically, the failure of therapy has been thought to be due to mutations that produce drug resistance, possibly arising as a consequence of the mutagenic properties of chemotherapy drugs. However, other lines of evidence have pointed to the pre-existence of drug-resistant cells. For example, deep sequencing of paired diagnosis and relapse acute myeloid leukaemia samples has provided direct evidence that relapse in some cases is generated from minor genetic subclones present at diagnosis that survive chemotherapy, suggesting that resistant cells are generated by evolutionary processes before treatment and are selected by therapy. Nevertheless, the mechanisms of therapy failure and capacity for leukaemic regeneration remain obscure, as sequence analysis alone does not provide insight into the cell types that are fated to drive relapse. Although leukaemia stem cells have been linked to relapse owing to their dormancy and self-renewal properties, and leukaemia stem cell gene expression signatures are highly predictive of therapy failure, experimental studies have been primarily correlative and a role for leukaemia stem cells in acute myeloid leukaemia relapse has not been directly proved. Here, through combined genetic and functional analysis of purified subpopulations and xenografts from paired diagnosis/relapse samples, we identify therapy-resistant cells already present at diagnosis and two major patterns of relapse. In some cases, relapse originated from rare leukaemia stem cells with a haematopoietic stem/progenitor cell phenotype, while in other instances relapse developed from larger subclones of immunophenotypically committed leukaemia cells that retained strong stemness transcriptional signatures. The identification of distinct patterns of relapse should lead to improved methods for disease management and monitoring in acute myeloid leukaemia. Moreover, the shared functional and transcriptional stemness properties that underlie both cellular origins of relapse emphasize the importance of developing new therapeutic approaches that target stemness to prevent relapse.
Assuntos
Linhagem da Célula , Leucemia Mieloide Aguda/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Animais , Células Clonais/metabolismo , Células Clonais/patologia , Feminino , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/genética , Camundongos , Mutação , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas/metabolismoRESUMO
The pathophysiology of neurodegenerative diseases is poorly understood and there are few therapeutic options. Neurodegenerative diseases are characterized by progressive neuronal dysfunction and loss, and chronic glial activation. Whether microglial activation, which is generally viewed as a secondary process, is harmful or protective in neurodegeneration remains unclear. Late-onset neurodegenerative disease observed in patients with histiocytoses, which are clonal myeloid diseases associated with somatic mutations in the RAS-MEK-ERK pathway such as BRAF(V600E), suggests a possible role of somatic mutations in myeloid cells in neurodegeneration. Yet the expression of BRAF(V600E) in the haematopoietic stem cell lineage causes leukaemic and tumoural diseases but not neurodegenerative disease. Microglia belong to a lineage of adult tissue-resident myeloid cells that develop during organogenesis from yolk-sac erythro-myeloid progenitors (EMPs) distinct from haematopoietic stem cells. We therefore hypothesized that a somatic BRAF(V600E) mutation in the EMP lineage may cause neurodegeneration. Here we show that mosaic expression of BRAF(V600E) in mouse EMPs results in clonal expansion of tissue-resident macrophages and a severe late-onset neurodegenerative disorder. This is associated with accumulation of ERK-activated amoeboid microglia in mice, and is also observed in human patients with histiocytoses. In the mouse model, neurobehavioural signs, astrogliosis, deposition of amyloid precursor protein, synaptic loss and neuronal death were driven by ERK-activated microglia and were preventable by BRAF inhibition. These results identify the fetal precursors of tissue-resident macrophages as a potential cell-of-origin for histiocytoses and demonstrate that a somatic mutation in the EMP lineage in mice can drive late-onset neurodegeneration. Moreover, these data identify activation of the MAP kinase pathway in microglia as a cause of neurodegeneration and this offers opportunities for therapeutic intervention aimed at the prevention of neuronal death in neurodegenerative diseases.
