Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(2): 110-121, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37769355

RESUMO

The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Miócitos Cardíacos/metabolismo , Mutação da Fase de Leitura , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Heterozigoto , Mutação , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(3): e2214700120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626562

RESUMO

KCNH2 encodes hERG1, the voltage-gated potassium channel that conducts the rapid delayed rectifier potassium current (IKr) in human cardiac tissue. hERG1 is one of the first channels expressed during early cardiac development, and its dysfunction is associated with intrauterine fetal death, sudden infant death syndrome, cardiac arrhythmia, and sudden cardiac death. Here, we identified a hERG1 polypeptide (hERG1NP) that is targeted to the nuclei of immature cardiac cells, including human stem cell-derived cardiomyocytes (hiPSC-CMs) and neonatal rat cardiomyocytes. The nuclear hERG1NP immunofluorescent signal is diminished in matured hiPSC-CMs and absent from adult rat cardiomyocytes. Antibodies targeting distinct hERG1 channel epitopes demonstrated that the hERG1NP signal maps to the hERG1 distal C-terminal domain. KCNH2 deletion using CRISPR simultaneously abolished IKr and the hERG1NP signal in hiPSC-CMs. We then identified a putative nuclear localization sequence (NLS) within the distal hERG1 C-terminus, 883-RQRKRKLSFR-892. Interestingly, the distal C-terminal domain was targeted almost exclusively to the nuclei when overexpressed HEK293 cells. Conversely, deleting the NLS from the distal peptide abolished nuclear targeting. Similarly, blocking α or ß1 karyopherin activity diminished nuclear targeting. Finally, overexpressing the putative hERG1NP peptide in the nuclei of HEK cells significantly reduced hERG1a current density, compared to cells expressing the NLS-deficient hERG1NP or GFP. These data identify a developmentally regulated polypeptide encoded by KCNH2, hERG1NP, whose presence in the nucleus indirectly modulates hERG1 current magnitude and kinetics.


Assuntos
Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Miócitos Cardíacos , Animais , Humanos , Ratos , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Células HEK293 , Miócitos Cardíacos/metabolismo , Peptídeos/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(2): e2206146120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36608291

RESUMO

The human ether-a-go-go-related gene (hERG) K+ channel conducts a rapidly activating delayed rectifier K+ current (IKr), which is essential for normal electrical activity of the heart. Precise regulation of hERG channel biogenesis is critical for serving its physiological functions, and deviations from the regulation result in human diseases. However, the mechanism underlying the precise regulation of hERG channel biogenesis remains elusive. Here, by using forward genetic screen, we found that PATR-1, the Caenorhabditis elegans homolog of the yeast DNA topoisomerase 2-associated protein PAT1, is a critical regulator for the biogenesis of UNC-103, the ERG K+ channel in C. elegans. A loss-of-function mutation in patr-1 down-regulates the expression level of UNC-103 proteins and suppresses the phenotypic defects resulted from a gain-of-function mutation in the unc-103 gene. Furthermore, downregulation of PATL1 and PATL2, the human homologs of PAT1, decreases protein levels and the current density of native hERG channels in SH-SY5Y cells and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Knockdown of PATL1 and PATL2 elongates the duration of action potentials in hiPSC-CMs, suggesting that PATL1 and PATL2 affect the function of hERG channels and hence electrophysiological characteristics in the human heart. Further studies found that PATL1 and PATL2 interact with TFIIE, a general transcription factor required for forming the RNA polymerase II preinitiation complex, and dual-luciferase reporter assays indicated that PATL1 and PATL2 facilitate the transcription of hERG mRNAs. Together, our study discovers that evolutionarily conserved DNA topoisomerase 2-associated proteins regulate the biogenesis of hERG channels via a transcriptional mechanism.