Assuntos
Células Precursoras Eritroides/patologia , Sistema de Sinalização das MAP Quinases , Mutação , Células Progenitoras Mieloides/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Células Clonais/enzimologia , Células Clonais/metabolismo , Células Clonais/patologia , Modelos Animais de Doenças , Células Precursoras Eritroides/enzimologia , Células Precursoras Eritroides/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Histiocitose/enzimologia , Histiocitose/genética , Histiocitose/metabolismo , Histiocitose/patologia , Humanos , Macrófagos/enzimologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Microglia/enzimologia , Microglia/metabolismo , Microglia/patologia , Mosaicismo , Células Progenitoras Mieloides/enzimologia , Células Progenitoras Mieloides/metabolismo , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismoRESUMO
Hematopoietic stem cell (HSC) aging correlates with an increasing risk of myeloproliferative disease and immunosenescence. In this study, we show that aging-related inflammation promotes HSC aging through tumor necrosis factor-α (TNF-α)âERKâETS1âinterleukin27Ra (IL27Ra) pathway. TNF-α, a well-known biomarker of inflammation, increases during aging and induces the expression of IL27Ra on HSCs via ERK-ETS1 signaling. Deletion of IL27Ra rescues the functional decline and myeloid bias of HSCs and also reverses the inhibitory effect of TNF-α on HSCs. Aged IL27Ra-/- mice had a reduced proportion of myeloid-biased HSCs and did not display the biased myeloid differentiation that occurs in aged wild-type mice. IL27Ra+ HSCs exhibit impaired reconstitution capacity and myeloid-bias compared with IL27Ra- HSCs and serve as a myeloid-recovery pool upon inflammatory insult. Inflammation-related genes were enriched in IL27Ra+ HSCs and this enrichment increases with aging. Our study demonstrates that age-induced IL27Ra signaling impairs HSCs and raises the possibility that interfering with IL27Ra signaling can counter the physiologically deleterious effect of aging on hematopoietic capacity.
Assuntos
Envelhecimento/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Células Progenitoras Mieloides/imunologia , Receptores de Interleucina/imunologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Células Progenitoras Mieloides/patologia , Receptores de Interleucina/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Langerhans cell histiocytosis (LCH) is a myeloid neoplasia, driven by sporadic activating mutations in the MAPK pathway. The misguided myeloid dendritic cell (DC) model proposes that high-risk, multisystem, risk-organ-positive (MS-RO+) LCH results from driver mutation in a bone marrow (BM)-resident multipotent hematopoietic progenitor, while low-risk, MS-RO- and single-system LCH would result from driver mutation in a circulating or tissue-resident, DC-committed precursor. We have examined the CD34+c-Kit+Flt3+ myeloid progenitor population as potential mutation carrier in all LCH disease manifestations. This population contains oligopotent progenitors of monocytes (Mo's)/macrophages (MΦs), osteoclasts (OCs), and DCs. CD34+c-Kit+Flt3+ cells from BM of MS-RO+ LCH patients produced Langerhans cell (LC)-like cells in vitro. Both LC-like and DC offspring from this progenitor carried the BRAF mutation, confirming their common origin. In both high- and low-risk LCH patients, CD34+c-Kit+Flt3+ progenitor frequency in blood was higher than in healthy donors. In one MS-RO+ LCH patient, CD34+c-Kit+Flt3+ cell frequency in blood and its BRAF-mutated offspring reported response to chemotherapy. CD34+c-Kit+Flt3+ progenitors from blood of both high- and low-risk LCH patients gave rise to DCs and LC-like cells in vitro, but the driver mutation was not easily detectable, likely due to low frequency of mutated progenitors. Mutant BRAF alleles were found in Mo's /MΦs, DCs, LC-like cells, and/or OC-like cells in lesions and/or Mo and DCs in blood of multiple low-risk patients. We therefore hypothesize that in both high- and low-risk LCH, the driver mutation is present in a BM-resident myeloid progenitor that can be mobilized to the blood.
Assuntos
Medula Óssea/patologia , Diferenciação Celular , Células Dendríticas/patologia , Histiocitose de Células de Langerhans/patologia , Mutação , Células Progenitoras Mieloides/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/metabolismo , Humanos , Células Progenitoras Mieloides/metabolismoRESUMO
NF-κB is a key regulator of inflammation and cancer progression, with an important role in leukemogenesis. Despite its therapeutic potential, targeting NF-κB using pharmacologic inhibitors has proven challenging. Here, we describe a myeloid cell-selective NF-κB inhibitor using an miR-146a mimic oligonucleotide conjugated to a scavenger receptor/Toll-like receptor 9 agonist (C-miR146a). Unlike an unconjugated miR146a, C-miR146a was rapidly internalized and delivered to the cytoplasm of target myeloid cells and leukemic cells. C-miR146a reduced expression of classic miR-146a targets (IRAK1 and TRAF6), thereby blocking activation of NF-κB in target cells. IV injections of C-miR146a mimic to miR-146a-deficient mice prevented excessive NF-κB activation in myeloid cells, and thus alleviated myeloproliferation and mice hypersensitivity to bacterial challenge. Importantly, C-miR146a showed efficacy in dampening severe inflammation in clinically relevant models of chimeric antigen receptor (CAR) T-cell-induced cytokine release syndrome. Systemic administration of C-miR146a oligonucleotide alleviated human monocyte-dependent release of IL-1 and IL-6 in a xenotransplanted B-cell lymphoma model without affecting CD19-specific CAR T-cell antitumor activity. Beyond anti-inflammatory functions, miR-146a is a known tumor suppressor commonly deleted or expressed at reduced levels in human myeloid leukemia. Using The Cancer Genome Atlas acute myeloid leukemia data set, we found an inverse correlation of miR-146a levels with NF-κB-related genes and with patient survival. Correspondingly, C-miR146a induced cytotoxic effects in human MDSL, HL-60, and MV4-11 leukemia cells in vitro. The repeated IV administration of C-miR146a inhibited expression of NF-κB target genes and thereby thwarted progression of disseminated HL-60 leukemia. Our results show the potential of using myeloid cell-targeted miR-146a mimics for the treatment of inflammatory and myeloproliferative disorders.
Assuntos
Síndrome da Liberação de Citocina/prevenção & controle , Inflamação/prevenção & controle , Leucemia Mieloide Aguda/prevenção & controle , MicroRNAs/genética , Células Progenitoras Mieloides/patologia , NF-kappa B/metabolismo , Animais , Apoptose , Proliferação de Células , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Células Progenitoras Mieloides/metabolismo , NF-kappa B/genética , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Clonal haematopoiesis (CH) in patients with acute myeloid leukaemia (AML) may persist beyond attaining complete remission. From a consecutive cohort of 67 patients with nucleophosmin 1-mutated (NPM1mut ) AML, we identified 50 who achieved NPM1mut clearance and had parallel multicolour flow cytometry (MFC) and next generation sequencing (NGS). In total, 13 (26%) cleared all mutations, 37 (74%) had persistent CH frequently involving DNA methyltransferase 3α (DNMT3A,70%), tet methylcytosine dioxygenase 2 (TET2, 27%), isocitrate dehydrogenase 2 (IDH2, 19%) and IDH1 (11%). A small number (<1%) of aberrant CD34+ myeloblasts, but immunophenotypically different from original AML blasts [herein referred to as a pre-leukaemic (PL) phenotype], was detected in 17 (49%) patients with CH, but not in any patients with complete clearance of all mutations (P = 0·0037). A PL phenotype was associated with higher mutation burden (P = 0·005). Persistent IDH2 and serine and arginine-rich splicing factor 2 (SRSF2) mutations were exclusively observed in PL+ CH+ cases (P = 0·016). Persistent dysplasia was seen exclusively in cases with a PL+ phenotype (29% vs. none; P = 0·04). The PL+ phenotype did not correlate with age, intensity of induction therapy or relapse-free survival. Post-remission CH in the setting of NPM1mut clearance is common and may result in immunophenotypic changes in myeloid progenitors. It is important to not misinterpret these cells as AML measurable residual disease (MRD).