Assuntos
Canais de Potássio Éter-A-Go-Go , Neuroblastoma , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Miócitos Cardíacos/metabolismo , Neuroblastoma/metabolismo , Proteínas de Ligação a DNA/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(42): e2305295120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816059

RESUMO

Coordinated expression of ion channels is crucial for cardiac rhythms, neural signaling, and cell cycle progression. Perturbation of this balance results in many disorders including cardiac arrhythmias. Prior work revealed association of mRNAs encoding cardiac NaV1.5 (SCN5A) and hERG1 (KCNH2), but the functional significance of this association was not established. Here, we provide a more comprehensive picture of KCNH2, SCN5A, CACNA1C, and KCNQ1 transcripts collectively copurifying with nascent hERG1, NaV1.5, CaV1.2, or KCNQ1 channel proteins. Single-molecule fluorescence in situ hybridization (smFISH) combined with immunofluorescence reveals that the channel proteins are synthesized predominantly as heterotypic pairs from discrete molecules of mRNA, not as larger cotranslational complexes. Puromycin disrupted colocalization of mRNA with its encoded protein, as expected, but remarkably also pairwise mRNA association, suggesting that transcript association relies on intact translational machinery or the presence of the nascent protein. Targeted depletion of KCHN2 by specific shRNA resulted in concomitant reduction of all associated mRNAs, with a corresponding reduction in the encoded channel currents. This co-knockdown effect, originally described for KCNH2 and SCN5A, thus appears to be a general phenomenon among transcripts encoding functionally related proteins. In multielectrode array recordings, proarrhythmic behavior arose when IKr was reduced by the selective blocker dofetilide at IC50 concentrations, but not when equivalent reductions were mediated by shRNA, suggesting that co-knockdown mitigates proarrhythmic behavior expected from the selective reduction of a single channel species. We propose that coordinated, cotranslational association of functionally related ion channel mRNAs confers electrical stability by co-regulating complementary ion channels in macromolecular complexes.


Assuntos
Arritmias Cardíacas , Canal de Potássio KCNQ1 , Humanos , Canal de Potássio KCNQ1/genética , Canal de Potássio ERG1/genética , Hibridização in Situ Fluorescente , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo
5.
Hum Mol Genet ; 32(7): 1072-1082, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36269083

RESUMO

BACKGROUND: Variants in KCNH2, encoding the human ether a-go-go (hERG) channel that is responsible for the rapid component of the cardiac delayed rectifier K+ current (IKr), are causal to long QT syndrome type 2 (LQTS2). We identified eight index patients with a new variant of unknown significance (VUS), KCNH2:c.2717C > T:p.(Ser906Leu). We aimed to elucidate the biophysiological effect of this variant, to enable reclassification and consequent clinical decision-making. METHODS: A genotype-phenotype overview of the patients and relatives was created. The biophysiological effects were assessed independently by manual-, and automated calibrated patch clamp. HEK293a cells expressing (i) wild-type (WT) KCNH2, (ii) KCNH2-p.S906L alone (homozygous, Hm) or (iii) KCNH2-p.S906L in combination with WT (1:1) (heterozygous, Hz) were used for manual patching. Automated patch clamp measured the variants function against known benign and pathogenic variants, using Flp-In T-rex HEK293 KCNH2-variant cell lines. RESULTS: Incomplete penetrance of LQTS2 in KCNH2:p.(Ser906Leu) carriers was observed. In addition, some patients were heterozygous for other VUSs in CACNA1C, PKP2, RYR2 or AKAP9. The phenotype of carriers of KCNH2:p.(Ser906Leu) ranged from asymptomatic to life-threatening arrhythmic events. Manual patch clamp showed a reduced current density by 69.8 and 60.4% in KCNH2-p.S906L-Hm and KCNH2-p.S906L-Hz, respectively. The time constant of activation was significantly increased with 80.1% in KCNH2-p.S906L-Hm compared with KCNH2-WT. Assessment of KCNH2-p.S906L-Hz by calibrated automatic patch clamp assay showed a reduction in current density by 35.6%. CONCLUSION: The reduced current density in the KCNH2-p.S906L-Hz indicates a moderate loss-of-function. Combined with the reduced penetrance and variable phenotype, we conclude that KCNH2:p.(Ser906Leu) is a low penetrant likely pathogenic variant for LQTS2.


Assuntos
Síndrome do QT Longo , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Células HEK293 , Penetrância , Coração , Canal de Potássio ERG1/genética
6.
Am J Hum Genet ; 109(7): 1199-1207, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688147

RESUMO

Modern sequencing technologies have revolutionized our detection of gene variants. However, in most genes, including KCNH2, the majority of missense variants are currently classified as variants of uncertain significance (VUSs). The aim of this study was to investigate the utility of an automated patch-clamp assay for aiding clinical variant classification in KCNH2. The assay was designed according to recommendations proposed by the Clinical Genome Sequence Variant Interpretation Working Group. Thirty-one variants (17 pathogenic/likely pathogenic, 14 benign/likely benign) were classified internally as variant controls. They were heterozygously expressed in Flp-In HEK293 cells for assessing the effects of variants on current density and channel gating in order to determine the sensitivity and specificity of the assay. All 17 pathogenic variant controls had reduced current density, and 13 of 14 benign variant controls had normal current density, which enabled determination of normal and abnormal ranges for applying evidence of moderate or supporting strength for VUS reclassification. Inclusion of functional assay evidence enabled us to reclassify 6 out of 44 KCNH2 VUSs as likely pathogenic. The high-throughput patch-clamp assay can provide moderate-strength evidence for clinical interpretation of clinical KCNH2 variants and demonstrates the value of developing automated patch-clamp assays for functional characterization of ion channel gene variants.


Assuntos
Síndrome do QT Longo , Canal de Potássio ERG1/genética , Células HEK293 , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto/genética
7.
Am J Hum Genet ; 109(7): 1208-1216, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688148

RESUMO

Many genes, including KCNH2, contain "hotspot" domains associated with a high density of variants associated with disease. This has led to the suggestion that variant location can be used as evidence supporting classification of clinical variants. However, it is not known what proportion of all potential variants in hotspot domains cause loss of function. Here, we have used a massively parallel trafficking assay to characterize all single-nucleotide variants in exon 2 of KCNH2, a known hotspot for variants that cause long QT syndrome type 2 and an increased risk of sudden cardiac death. Forty-two percent of KCNH2 exon 2 variants caused at least 50% reduction in protein trafficking, and 65% of these trafficking-defective variants exerted a dominant-negative effect when co-expressed with a WT KCNH2 allele as assessed using a calibrated patch-clamp electrophysiology assay. The massively parallel trafficking assay was more accurate (AUC of 0.94) than bioinformatic prediction tools (REVEL and CardioBoost, AUC of 0.81) in discriminating between functionally normal and abnormal variants. Interestingly, over half of variants in exon 2 were found to be functionally normal, suggesting a nuanced interpretation of variants in this "hotspot" domain is necessary. Our massively parallel trafficking assay can provide this information prospectively.


Assuntos
Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Alelos , Morte Súbita Cardíaca , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Transporte Proteico/genética
8.
Mol Cell ; 65(1): 52-65, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27916661

RESUMO

Tetrameric assembly of channel subunits in the endoplasmic reticulum (ER) is essential for surface expression and function of K+ channels, but the molecular mechanism underlying this process remains unclear. In this study, we found through genetic screening that ER-located J-domain-containing chaperone proteins (J-proteins) are critical for the biogenesis and physiological function of ether-a-go-go-related gene (ERG) K+ channels in both Caenorhabditis elegans and human cells. Human J-proteins DNAJB12 and DNAJB14 promoted tetrameric assembly of ERG (and Kv4.2) K+ channel subunits through a heat shock protein (HSP) 70-independent mechanism, whereas a mutated DNAJB12 that did not undergo oligomerization itself failed to assemble ERG channel subunits into tetramers in vitro and in C. elegans. Overexpressing DNAJB14 significantly rescued the defective function of human ether-a-go-go-related gene (hERG) mutant channels associated with long QT syndrome (LQTS), a condition that predisposes to life-threatening arrhythmia, by stabilizing the mutated proteins. Thus, chaperone proteins are required for subunit stability and assembly of K+ channels.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Canal de Potássio ERG1/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Canais de Potássio/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular Tumoral , Canal de Potássio ERG1/química , Canal de Potássio ERG1/genética , Células HEK293 , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Potenciais da Membrana , Chaperonas Moleculares , Mutação , Miócitos Cardíacos/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Interferência de RNA , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Fatores de Tempo , Transfecção
9.
BMC Biol ; 22(1): 29, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317233