Assuntos
Medula Óssea , Hematopoiese Clonal , Leucemia Mieloide Aguda , Mutação , Células Progenitoras Mieloides , Proteínas de Neoplasias , Proteínas Nucleares , Adulto , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/metabolismo , Medula Óssea/patologia , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Indução de RemissãoRESUMO
BACKGROUND: The identification of cell type-specific genes (markers) is an essential step for the deconvolution of the cellular fractions, primarily, from the gene expression data of a bulk sample. However, the genes with significant changes identified by pair-wise comparisons cannot indeed represent the specificity of gene expression across multiple conditions. In addition, the knowledge about the identification of gene expression markers across multiple conditions is still paucity. RESULTS: Herein, we developed a hybrid tool, LinDeconSeq, which consists of 1) identifying marker genes using specificity scoring and mutual linearity strategies across any number of cell types, and 2) predicting cellular fractions of bulk samples using weighted robust linear regression with the marker genes identified in the first stage. On multiple publicly available datasets, the marker genes identified by LinDeconSeq demonstrated better accuracy and reproducibility compared to MGFM and RNentropy. Among deconvolution methods, LinDeconSeq showed low average deviations (≤0.0958) and high average Pearson correlations (≥0.8792) between the predicted and actual fractions on the benchmark datasets. Importantly, the cellular fractions predicted by LinDeconSeq appear to be relevant in the diagnosis of acute myeloid leukemia (AML). The distinct cellular fractions in granulocyte-monocyte progenitor (GMP), lymphoid-primed multipotent progenitor (LMPP) and monocytes (MONO) were found to be closely associated with AML compared to the healthy samples. Moreover, the heterogeneity of cellular fractions in AML patients divided these patients into two subgroups, differing in both prognosis and mutation patterns. GMP fraction was the most pronounced between these two subgroups, particularly, in SubgroupA, which was strongly associated with the better AML prognosis and the younger population. Totally, the identification of marker genes by LinDeconSeq represents the improved feature for deconvolution. The data processing strategy with regard to the cellular fractions used in this study also showed potential for the diagnosis and prognosis of diseases. CONCLUSIONS: Taken together, we developed a freely-available and open-source tool LinDeconSeq ( https://github.com/lihuamei/LinDeconSeq ), which includes marker identification and deconvolution procedures. LinDeconSeq is comparable to other current methods in terms of accuracy when applied to benchmark datasets and has broad application in clinical outcome and disease-specific molecular mechanisms.
Assuntos
Biomarcadores Tumorais/genética , Leucemia Mieloide Aguda/genética , Células Progenitoras Mieloides/classificação , Software , Humanos , Leucemia Mieloide Aguda/classificação , Leucemia Mieloide Aguda/patologia , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologiaRESUMO
OBJECTIVE: Fatty acid uptake and oxidation characterize the metabolism of alternatively activated macrophage polarization in vitro, but the in vivo biology is less clear. We assessed the roles of LpL (lipoprotein lipase)-mediated lipid uptake in macrophage polarization in vitro and in several important tissues in vivo. Approach and Results: We created mice with both global and myeloid-cell specific LpL deficiency. LpL deficiency in the presence of VLDL (very low-density lipoproteins) altered gene expression of bone marrow-derived macrophages and led to reduced lipid uptake but an increase in some anti- and some proinflammatory markers. However, LpL deficiency did not alter lipid accumulation or gene expression in circulating monocytes nor did it change the ratio of Ly6Chigh/Ly6Clow. In adipose tissue, less macrophage lipid accumulation was found with global but not myeloid-specific LpL deficiency. Neither deletion affected the expression of inflammatory genes. Global LpL deficiency also reduced the numbers of elicited peritoneal macrophages. Finally, we assessed gene expression in macrophages from atherosclerotic lesions during regression; LpL deficiency did not affect the polarity of plaque macrophages. CONCLUSIONS: The phenotypic changes observed in macrophages upon deletion of Lpl in vitro is not mimicked in tissue macrophages.