RESUMO

BACKGROUND: Cyclic Nucleotide-Binding Domain (CNBD)-family channels display distinct voltage-sensing properties despite sharing sequence and structural similarity. For example, the human Ether-a-go-go Related Gene (hERG) channel and the Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channel share high amino acid sequence similarity and identical domain structures. hERG conducts outward current and is activated by positive membrane potentials (depolarization), whereas HCN conducts inward current and is activated by negative membrane potentials (hyperpolarization). The structural basis for the "opposite" voltage-sensing properties of hERG and HCN remains unknown. RESULTS: We found the voltage-sensing domain (VSD) involves in modulating the gating polarity of hERG. We identified that a long-QT syndrome type 2-related mutation within the VSD, K525N, mediated an inwardly rectifying non-deactivating current, perturbing the channel closure, but sparing the open state and inactivated state. K525N rescued the current of a non-functional mutation in the pore helix region (F627Y) of hERG. K525N&F627Y switched hERG into a hyperpolarization-activated channel. The reactivated inward current induced by hyperpolarization mediated by K525N&F627Y can be inhibited by E-4031 and dofetilide quite well. Moreover, we report an extracellular interaction between the S1 helix and the S5-P region is crucial for modulating the gating polarity. The alanine substitution of several residues in this region (F431A, C566A, I607A, and Y611A) impaired the inward current of K525N&F627Y. CONCLUSIONS: Our data provide evidence that a potential cooperation mechanism in the extracellular vestibule of the VSD and the PD would determine the gating polarity in hERG.


Assuntos
Canal de Potássio ERG1 , Ativação do Canal Iônico , Humanos , Sequência de Aminoácidos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/genética , Mutação , Nucleotídeos Cíclicos , Canal de Potássio ERG1/genética
10.
J Biol Chem ; 299(2): 102778, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36496073

RESUMO

The voltage-gated channel, hERG1, conducts the rapid delayed rectifier potassium current (IKr) and is critical for human cardiac repolarization. Reduced IKr causes long QT syndrome and increases the risk for cardiac arrhythmia and sudden death. At least two subunits form functional hERG1 channels, hERG1a and hERG1b. Changes in hERG1a/1b abundance modulate IKr kinetics, magnitude, and drug sensitivity. Studies from native cardiac tissue suggest that hERG1 subunit abundance is dynamically regulated, but the impact of altered subunit abundance on IKr and its response to external stressors is not well understood. Here, we used a substrate-driven human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) maturation model to investigate how changes in relative hERG1a/1b subunit abundance impact the response of native IKr to extracellular acidosis, a known component of ischemic heart disease and sudden infant death syndrome. IKr recorded from immatured hiPSC-CMs displays a 2-fold greater inhibition by extracellular acidosis (pH 6.3) compared with matured hiPSC-CMs. Quantitative RT-PCR and immunocytochemistry demonstrated that hERG1a subunit mRNA and protein were upregulated and hERG1b subunit mRNA and protein were downregulated in matured hiPSC-CMs compared with immatured hiPSC-CMs. The shift in subunit abundance in matured hiPSC-CMs was accompanied by increased IKr. Silencing hERG1b's impact on native IKr kinetics by overexpressing a polypeptide identical to the hERG1a N-terminal Per-Arnt-Sim domain reduced the magnitude of IKr proton inhibition in immatured hiPSC-CMs to levels comparable to those observed in matured hiPSC-CMs. These data demonstrate that hERG1 subunit abundance is dynamically regulated and determines IKr proton sensitivity in hiPSC-CMs.


Assuntos
Canal de Potássio ERG1 , Condutividade Elétrica , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Potássio , Subunidades Proteicas , Prótons , Humanos , Acidose/metabolismo , Canal de Potássio ERG1/química , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , RNA Mensageiro/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Regulação para Baixo , Espaço Extracelular
11.
Pflugers Arch ; 476(1): 87-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37934265

RESUMO

Zebrafish provide a translational model of human cardiac function. Their similar cardiac electrophysiology enables screening of human cardiac repolarization disorders, drug arrhythmogenicity, and novel antiarrhythmic therapeutics. However, while zebrafish cardiac repolarization is driven by delayed rectifier potassium channel current (IKr), the relative role of alternate channel transcripts is uncertain. While human ether-a-go-go-related-gene-1a (hERG1a) is the dominant transcript in humans, expression of the functionally distinct alternate transcript, hERG1b, modifies the electrophysiological and pharmacologic IKr phenotype. Studies of zebrafish IKr are frequently translated without consideration for the presence and impact of hERG1b in humans. Here, we performed phylogenetic analyses of all available KCNH genes from Actinopterygii (ray-finned fishes). Our findings confirmed zebrafish cardiac zkcnh6a as the paralog of human hERG1a (hKCNH2a), but also revealed evidence of a hERG1b (hKCNH2b)-like N-terminally truncated gene, zkcnh6b, in zebrafish. zkcnh6b is a teleost-specific variant that resulted from the 3R genome duplication. qRT-PCR showed dominant expression of zkcnh6a in zebrafish atrial and ventricular tissue, with low levels of zkcnh6b. Functional evaluation of zkcnh6b in a heterologous system showed no discernable function under the conditions tested, and no influence on zkcnh6a function during the zebrafish ventricular action potential. Our findings provide the first descriptions of the zkcnh6b gene, and show that, unlike in humans, zebrafish cardiac repolarization does not rely upon co-assembly of zERG1a/zERG1b. Given that hERG1b modifies IKr function and drug binding in humans, our findings highlight the need for consideration when translating hERG variant effects and toxicological screens in zebrafish, which lack a functional hERG1b-equivalent gene.


Assuntos
Canais de Potássio Éter-A-Go-Go , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Filogenia , Coração/fisiologia , Arritmias Cardíacas/metabolismo , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo
12.
Antimicrob Agents Chemother ; 68(5): e0139023, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38546223

RESUMO

Dihydroartemisinin-piperaquine is efficacious for the treatment of uncomplicated malaria and its use is increasing globally. Despite the positive results in fighting malaria, inhibition of the Kv11.1 channel (hERG; encoded by the KCNH2 gene) by piperaquine has raised concerns about cardiac safety. Whether genetic factors could modulate the risk of piperaquine-mediated QT prolongations remained unclear. Here, we first profiled the genetic landscape of KCNH2 variability using data from 141,614 individuals. Overall, we found 1,007 exonic variants distributed over the entire gene body, 555 of which were missense. By optimizing the gene-specific parametrization of 16 partly orthogonal computational algorithms, we developed a KCNH2-specific ensemble classifier that identified a total of 116 putatively deleterious missense variations. To evaluate the clinical relevance of KCNH2 variability, we then sequenced 293 Malian patients with uncomplicated malaria and identified 13 variations within the voltage sensing and pore domains of Kv11.1 that directly interact with channel blockers. Cross-referencing of genetic and electrocardiographic data before and after piperaquine exposure revealed that carriers of two common variants, rs1805121 and rs41314375, experienced significantly higher QT prolongations (ΔQTc of 41.8 ms and 61 ms, respectively, vs 14.4 ms in controls) with more than 50% of carriers having increases in QTc >30 ms. Furthermore, we identified three carriers of rare population-specific variations who experienced clinically relevant delayed ventricular repolarization. Combined, our results map population-scale genetic variability of KCNH2 and identify genetic biomarkers for piperaquine-induced QT prolongation that could help to flag at-risk patients and optimize efficacy and adherence to antimalarial therapy.


Assuntos
Antimaláricos , Artemisininas , Canal de Potássio ERG1 , Piperazinas , Quinolinas , Humanos , Canal de Potássio ERG1/genética , Antimaláricos/uso terapêutico , Antimaláricos/efeitos adversos , Quinolinas/uso terapêutico , Quinolinas/efeitos adversos , Artemisininas/uso terapêutico , Artemisininas/efeitos adversos , Masculino , Feminino , Adulto , Malária/tratamento farmacológico , Eletrocardiografia , Síndrome do QT Longo/genética , Síndrome do QT Longo/induzido quimicamente , Polimorfismo de Nucleotídeo Único/genética
13.
Biochemistry (Mosc) ; 89(3): 543-552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648771

RESUMO

Brugada syndrome (BrS) is an inherited disease characterized by right precordial ST-segment elevation in the right precordial leads on electrocardiograms (ECG), and high risk of life-threatening ventricular arrhythmia and sudden cardiac death (SCD). Mutations in the responsible genes have not been fully characterized in the BrS patients, except for the SCN5A gene. We identified a new genetic variant, c.1189C>T (p.R397C), in the KCNH2 gene in the asymptomatic male proband diagnosed with BrS and mild QTc shortening. We hypothesize that this variant could alter IKr-current and may be causative for the rare non-SCN5A-related form of BrS. To assess its pathogenicity, we performed patch-clamp analysis on IKr reconstituted with this KCNH2 mutation in the Chinese hamster ovary cells and compared the phenotype with the wild type. It appeared that the R397C mutation does not affect the IKr density, but facilitates activation, hampers inactivation of the hERG channels, and increases magnitude of the window current suggesting that the p.R397C is a gain-of-function mutation. In silico modeling demonstrated that this missense mutation potentially leads to the shortening of action potential in the heart.