Assuntos
Aterosclerose/metabolismo , Hiperlipoproteinemia Tipo I/metabolismo , Lipase Lipoproteica/metabolismo , Ativação de Macrófagos/genética , Animais , Aterosclerose/patologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hiperlipoproteinemia Tipo I/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , Papel (figurativo) , Sensibilidade e Especificidade , Triglicerídeos/metabolismoRESUMO
Diabetes induces dysregulation throughout the spectrum of myeloid lineage cells from progenitors to terminally differentiated cells. Another complication of diabetes is persistent inflammation, including prolonged accumulation of macrophages, which contributes to impaired wound healing. However, it remains unclear whether diabetes disrupts the response of bone marrow progenitors to peripheral injury and whether such dysregulation leads to sustained inflammation and impaired healing. Here, we demonstrated that diabetic mice (db/db, referred to here as DB) exhibit myeloid lineage bias during homeostasis and following injury. In addition, cells in the LSK (Lin- Sca-1+ cKit+ ) population of DB mice are preprogrammed towards myeloid commitment at the transcriptional level, and cultured myeloid progenitors from DB mice produce more monocytes ex vivo than their non-diabetic counterparts. We also show via bone marrow transfer between interleukin-1 receptor 1 KO (Il1r1-/- ) and DB mice that IL-1R1 signaling is likely not involved in myeloid skewing in DB mice. Furthermore, in vitro experiments indicated that macrophage colony-stimulating factor receptor signaling is not likely involved in enhanced myeloid transcription factor expression in LSK cells of DB mice. Our findings indicate that myeloid lineage commitment in bone marrow may contribute to increased macrophage numbers observed in diabetic skin wounds, and that strategies to regulate monopoiesis during homeostasis or post-wounding may improve diabetic wound healing. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Linhagem da Célula , Diabetes Mellitus Tipo 2/patologia , Macrófagos/patologia , Células Progenitoras Mieloides/patologia , Pele/patologia , Cicatrização , Ferimentos Penetrantes/patologia , Animais , Transplante de Medula Óssea , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Progenitoras Mieloides/metabolismo , Mielopoese , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Transdução de Sinais , Pele/lesões , Pele/metabolismo , Transplante de Células-Tronco , Ferimentos Penetrantes/genética , Ferimentos Penetrantes/metabolismoRESUMO
FLT3-ITD+ acute myeloid leukemia (AML) accounts for â¼25% of all AML cases and is a subtype that carries a poor prognosis. microRNA-155 (miR-155) is specifically overexpressed in FLT3-ITD+ AML compared with FLT3 wild-type (FLT3-WT) AML and is critical for the growth of FLT3-ITD+ AML cells in vitro. However, miR-155's role in regulating FLT3-ITD-mediated disease in vivo remains unclear. In this study, we used a genetic mouse model to determine whether miR-155 influences the development of FLT3-ITD-induced myeloproliferative disease. Results indicate that miR-155 promotes FLT3-ITD-induced myeloid expansion in the bone marrow, spleen, and peripheral blood. Mechanistically, miR-155 increases proliferation of the hematopoietic stem and progenitor cell compartments by reducing the growth-inhibitory effects of the interferon (IFN) response, and this involves targeting of Cebpb. Consistent with our observations in mice, primary FLT3-ITD+ AML clinical samples have significantly higher miR-155 levels and a lower IFN response compared with FLT3-WT AML samples. Further, inhibition of miR-155 in FLT3-ITD+ AML cell lines using CRISPR/Cas9, or primary FLT3-ITD+ AML samples using locked nucleic acid antisense inhibitors, results in an elevated IFN response and reduces colony formation. Altogether, our data reveal that miR-155 collaborates with FLT3-ITD to promote myeloid cell expansion in vivo and that this involves a multitarget mechanism that includes repression of IFN signaling.