Assuntos
Síndrome de Brugada , Canal de Potássio ERG1 , Mutação com Ganho de Função , Adulto , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Células CHO , Cricetulus , Eletrocardiografia , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Mutação de Sentido Incorreto
14.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716268

RESUMO

The human ERG (hERG) K+ channel has a crucial function in cardiac repolarization, and mutations or channel block can give rise to long QT syndrome and catastrophic ventricular arrhythmias. The cytosolic assembly formed by the Per-Arnt-Sim (PAS) and cyclic nucleotide binding homology (CNBh) domains is the defining structural feature of hERG and related KCNH channels. However, the molecular role of these two domains in channel gating remains unclear. We have previously shown that single-chain variable fragment (scFv) antibodies can modulate hERG function by binding to the PAS domain. Here, we mapped the scFv2.12 epitope to a site overlapping with the PAS/CNBh domain interface using NMR spectroscopy and mutagenesis and show that scFv binding in vitro and in the cell is incompatible with the PAS interaction with CNBh. By generating a fluorescently labeled scFv2.12, we demonstrate that association with the full-length hERG channel is state dependent. We detect Förster resonance energy transfer (FRET) with scFv2.12 when the channel gate is open but not when it is closed. In addition, state dependence of scFv2.12 FRET signal disappears when the R56Q mutation, known to destabilize the PAS-CNBh interaction, is introduced in the channel. Altogether, these data are consistent with an extensive structural alteration of the PAS/CNBh assembly when the cytosolic gate opens, likely favoring PAS domain dissociation from the CNBh domain.


Assuntos
Canal de Potássio ERG1/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Citosol/metabolismo , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/imunologia , Canais de Potássio Éter-A-Go-Go/imunologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Ativação do Canal Iônico , Síndrome do QT Longo/genética , Conformação Molecular , Mutação , Conformação Proteica , Domínios Proteicos/genética , Domínios Proteicos/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Relação Estrutura-Atividade
15.
BMC Bioinformatics ; 24(1): 51, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792990

RESUMO

KCNH2 encodes the human ether-a-go-go-related gene (hERG) potassium channel and is an important repolarization reserve for regulating cardiac electrical activity. Increasing evidence suggests that it is involved in the development of various tumours, yet a thorough analysis of the underlying process has not been performed. Here, we have comprehensively examined the role of KCNH2 in multiple cancers by assessing KCNH2 gene expression, diagnostic and prognostic value, genetic alterations, immune infiltration correlations, RNA modifications, mutations, clinical correlations, interacting proteins, and associated signalling pathways. KCNH2 is differentially expressed in over 30 cancers and has a high diagnostic value for 10 tumours. Survival analysis showed that high expression of KCNH2 was associated with a poor prognosis in glioblastoma multiforme (GBM) and hepatocellular carcinoma (LIHC). Mutations and RNA methylation modifications (especially m6A) of KCNH2 are associated with its expression in multiple tumours. KCNH2 expression is correlated with tumour mutation burden, microsatellite instability, neoantigen load, and mutant-allele tumour heterogeneity. In addition, KCNH2 expression is associated with the tumour immune microenvironment and its immunosuppressive phenotype. KEGG signalling pathway enrichment analysis revealed that KCNH2 and its interacting molecules are involved in a variety of pathways related to carcinogenesis and signal regulation, such as the PI3K/Akt and focal adhesion pathways. Overall, we found that KCNH2 and its interaction molecular are expected to be immune-related biomarkers for cancer diagnosis and prognosis evaluation, and are potential regulatory targets of singalling pathways for tumour development due to their significant role in cancers.


Assuntos
Canais de Potássio Éter-A-Go-Go , Neoplasias , Humanos , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias/genética , RNA , Microambiente Tumoral
16.
Mol Pharmacol ; 104(4): 164-173, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419691