Assuntos
Interferons/biossíntese , MicroRNAs/genética , Transtornos Mieloproliferativos/etiologia , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , MicroRNAs/antagonistas & inibidores , Mutação , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/patologia , Mielopoese/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/imunologia , Ensaio Tumoral de Célula-TroncoRESUMO
BACKGROUND: Dengue virus (DENV) is a significant threat to public health in tropical and subtropical regions, where the frequency of human migration is increasing. Transmission of DENV from donors to recipients after hematopoietic stem cell transplantation has been steadily described. However, the underlying mechanisms remain unclear. STUDY DESIGN AND METHODS: Freshly isolated bone marrow (BM) was subjected to DENV infection, followed by multicolor fluorescence-activated cell sorting (FACS) analysis. Virus in supernatants was collected and analyzed by plaque assay. RESULTS: DENV-1 to DENV-4 could effectively infect freshly obtained BM and produced infectious virus. DENV infection did not change the quantitative population of hematopoietic stem and progenitor cells (HSPCs), megakaryocytic progenitor cells (MkPs) and megakaryocytes. Additionally, DENV antigen, nonstructural protein 1, was enriched in HSPCs and MkPs of DENV infected marrow cells. CD34+, CD133+, or CD61+ cells sorted out from BM were not only the major contributing targets facilitating the DENV infection directly but also facilitated the spread of DENV into other cells when cocultured. CONCLUSION: Results suggest that DENV can efficiently infect HSPCs, which might jeopardize the recipients if DENV-infected cells were subsequently used. We therefore raise the need for DENV screening for both the donors and recipients of hematopoietic stem cell transplantation, especially for donors exposed to endemic areas, to mitigate DENV infection in immunocompromised recipients.
Assuntos
Vírus da Dengue/crescimento & desenvolvimento , Dengue/patologia , Dengue/transmissão , Células-Tronco Hematopoéticas/virologia , Ensaio de Placa Viral , Antígenos Virais/análise , Antígenos Virais/isolamento & purificação , Células da Medula Óssea/patologia , Células da Medula Óssea/fisiologia , Células da Medula Óssea/virologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Dengue/sangue , Vírus da Dengue/patogenicidade , Sangue Fetal/citologia , Sangue Fetal/virologia , Citometria de Fluxo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Imunofenotipagem , Megacariócitos/patologia , Megacariócitos/fisiologia , Megacariócitos/virologia , Células Progenitoras Mieloides/patologia , Células Progenitoras Mieloides/fisiologia , Células Progenitoras Mieloides/virologiaRESUMO
OBJECTIVE: Tissue macrophages induce and perpetuate proinflammatory responses, thereby promoting metabolic and cardiovascular disease. Lipoprotein lipase (LpL), the rate-limiting enzyme in blood triglyceride catabolism, is expressed by macrophages in atherosclerotic plaques. We questioned whether LpL, which is also expressed in the bone marrow (BM), affects circulating white blood cells and BM proliferation and modulates macrophage retention within the artery. APPROACH AND RESULTS: We characterized blood and tissue leukocytes and inflammatory molecules in transgenic LpL knockout mice rescued from lethal hypertriglyceridemia within 18 hours of life by muscle-specific LpL expression (MCKL0 mice). LpL-deficient mice had ≈40% reduction in blood white blood cell, neutrophils, and total and inflammatory monocytes (Ly6C/Ghi). LpL deficiency also significantly decreased expression of BM macrophage-associated markers (F4/80 and TNF-α [tumor necrosis factor α]), master transcription factors (PU.1 and C/EBPα), and colony-stimulating factors (CSFs) and their receptors, which are required for monocyte and monocyte precursor proliferation and differentiation. As a result, differentiation of macrophages from BM-derived monocyte progenitors and monocytes was decreased in MCKL0 mice. Furthermore, although LpL deficiency was associated with reduced BM uptake and accumulation of triglyceride-rich particles and macrophage CSF-macrophage CSF receptor binding, triglyceride lipolysis products (eg, linoleic acid) stimulated expression of macrophage CSF and macrophage CSF receptor in BM-derived macrophage precursor cells. Arterial macrophage numbers decreased after heparin-mediated LpL cell dissociation and by genetic knockout of arterial LpL. Reconstitution of LpL-expressing BM replenished aortic macrophage density. CONCLUSIONS: LpL regulates peripheral leukocyte levels and affects BM monocyte progenitor differentiation and aortic macrophage accumulation.
Assuntos
Aorta/enzimologia , Doenças da Aorta/enzimologia , Aterosclerose/enzimologia , Hiperlipoproteinemia Tipo I/enzimologia , Lipase Lipoproteica/deficiência , Macrófagos/enzimologia , Monócitos/enzimologia , Células Progenitoras Mieloides/enzimologia , Mielopoese , Animais , Aorta/patologia , Doenças da Aorta/sangue , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Proliferação de Células , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Hiperlipoproteinemia Tipo I/sangue , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipase Lipoproteica/genética , Macrófagos/patologia , Camundongos Knockout , Monócitos/patologia , Células Progenitoras Mieloides/patologia , Transdução de Sinais , Triglicerídeos/metabolismoRESUMO
Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.
Assuntos
Regulação da Expressão Gênica/imunologia , Neoplasias Hematológicas/imunologia , Malária/imunologia , Mielopoese/imunologia , Neutrófilos/imunologia , Animais , Ciclo Celular/genética , Ciclo Celular/imunologia , Diferenciação Celular , Proliferação de Células , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/imunologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Interferons/genética , Interferons/imunologia , Interleucina-1/genética , Interleucina-1/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucinas/genética , Interleucinas/imunologia , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/imunologia , Malária/genética , Malária/parasitologia , Malária/patologia , Camundongos , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/parasitologia , Células Progenitoras Mieloides/patologia , Mielopoese/genética , Neutrófilos/parasitologia , Neutrófilos/patologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/imunologiaAssuntos
Células da Medula Óssea , Células Eritroides , Genes Ligados ao Cromossomo X , Mutação , Células Mieloides , Células Progenitoras Mieloides , Transtornos Mieloproliferativos , Enzimas Ativadoras de Ubiquitina/genética , Vacúolos , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/enzimologia , Células da Medula Óssea/patologia , Criança , Células Eritroides/enzimologia , Células Eritroides/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células Mieloides/enzimologia , Células Mieloides/patologia , Células Progenitoras Mieloides/enzimologia , Células Progenitoras Mieloides/patologia , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Síndrome , Vacúolos/enzimologia , Vacúolos/genética , Vacúolos/patologiaRESUMO
Mesenchymal stem cells (MSCs) possess distinct immunomodulatory properties and have tremendous potential for use in therapeutic applications in various inflammatory diseases. MSCs have been shown to regulate pathogenic functions of mature myeloid inflammatory cells, such as macrophages and neutrophils. Intriguingly, the capacity of MSCs to modulate differentiation of myeloid progenitors (MPs) to mature inflammatory cells remains unknown to date. Here, we report the novel finding that MSCs inhibit the expression of differentiation markers on MPs under inflammatory conditions. We demonstrate that the inhibitory effect of MSCs is dependent on direct cell-cell contact and that this intercellular contact is mediated through interaction of CD200 expressed by MSCs and CD200R1 expressed by MPs. Furthermore, using an injury model of sterile inflammation, we show that MSCs promote MP frequencies and suppress infiltration of inflammatory cells in the inflamed tissue. We also find that downregulation of CD200 in MSCs correlates with abrogation of their immunoregulatory function. Collectively, our study provides unequivocal evidence that MSCs inhibit differentiation of MPs in the inflammatory environment via CD200-CD200R1 interaction. Stem Cells 2017;35:1532-1541.