RESUMO

The human ether-a-go-go-related gene (hERG) encodes for the pore-forming subunit of the channel that conducts the rapidly activating delayed K+ current (IKr) in the heart. The hERG channel is important for cardiac repolarization, and reduction of its expression in the plasma membrane due to mutations causes long QT syndrome type 2 (LQT2). As such, promoting hERG membrane expression is a strategy to rescue mutant channel function. In the present study, we applied patch clamp, western blots, immunocytochemistry, and quantitative reverse transcription polymerase chain reaction techniques to investigate the rescue effects of two drugs, remdesivir and lumacaftor, on trafficking-defective mutant hERG channels. As our group has recently reported that the antiviral drug remdesivir increases wild-type (WT) hERG current and surface expression, we studied the effects of remdesivir on trafficking-defective LQT2-causing hERG mutants G601S and R582C expressed in HEK293 cells. We also investigated the effects of lumacaftor, a drug used to treat cystic fibrosis, that promotes CFTR protein trafficking and has been shown to rescue membrane expression of some hERG mutations. Our results show that neither remdesivir nor lumacaftor rescued the current or cell-surface expression of homomeric mutants G601S and R582C. However, remdesivir decreased while lumacaftor increased the current and cell-surface expression of heteromeric channels formed by WT hERG and mutant G601S or R582C hERG. We concluded that drugs can differentially affect homomeric WT and heteromeric WT+G601S (or WT+R582C) hERG channels. These findings extend our understanding of drug-channel interaction and may have clinical implications for patients with hERG mutations. SIGNIFICANCE STATEMENT: Various naturally occurring mutations in a cardiac potassium channel called hERG can impair channel function by decreasing cell-surface channel expression, resulting in cardiac electrical disturbances and even sudden cardiac death. Promotion of cell-surface expression of mutant hERG channels represents a strategy to rescue channel function. This work demonstrates that drugs such as remdesivir and lumacaftor can differently affect homomeric and heteromeric mutant hERG channels, which have biological and clinical implications.


Assuntos
Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Humanos , Canais de Potássio Éter-A-Go-Go/metabolismo , Canal de Potássio ERG1/genética , Células HEK293 , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo
17.
J Biol Chem ; 298(1): 101433, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801551

RESUMO

Human ether-á-go-go-related gene (hERG) channels are key regulators of cardiac repolarization, neuronal excitability, and tumorigenesis. hERG channels contain N-terminal Per-Arnt-Sim (PAS) and C-terminal cyclic nucleotide-binding homology (CNBH) domains with many long-QT syndrome (LQTS)-causing mutations located at the interface between these domains. Despite the importance of PAS/CNBH domain interactions, little is known about their affinity. Here, we used the surface plasmon resonance (SPR) technique to investigate interactions between isolated PAS and CNBH domains and the effects of LQTS-causing mutations R20G, N33T, and E58D, located at the PAS/CNBH domain interface, on these interactions. We determined that the affinity of the PAS/CNBH domain interactions was ∼1.4 µM. R20G and E58D mutations had little effect on the domain interaction affinity, while N33T abolished the domain interactions. Interestingly, mutations in the intrinsic ligand, a conserved stretch of amino acids occupying the beta-roll cavity in the CNBH domain, had little effect on the affinity of PAS/CNBH domain interactions. Additionally, we determined that the isolated PAS domains formed oligomers with an interaction affinity of ∼1.6 µM. Coexpression of the isolated PAS domains with the full-length hERG channels or addition of the purified PAS protein inhibited hERG currents. These PAS/PAS interactions can have important implications for hERG function in normal and pathological conditions associated with increased surface density of channels or interaction with other PAS-domain-containing proteins. Taken together, our study provides the first account of the binding affinities for wild-type and mutant hERG PAS and CNBH domains and highlights the potential functional significance of PAS/PAS domain interactions.


Assuntos
Canal de Potássio ERG1 , Síndrome do QT Longo , Proteínas Serina-Treonina Quinases , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Mutação , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ressonância de Plasmônio de Superfície
18.
Europace ; 25(4): 1491-1499, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36861347

RESUMO

AIMS: More than one-third of type 2 long QT syndrome (LQT2) patients carry KCNH2 non-missense variants that can result in haploinsufficiency (HI), leading to mechanistic loss-of-function. However, their clinical phenotypes have not been fully investigated. The remaining two-thirds of patients harbour missense variants, and past studies uncovered that most of these variants cause trafficking deficiency, resulting in different functional changes: either HI or dominant-negative (DN) effects. In this study, we examined the impact of altered molecular mechanisms on clinical outcomes in LQT2 patients. METHODS AND RESULTS: We included 429 LQT2 patients (234 probands) carrying a rare KCNH2 variant from our patient cohort undergoing genetic testing. Non-missense variants showed shorter corrected QT (QTc) and less arrhythmic events (AEs) than missense variants. We found that 40% of missense variants in this study were previously reported as HI or DN. Non-missense and HI-groups had similar phenotypes, while both exhibited shorter QTc and less AEs than the DN-group. Based on previous work, we predicted the functional change of the unreported variants-whether they cause HI or DN via altered functional domains-and stratified them as predicted HI (pHI)- or pDN-group. The pHI-group including non-missense variants exhibited milder phenotypes compared to the pDN-group. Multivariable Cox model showed that the functional change was an independent risk of AEs (P = 0.005). CONCLUSION: Stratification based on molecular biological studies enables us to better predict clinical outcomes in the patients with LQT2.