Assuntos
Diferenciação Celular , Inflamação/patologia , Células-Tronco Mesenquimais/citologia , Células Progenitoras Mieloides/patologia , Animais , Antígenos CD/metabolismo , Comunicação Celular , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , FenótipoRESUMO
OBJECTIVE: To improve monitoring of myeloid neoplasms by flow cytometry-based minimal residual disease (MRD) analysis, we analyzed the significance of leukemia-associated immunophenotype (LAIP) markers in 44 patients. METHODS: In a pilot study cohort, peripheral blood or bone marrow samples from 13 patients with myeloid neoplasms and one case of B lymphoblastic leukemia in complete hematologic remission after allogeneic bone marrow or stem cell transplantation were subjected to selection for leukemia-specific phenotypes by fluorescence-activated cell sorting using individual marker combinations, followed by PCR-based chimerism analysis. RESULTS: The feasibility of this method could be demonstrated, with selection being successful in 12 cases, including two cases where mixed chimerism was found exclusively in sorted cells. Interestingly, four specimens displayed full donor chimerism in cells expressing the presumably aberrant combination CD34+ /CD7+ . Further analyses, including assessment of an independent cohort of 25 patients not affected by neoplastic bone marrow infiltration, revealed that normal myeloid precursors usually include a population coexpressing CD34, CD13, CD33, and CD7. CONCLUSION: We conclude that the combination CD34+ /CD7+ might not be suitable as an LAIP for MRD diagnostics and that a subset of normal myeloid precursors in the bone marrow expresses CD7.
Assuntos
Antígenos CD34/metabolismo , Antígenos CD7/metabolismo , Células Progenitoras Mieloides/metabolismo , Antígenos CD7/genética , Biomarcadores , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Expressão Gênica , Humanos , Imunofenotipagem , Leucemia Mieloide/diagnóstico , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Células Progenitoras Mieloides/patologia , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Neoplasia Residual/metabolismoRESUMO
Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation.
Assuntos
Núcleo Celular/metabolismo , Citocinese , Células Progenitoras Mieloides/metabolismo , Osteoclastos/metabolismo , Osteólise/metabolismo , Poliploidia , Ligante RANK/metabolismo , Animais , Benzimidazóis/farmacologia , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Fusão Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/patologia , Células Cultivadas , Cruzamentos Genéticos , Citocinese/efeitos dos fármacos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Transgênicos , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/efeitos dos fármacos , Células Progenitoras Mieloides/patologia , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteólise/patologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/agonistas , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinoxalinas/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic disorders related to hematopoietic stem and progenitor cell dysfunction. Several studies have shown the role of the bone marrow microenvironment in regulating hematopoietic stem, and progenitor function and their individual abnormalities have been associated with disease pathogenesis. In this study, we simultaneously evaluated hematopoietic stem cells (HSC), hematopoietic stem progenitor cells (HSPCs) and different stromal elements in a cohort of patients with MDS-refractory cytopenia with multilineage dysplasia (RCMD). Karyotyping of these patients revealed variable chromosomal abnormalities in 73.33% of patients. Long-term HSC and lineage-negative CD34+CD38- cells were reduced while among the HPCs, there was an expansion of common myeloid progenitor and loss of granulocyte-monocyte progenitors. Interestingly, loss of HSCs was accompanied by aberrant frequencies of endothelial (ECs) (CD31+CD45-CD71-) and mesenchymal stem cells (MSCs) (CD31-CD45-71-) and its subsets associated with HSC niche. We further demonstrate down-regulation of HSC maintenance genes such as Cxcl12, VEGF in mesenchymal cells and a parallel upregulation in endothelial cells. Altogether we report for the first time quantitative and qualitative de novo changes in hematopoietic stem and its associated niche in a cohort of MDS-RCMD patients. These findings further reinforce the role of different components of the bone marrow microenvironment in MDS pathogenesis and emphasize the need for comprehensive simultaneous evaluation of all niche elements in such studies.