Assuntos
Síndrome do QT Longo , Humanos , Canal de Potássio ERG1/genética , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto , Testes Genéticos , Arritmias Cardíacas
19.
Europace ; 25(6)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37386841

RESUMO

AIMS: Patients with particular mutations of type-2 long QT syndrome (LQT2) are at an increased risk for malignant arrhythmia during fever. This study aimed to determine the mechanism by which KCNH2 mutations cause fever-induced QT prolongation and torsades de pointes (TdP). METHODS AND RESULTS: We evaluated three KCNH2 mutations, G584S, D609G, and T613M, in the Kv11.1 S5-pore region, identified in patients with marked QT prolongation and TdP during fever. We also evaluated KCNH2 M124T and R269W, which are not associated with fever-induced QT prolongation. We characterized the temperature-dependent changes in the electrophysiological properties of the mutant Kv11.1 channels by patch-clamp recording and computer simulation. The average tail current densities (TCDs) at 35°C for G584S, WT+D609G, and WT+T613M were significantly smaller and less increased with rising temperature from 35°C to 40°C than those for WT, M124T, and R269W. The ratios of the TCDs at 40°C to 35°C for G584S, WT+D609G, and WT+T613M were significantly smaller than for WT, M124T, and R269W. The voltage dependence of the steady-state inactivation curve for WT, M124T, and R269W showed a significant positive shift with increasing temperature; however, that for G584S, WT+D609G, and WT+T613M showed no significant change. Computer simulation demonstrated that G584S, WT+D609G, and WT+T613M caused prolonged action potential durations and early afterdepolarization formation at 40°C. CONCLUSION: These findings indicate that KCNH2 G584S, D609G, and T613M in the S5-pore region reduce the temperature-dependent increase in TCDs through an enhanced inactivation, resulting in QT prolongation and TdP at a febrile state in patients with LQT2.


Assuntos
Síndrome do QT Longo , Torsades de Pointes , Humanos , Torsades de Pointes/diagnóstico , Torsades de Pointes/genética , Simulação por Computador , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Mutação , Proteínas de Ligação a DNA , Canal de Potássio ERG1/genética
20.
Cardiology ; 148(4): 310-323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37231805

RESUMO

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has led to millions of confirmed cases and deaths worldwide and has no approved therapy. Currently, more than 700 drugs are tested in the COVID-19 clinical trials, and full evaluation of their cardiotoxicity risks is in high demand. METHODS: We mainly focused on hydroxychloroquine (HCQ), one of the most concerned drugs for COVID-19 therapy, and investigated the effects and underlying mechanisms of HCQ on hERG channel via molecular docking simulations. We further applied the HEK293 cell line stably expressing hERG-wild-type channel (hERG-HEK) and HEK293 cells transiently expressing hERG-p.Y652A or hERG-p.F656A mutants to validate our predictions. Western blot analysis was used to determine the hERG channel, and the whole-cell patch clamp was utilized to record hERG current (IhERG). RESULTS: HCQ reduced the mature hERG protein in a time- and concentration-dependent manner. Correspondingly, chronic and acute treatment of HCQ decreased the hERG current. Treatment with brefeldin A (BFA) and HCQ combination reduced hERG protein to a greater extent than BFA alone. Moreover, disruption of the typical hERG binding site (hERG-p.Y652A or hERG-p.F656A) rescued HCQ-mediated hERG protein and IhERG reduction. CONCLUSION: HCQ can reduce the mature hERG channel expression and IhERG via enhancing channel degradation. The QT prolongation effect of HCQ is mediated by typical hERG binding sites involving residues Tyr652 and Phe656.


Assuntos
COVID-19 , Hidroxicloroquina , Humanos , Tratamento Farmacológico da COVID-19 , Canal de Potássio ERG1/genética , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Células HEK293 , Hidroxicloroquina/farmacologia , Canais Iônicos , Simulação de Acoplamento Molecular , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA