Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 33(8): 2794-2811, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34235541

RESUMO

Over 30 years ago, an intriguing posttranslational modification was found responsible for creating concanavalin A (conA), a carbohydrate-binding protein from jack bean (Canavalia ensiformis) seeds and a common carbohydrate chromatography reagent. ConA biosynthesis involves what was then an unprecedented rearrangement in amino-acid sequence, whereby the N-terminal half of the gene-encoded conA precursor (pro-conA) is swapped to become the C-terminal half of conA. Asparaginyl endopeptidase (AEP) was shown to be involved, but its mechanism was not fully elucidated. To understand the structural basis and consequences of circular permutation, we generated recombinant jack bean pro-conA plus jack bean AEP (CeAEP1) and solved crystal structures for each to 2.1 and 2.7 Å, respectively. By reconstituting conA biosynthesis in vitro, we prove CeAEP1 alone can perform both cleavage and cleavage-coupled transpeptidation to form conA. CeAEP1 structural analysis reveals how it is capable of carrying out both reactions. Biophysical assays illustrated that pro-conA is less stable than conA. This observation was explained by fewer intermolecular interactions between subunits in the pro-conA crystal structure and consistent with a difference in the prevalence for tetramerization in solution. These findings elucidate the consequences of circular permutation in the only posttranslation example known to occur in nature.


Assuntos
Concanavalina A/química , Concanavalina A/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Precursores de Proteínas/metabolismo , Sítios de Ligação , Canavalia/enzimologia , Domínio Catalítico , Dicroísmo Circular , Concanavalina A/genética , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Concentração de Íons de Hidrogênio , Metilmanosídeos/metabolismo , Modelos Moleculares , Conformação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Soluções
2.
Bioorg Chem ; 152: 107735, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39213798

RESUMO

Urease is a metalloenzyme that contains two Ni(II) ions in its active site and catalyzes the hydrolysis of urea into ammonia and carbon dioxide. The development of effective urease inhibitors is crucial not only for mitigating nitrogen losses in agriculture but also for offering an alternative treatment against infections caused by resistant pathogens that utilize urease as a virulence factor. This study focuses on synthesizing and investigating the urease inhibition potential of Biginelli Adducts bearing a boric acid group. An unsubstituted or hydroxy-substituted boronic group in the Biginelli adducts structure enhances the urease inhibitory activity. Biophysical and kinetics studies revealed that the best Biginelli adduct (4e; IC50 = 132 ± 12 µmol/L) is a mixed inhibitor with higher affinity to the urease active site over an allosteric one. Docking studies confirm the interactions of 4e with residues essential for urease activity and demonstrate its potential to coordinate with the nickel atoms through the oxygen atoms of carbonyl or boronic acid groups. Overall, the Biginelli adduct 4e shows great potential as an additive for developing enhanced efficiency fertilizers and/or for medical applications.


Assuntos
Ácidos Borônicos , Inibidores Enzimáticos , Urease , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Ácidos Borônicos/síntese química , Canavalia/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Urease/antagonistas & inibidores , Urease/metabolismo , Níquel/química
3.
Chem Biodivers ; 21(8): e202400704, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38781003

RESUMO

Thirteen novel hydrazone-Schiff bases (3-15) of fexofenadine were succesfully synthesized, structurally deduced and finally assessed their capability to inhibit urease enzyme (in vitro). In the series, six compounds 12 (IC50=10.19±0.16 µM), 11 (IC50=15.05±1.11 µM), 10 (IC50=17.01±1.23 µM), 9 (IC50=17.22±0.81 µM), 13 (IC50=19.31±0.18 µM), and 14 (IC50=19.62±0.21 µM) displayed strong inhibitory action better than the standard thiourea (IC50=21.14±0.24 µM), while the remaining compounds displayed significant to less inhibition. LUMO and HOMO showed the transferring of charges from molecules to biological transfer and MEP map showed the chemically reactive zone appropriate for drug action are calculated using DFT. AIM charges, non-bonding orbitals, and ELF are also computed. The urease protein binding analysis benefited from the docking studies.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Hidrazonas , Simulação de Acoplamento Molecular , Bases de Schiff , Terfenadina , Urease , Urease/antagonistas & inibidores , Urease/metabolismo , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Bases de Schiff/química , Bases de Schiff/farmacologia , Bases de Schiff/síntese química , Terfenadina/análogos & derivados , Terfenadina/química , Terfenadina/metabolismo , Terfenadina/farmacologia , Terfenadina/síntese química , Teoria da Densidade Funcional , Estrutura Molecular , Relação Estrutura-Atividade , Canavalia/enzimologia
4.
Mol Biol Rep ; 50(10): 8777-8781, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37651019

RESUMO

BACKGROUND: Sword bean (Canavalia gladiata) is an underutilized legume that has the potential to become an important food source owing to its wide range of nutritional and medicinal properties. In May 2023, symptoms induced by a possible virus infection such as mosaic, mottling and vein banding were observed on the leaves of about 20% of the Sword bean plants growing at the experimental research farm of the Indian Agricultural Research Institute in Pune, Maharashtra, India. METHODS AND RESULTS: Symptomatic and asymptomatic samples were screened by ELISA for the presence of Potyvirus, Cucumber mosaic virus and Tobacco mosaic virus. All symptomatic samples tested positive for Potyvirus in ELISA as well as in RT-PCR assay using the universal potyvirus primer pair (CPUP /P9502) which amplify c. 700 bp of the partial coat protein region and 3'UTR. Asymptomatic samples tested negative for all tested viruses in both serological and molecular assays. BLASTn sequence analysis of the amplicons revealed that the sequence shares more than 98% identity with an Indian isolate of Bean common mosaic virus (BCMV). Sequence analysis enabled the identification of the Potyvirus as BCMV. Furthermore, the present Sword bean isolate clustered with other BCMV isolates in the phylogenetic analysis. CONCLUSION: In the present study, BCMV was found to be naturally infecting Sword bean for the first time in the world. This is of epidemiological importance, as BCMV is known to cause significant yield losses in legumes and could severely hamper Sword bean production.


Assuntos
Fabaceae , Potyvirus , Canavalia , Filogenia , Índia , Potyvirus/genética
5.
An Acad Bras Cienc ; 95(suppl 1): e20220514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37493694

RESUMO

Different degrees in the biological activities of Canavalia rosea had been previously reported . In this study, our group assessed the cardioprotective effects of the ethyl acetate fraction (EAcF) of the Canavalia rosea leaves. Firstly, it was confirmed, by in vitro approach, that the EAcF has high antioxidant properties due to the presence of important secondary metabolites, as flavonoids. In order to explore their potential protector against cardiovascular disorders, hearts were previously perfused with EAcF (300 µg.mL-1) and submitted to the global ischemia followed by reperfusion in Langendorff system. The present findings have demonstrated that EAcF restored the left ventricular developed pressure and decreased the arrhythmias severity index. Furthermore, EAcF significantly increased the glutathiones peroxidase activity with decreased malondialdehyde and creatine kinase levels. EAcF was effective upon neither the superoxide dismutase, glutationes reductase nor the catalase activities. In addition, the Western blot analysis revealed that ischemia-reperfusion injury significantly upregulates caspase 3 protein expression, while EAcF abolishes this effect. These results provide evidence that the EAcF reestablishes the cardiac contractility and prevents arrhythmias; it is suggested that EAcF could be used to reduce injury caused by cardiac reperfusion. However more clinical studies should be performed, before applying it in the clinic.


Assuntos
Antioxidantes , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Canavalia/metabolismo , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Folhas de Planta/metabolismo , Miocárdio/metabolismo
6.
Chem Biodivers ; 20(8): e202300241, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37344354

RESUMO

Mannich bases consisting of 1,3,4-oxadiazole-2-thione (3 a-3 l) bearing various substituents were synthesized and found potent jack bean urease inhibitors. The prepared compounds showed significantly good inhibitory activities with IC50 values from 9.45±0.05 to 267.42±0.23 µM. The compound 3 k containing 4-chlorophenyl (-R) and 4-hydroxyphenyl (-R') was most active with IC50 9.45±0.05 µM followed by 3 e (IC50 22.52±0.15 µM) in which -R was phenyl and -R' was isopropyl group. However, when both -R and -R' were either 4-chlorophenyl groups (3 l) or only -R' was 4-nitrophenyl (3 i), both compounds were found inactive. The detailed binding affinities of the produced compounds with protein were explored through molecular docking and data-supported in-vitro enzyme inhibition profiles. Drug likeness was confirmed by in silico ADME investigations and molecular orbital analysis (HOMO-LUMO) and electrostatic potential maps were got from DFT calculations. ESP maps exposed that there are two potential binding sites with the most positive and most negative parts.


Assuntos
Inibidores Enzimáticos , Urease , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/química , Relação Estrutura-Atividade , Oxidiazóis/farmacologia , Oxidiazóis/química , Bases de Mannich/farmacologia , Canavalia , Estrutura Molecular
7.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958949

RESUMO

Cells use glycans to encode information that modulates processes ranging from cell-cell recognition to programmed cell death. This information is encoded within a glycocode, and its decoding is performed by carbohydrate-binding proteins. Among these, lectins stand out due to their specific and reversible interaction with carbohydrates. Changes in glycosylation patterns are observed in several pathologies, including cancer, where abnormal glycans are found on the surfaces of affected tissues. Given the importance of the bioprospection of promising biomolecules, the current work aimed to determine the structural properties and anticancer potential of the mannose-specific lectin from seeds of Canavalia villosa (Cvill). Experimental elucidation of the primary and 3D structures of the lectin, along with glycan array and molecular docking, facilitated the determination of its fine carbohydrate-binding specificity. These structural insights, coupled with the lectin's specificity, have been combined to explain the antiproliferative effect of Cvill against cancer cell lines. This effect is dependent on the carbohydrate-binding activity of Cvill and its uptake in the cells, with concomitant activation of autophagic and apoptotic pathways.


Assuntos
Canavalia , Lectinas , Lectinas/farmacologia , Lectinas/análise , Canavalia/metabolismo , Simulação de Acoplamento Molecular , Lectinas de Plantas/metabolismo , Sementes/metabolismo , Carboidratos/análise , Polissacarídeos/análise
8.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768430

RESUMO

The aim of this study was to investigate the effect of Canavalia gladiata extract (CGE) on the regulation of AMP-activated protein kinase (AMPK) in 3T3-L1 preadipocytes and evaluate the adipogenesis and lipogenesis mechanisms. In 3T3-L1 preadipocytes, lipid accumulation and differentiation were suppressed by 1.1, 1.3, and 1.4 times under the CGE treatment at 0.25, 0.5, and 1.0 mg/mL, respectively. The expression of the main genes involved in the inhibition of adipogenesis was evaluated at the mRNA level via a transcription-polymerase chain reaction. The extract at 1.0 mg/mL increased the mRNA expressions of AMPK and carnitine palmitoyl transferase-1 (CPT-1) by 1.9 and 1.2 times, respectively, while it decreased the expression of sterol regulatory element binding proteins-1c (SREBP-1c), peroxisome proliferator activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), and fatty acid synthase (FAS) by 1.1, 1.2, 1.8, and 1.5 times, respectively, indicating inhibition of the adipogenesis and lipogenesis potential of CGE. Gallic acid (4.02 mg/g) was identified as the main component of the CGE via LC-MS/MS and HPLC analysis. The results of this study suggested that CGE can be utilized as an anti-obesity food additive or medication by activating the AMPK-induced regulation and suppressing adipogenesis transcription factors.


Assuntos
Adipogenia , Lipogênese , Camundongos , Animais , Adipogenia/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Canavalia/genética , Cromatografia Líquida , Adipócitos/metabolismo , Espectrometria de Massas em Tandem , RNA Mensageiro/metabolismo , Células 3T3-L1 , PPAR gama/genética , PPAR gama/metabolismo , Diferenciação Celular , Metabolismo dos Lipídeos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo
9.
Molecules ; 28(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513261

RESUMO

The development of novel scaffolds that can increase the effectiveness, safety, and convenience of medication therapy using drug conjugates is a promising strategy. As a result, drug conjugates are an active area of research and development in medicinal chemistry. This research demonstrates acetamide-sulfonamide scaffold preparation after conjugation of ibuprofen and flurbiprofen with sulfa drugs, and these scaffolds were then screened for urease inhibition. The newly designed conjugates were confirmed by spectroscopic techniques such as IR, 1HNMR, 13CNMR, and elemental analysis. Ibuprofen conjugated with sulfathiazole, flurbiprofen conjugated with sulfadiazine, and sulfamethoxazole were found to be potent and demonstrated a competitive mode of urease inhibition, with IC50 (µM) values of 9.95 ± 0.14, 16.74 ± 0.23, and 13.39 ± 0.11, respectively, and urease inhibition of 90.6, 84.1, and 86.1% respectively. Ibuprofen conjugated with sulfanilamide, sulfamerazine, and sulfacetamide, whereas flurbiprofen conjugated with sulfamerazine, and sulfacetamide exhibited a mixed mode of urease inhibition. Moreover, through molecular docking experiments, the urease receptor-binding mechanisms of competitive inhibitors were anticipated, and stability analysis through MD simulations showed that these compounds made stable complexes with the respective targets and that no conformational changes occurred during the simulation. The findings demonstrate that conjugates of approved therapeutic molecules may result in the development of novel classes of pharmacological agents for the treatment of various pathological conditions involving the urease enzyme.


Assuntos
Flurbiprofeno , Simulação de Acoplamento Molecular , Flurbiprofeno/farmacologia , Ibuprofeno/farmacologia , Inibidores Enzimáticos/farmacologia , Sulfacetamida , Cinética , Urease , Sulfamerazina , Canavalia , Relação Estrutura-Atividade , Sulfanilamida , Sulfonamidas/farmacologia , Estrutura Molecular
10.
Chemistry ; 28(64): e202201770, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35994380

RESUMO

Hydroquinones are a class of organic compounds abundant in nature that result from the full reduction of the corresponding quinones. Quinones are known to efficiently inhibit urease, a NiII -containing enzyme that catalyzes the hydrolysis of urea to yield ammonia and carbonate and acts as a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Here, we report the molecular characterization of the inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by 1,4-hydroquinone (HQ) and its methyl and tert-butyl derivatives. The 1.63-Å resolution X-ray crystal structure of the SPU-HQ complex discloses that HQ covalently binds to the thiol group of αCys322, a key residue located on a mobile protein flap directly involved in the catalytic mechanism. Inhibition kinetic data obtained for the three compounds on JBU reveals the occurrence of an irreversible inactivation process that involves a radical-based autocatalytic mechanism.


Assuntos
Hidroquinonas , Urease , Humanos , Urease/química , Canavalia/metabolismo , Quinonas
11.
Glycoconj J ; 39(5): 599-608, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35239112

RESUMO

Lectins isolated from Canavalia ensiformis (ConA) and Canavalia brasiliensis (ConBr) are promising molecules to prevent cell death. Acute pancreatitis, characterized by acinar cell necrosis and inflammation, presents significant morbidity and mortality. This study has investigated the effects of ConA and ConBr in experimental acute pancreatitis and pancreatic acinar cell death induced by bile acid. Pancreatitis was induced by retrograde pancreatic ductal injection of 3% sodium taurocholate (Na-TC) in male Swiss mice. ConA or ConBr (0.1, 1 or 10 mg/kg) were intravenously applied to mice 1 h and 12 h after induction. After 24 h, the severity of pancreatitis was evaluated by serum amylase and lipase, histopathological changes and myeloperoxidase assay. Pancreatic acinar cells were incubated with ConA (200 µg/ml) or ConBr (200 µg/ml) and taurolithocholic acid 3-sulfate (TLCS; 500 µM). Necrosis and changes in mitochondrial membrane potential (ΔÑ°m) were detected by fluorescence confocal microscopy. Treatment (post-insult) with ConA and ConBr decreased pancreatic damage caused by retrograde injection of Na-TC in mice, reducing pancreatic neutrophil infiltration, edema and necrosis. In addition, ConA and ConBr decreased pancreatic acinar cell necrosis and depolarization of ΔÑ°m caused by TLCS. The inhibition of necrosis was prevented by the lectin domain blockade. In conclusion, ConA and ConBr markedly inhibited in vitro and in vivo damage, effects partly dependent on the interaction with mannose residues on acinar cells. These data support the potential application of these proteins for treatment of acute pancreatitis.


Assuntos
Canavalia , Pancreatite , Doença Aguda , Animais , Anti-Inflamatórios , Canavalia/química , Lectinas/farmacologia , Masculino , Camundongos , Necrose/tratamento farmacológico , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Lectinas de Plantas/química , Sementes/química
12.
Arch Microbiol ; 204(6): 346, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35608680

RESUMO

Lectins participate in the defense against microorganisms and in signaling the damage caused by pathogens to the cell surface and/or intracellular in plants. This study aims to analyze the antifungal potential of lectins extracted from seeds of Canavalia ensiformis (L.) DC and Canavalia rosea (Sw.) DC, against Candida albicans and Candida tropicalis. The antimicrobial tests were performed by microdilution against Candida spp. The test to verify the combined lectin/fluconazole effect was performed using subinhibitory concentrations of lectins and with antifungal ranging from 0.5 to 512 µg/mL. The ability to inhibit the morphological transition of Candida spp. was evaluated by microcultivation in a moist chamber. The results of the minimum inhibitory concentration revealed no antifungal activity against the tested strains. However, lectins modified the action of fluconazole, reducing the IC50 of the drug against C. albicans. Lectins were also able to discretely modulate the morphological transition of the tested strains.


Assuntos
Candida albicans , Candida tropicalis , Antifúngicos/farmacologia , Canavalia/metabolismo , Candida/metabolismo , Concanavalina A , Fluconazol/farmacologia , Lectinas/farmacologia , Testes de Sensibilidade Microbiana , Plâncton
13.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012755

RESUMO

The bioactive components of Canavalia lineata (Thunb.) DC pods were investigated using bioactivity-guided isolation, and the chemical structures of flavonoids 1-3, isoflavonoid derivatives 4-11, and phenolic compounds 12 and 13 were identified by comparing NMR, MS, and CD spectral data with previously reported spectroscopic data. Compounds 1-13 were evaluated for their anti-inflammatory effects on LPS-stimulated RAW264.7 macrophages. Among these compounds, the isoflavonoid derivative cajanin (7) exhibited the most potent anti-inflammatory activity (IC50 of NO = 19.38 ± 0.05 µM; IC50 of IL-6 = 7.78 ± 0.04 µM; IC50 of TNF-α = 26.82 ± 0.11 µM), exerting its anti-inflammatory effects by suppressing the activation and nuclear translocation of the transcription factor NF-κB by phosphorylating IκB and p65. These results suggested that cajanin (7) may be a potential candidate for improving the treatment of inflammatory diseases.


Assuntos
Canavalia , Lipopolissacarídeos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , NF-kappa B/farmacologia , Óxido Nítrico/farmacologia , Células RAW 264.7
14.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232944

RESUMO

Urease is an amidohydrolase enzyme that is responsible for fatal morbidities in the human body, such as catheter encrustation, encephalopathy, peptic ulcers, hepatic coma, kidney stone formation, and many others. In recent years, scientists have devoted considerable efforts to the quest for efficient urease inhibitors. In the pharmaceutical chemistry, the thiourea skeleton plays a vital role. Thus, the present work focused on the development and discovery of novel urease inhibitors and reported the synthesis of a set of 1-aroyl-3-[3-chloro-2-methylphenyl] thiourea hybrids with aliphatic and aromatic side chains 4a-j. The compounds were characterized by different analytical techniques including FT-IR, 1H-NMR, and 13C-NMR, and were evaluated for in-vitro enzyme inhibitory activity against jack bean urease (JBU), where they were found to be potent anti-urease inhibitors and the inhibitory activity IC50 was found in the range of 0.0019 ± 0.0011 to 0.0532 ± 0.9951 µM as compared to the standard thiourea (IC50 = 4.7455 ± 0.0545 µM). Other studies included density functional theory (DFT), antioxidant radical scavenging assay, physicochemical properties (ADMET properties), molecular docking and molecular dynamics simulations. All compounds were found to be more active than the standard, with compound 4i exhibiting the greatest JBU enzyme inhibition (IC50 value of 0.0019 ± 0.0011 µM). The kinetics of enzyme inhibition revealed that compound 4i exhibited non-competitive inhibition with a Ki value of 0.0003 µM. The correlation between DFT experiments with a modest HOMO-LUMO energy gap and biological data was optimal. These recently identified urease enzyme inhibitors may serve as a starting point for future research and development.


Assuntos
Antioxidantes , Tioureia , Antioxidantes/farmacologia , Canavalia/metabolismo , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Tioureia/química , Tioureia/farmacologia , Urease/metabolismo
15.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293211

RESUMO

Heat shock transcription factors (Hsfs) are key regulators in plant heat stress response, and therefore, they play vital roles in signal transduction pathways in response to environmental stresses, as well as in plant growth and development. Canavalia rosea (Sw.) DC. is an extremophile halophyte with good adaptability to high temperature and salt-drought tolerance, and it can be used as a pioneer species for ecological reconstruction on tropical coral islands. To date, very little is known regarding the functions of Hsfs in the adaptation mechanisms of plant species with specialized habitats, especially in tropical leguminous halophytes. In this study, a genome-wide analysis was performed to identify all the Hsfs in C. rosea based on whole-genome sequencing information. The chromosomal location, protein domain or motif organization, and phylogenetic relationships of 28 CrHsfs were analyzed. Promoter analyses indicated that the expression levels of different CrHsfs were precisely regulated. The expression patterns also revealed clear transcriptional changes among different C. rosea tissues, indicating that the regulation of CrHsf expression varied among organs in a developmental or tissue-specific manner. Furthermore, the expression levels of most CrHsfs in response to environmental conditions or abiotic stresses also implied a possible positive regulatory role of this gene family under abiotic stresses, and suggested roles in adaptation to specialized habitats such as tropical coral islands. In addition, some CrHsfAs were cloned and their possible roles in abiotic stress tolerance were functionally characterized using a yeast expression system. The CrHsfAs significantly enhanced yeast survival under thermal and oxidative stress challenges. Our results contribute to a better understanding of the plant Hsf gene family and provide a basis for further study of CrHsf functions in environmental thermotolerance. Our results also provide valuable information on the evolutionary relationships among CrHsf genes and the functional characteristics of the gene family. These findings are beneficial for further research on the natural ecological adaptability of C. rosea to tropical environments.


Assuntos
Antozoários , Regulação da Expressão Gênica de Plantas , Animais , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Canavalia/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Antozoários/metabolismo , Saccharomyces cerevisiae/metabolismo , Ilhas , Resposta ao Choque Térmico/genética , Estresse Fisiológico/genética
16.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742848

RESUMO

Heat shock protein 20 (Hsp20) is a major family of heat shock proteins that mainly function as molecular chaperones and are markedly accumulated in cells when organisms are subjected to environmental stress, particularly heat. Canavalia rosea is an extremophile halophyte with good adaptability to environmental high temperature and is widely distributed in coastal areas or islands in tropical and subtropical regions. In this study, we identified a total of 41 CrHsp20 genes in the C. rosea genome. The gene structures, phylogenetic relationships, chromosome locations, and conserved motifs of each CrHsp20 or encoding protein were analyzed. The promoters of CrHsp20s contained a series of predicted cis-acting elements, which indicates that the expression of different CrHsp20 members is regulated precisely. The expression patterns of the CrHsp20 family were analyzed by RNA sequencing both at the tissue-specific level and under different abiotic stresses, and were further validated by quantitative reverse transcription PCR. The integrated expression profiles of the CrHsp20s indicated that most CrHsp20 genes were greatly upregulated (up to dozens to thousands of times) after 2 h of heat stress. However, some of the heat-upregulated CrHsp20 genes showed completely different expression patterns in response to salt, alkaline, or high osmotic stresses, which indicates their potential specific function in mediating the response of C. rosea to abiotic stresses. In addition, some of CrHsp20s were cloned and functionally characterized for their roles in abiotic stress tolerance in yeast. Taken together, these findings provide a foundation for functionally characterizing Hsp20s to unravel their possible roles in the adaptation of this species to tropical coral reefs. Our results also contribute to the understanding of the complexity of the response of CrHsp20 genes to other abiotic stresses and may help in future studies evaluating the functional characteristics of CrHsp20s for crop genetic improvement.


Assuntos
Antozoários , Proteínas de Choque Térmico , Animais , Antozoários/genética , Antozoários/metabolismo , Canavalia/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Ilhas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
17.
Molecules ; 28(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36615451

RESUMO

Thirteen compounds were isolated from the Canavalia lineata pods and their inhibitory activities against human monoamine oxidase-A (hMAO-A) and -B (hMAO-B) were evaluated. Among them, compounds 8 (medicarpin) and 13 (homopterocarpin) showed potent inhibitory activity against hMAO-B (IC50 = 0.45 and 0.72 µM, respectively) with selectivity index (SI) values of 44.2 and 2.07, respectively. Most of the compounds weakly inhibited MAO-A, except 9 (prunetin) and 13. Compounds 8 and 13 were reversible competitive inhibitors against hMAO-B (Ki = 0.27 and 0.21 µM, respectively). Structurally, the 3-OH group at A-ring of 8 showed higher hMAO-B inhibitory activity than 3-OCH3 group at the A-ring of 13. However, the 9-OCH3 group at B-ring of 13 showed higher hMAO-B inhibitory activity than 8,9-methylenedioxygroup at the B-ring of 12 (pterocarpin). In cytotoxicity study, 8 and 13 showed non-toxicity to the normal (MDCK) and cancer (HL-60) cells and moderate toxicity to neuroblastoma (SH-SY5Y) cell. Molecular docking simulation revealed that the binding affinities of 8 and 13 for hMAO-B (-8.7 and -7.7 kcal/mol, respectively) were higher than those for hMAO-A (-3.4 and -7.1 kcal/mol, respectively). These findings suggest that compounds 8 and 13 be considered potent reversible hMAO-B inhibitors to be used for the treatment of neurological disorders.


Assuntos
Inibidores da Monoaminoxidase , Neuroblastoma , Humanos , Inibidores da Monoaminoxidase/química , Canavalia , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade
18.
Molecules ; 27(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296679

RESUMO

A glioblastoma (GBM) is a highly malignant primary brain tumor with a poor prognosis because of its invasiveness and high resistance to current therapies. In GBMs, abnormal glycosylation patterns are associated with malignancy, which allows for the use of lectins as tools for recognition and therapy. More specifically, lectins can interact with glycan structures found on the malignant cell surface. In this context, the present work aimed to investigate the antiglioma potential of ConGF, a lectin purified from Canavalia grandiflora seeds, against C6 cells. The treatment of C6 cells with ConGF impaired the mitochondrial transmembrane potential, reduced cell viability, and induced morphological changes. ConGF also induced massive autophagy, as evaluated by acridine orange (AO) staining and LC3AB-II expression, but without prominent propidium iodide (PI) labeling. The mechanism of action appears to involve the carbohydrate-binding capacity of ConGF, and in silico studies suggested that the lectin can interact with the glycan structures of matrix metalloproteinase 1 (MMP1), a prominent protein found in malignant cells, likely explaining the observed effects.


Assuntos
Canavalia , Fabaceae , Canavalia/química , Fabaceae/química , Lectinas/química , Metaloproteinase 1 da Matriz , Propídio , Laranja de Acridina , Lectinas de Plantas/química , Sementes/química , Carboidratos/análise
19.
Molecules ; 27(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35956953

RESUMO

(1) Background: Achillea mellifolium belongs to a highly reputed family of medicinal plants, with plant extract being used as medicine in indigenous system. However, limited data is available regarding the exploitation of the medicinal potential of isolated pure compounds from this family; (2) Methods: A whole plant extract was partitioned into fractions and on the basis of biological activity, an ethyl acetate fraction was selected for isolation of pure compounds. Isolated compounds were characterized using different spectroscopic techniques. The compounds isolated from this study were tested for their medicinal potential using in-vitro enzyme assay, coupled with in-silico studies; (3) Results: Three new acrylic acid derivatives (1-3) have been isolated from the ethyl acetate fraction of Achillea mellifolium. The characterization of these compounds (1-3) was carried out using UV/Vis, FT-IR, 1D and 2D-NMR spectroscopy (1H-NMR, 13C-NMR, HMBC, NOESY) and mass spectrometry. These acrylic acid derivatives were further evaluated for their enzyme inhibition potential against urease from jack bean and α glucosidase from Saccharomyces cerevisiae, using both in-silico and in-vitro approaches. In-vitro studies showed that compound 3 has the highest inhibition against urease enzyme (IC50 =10.46 ± 0.03 µΜ), followed by compound 1 and compound 2 with percent inhibition and IC50 value of 16.87 ± 0.02 c and 13.71 ± 0.07 µΜ, respectively, compared to the standard (thiourea-IC50 = 21.5 ± 0.01 µΜ). The investigated IC50 value of compound 3 against the urease enzyme is two times lower compared to thiourea, suggesting that this compound is twice as active compared to the standard drug. On the other hand, all three compounds (1-3) revealed mild inhibition potential against α-glucosidase. In-silico molecular docking studies, in combination with MD simulations and free energy, calculations were also performed to rationalize their time evolved mode of interaction inside the active pocket. Binding energies were computed using a MMPBSA approach, and the role of individual residues to overall binding of the inhibitors inside the active pockets were also computed; (4) Conclusions: Together, these studies confirm the inhibitory potential of isolated acrylic acid derivatives against both urease and α-glucosidase enzymes; however, their inhibition potential is better for urease enzyme even when compared to the standard.


Assuntos
Achillea , Urease , Achillea/metabolismo , Acrilatos , Canavalia , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Saccharomyces cerevisiae/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Tioureia/química , alfa-Glucosidases/metabolismo
20.
Molecules ; 27(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36234854

RESUMO

Asthma is one of the most common inflammatory diseases of the lung worldwide. There has been considerable progress in recent studies to treat and prevent allergic asthma, however, various side effects are still observed in clinical practice. Six-week-old male BALB/c mice were orally administered with either sword bean pod extracts (SBP; 100 or 300 mg/kg) or dexamethasone (DEX; 5 mg/kg) once daily over 3 weeks, followed by ovalbumin sensitization (OVA/Alum.; intraperitoneal administration, 50 µg/2 mg/per mouse). Scoring of lung inflammation was performed to observe pathological changes in response to SBP treatment compared to OVA/Alum.-induced lung injury. Additionally, inflammatory cytokines were quantified in serum, bronchoalveolar lavage fluid (BALF), and lung tissue using ELISA and Western blot analyses. SBP treatment significantly reduced the infiltration of inflammatory cells, and release of histamine, immunoglobulin E, and leukotriene in serum and BALF. Moreover, the therapeutic effect of SBP was also assessed to analyze the inflammatory changes in the lung tissues. SBP markedly suppressed the activation of the MAPK signaling pathway and the expression of key inflammatory proteins (e.g., TNF-α) and Th2 type cytokines (IL-5 and IL-13). SBP was effective in ameliorating the allergic inflammation against OVA/Alum.-induced asthma by suppressing pulmonary inflammation.


Assuntos
Asma , Pneumonia , Compostos de Alúmen , Animais , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Canavalia , Citocinas/metabolismo , Dexametasona/farmacologia , Modelos Animais de Doenças , Histamina/farmacologia , Imunoglobulina E , Inflamação/tratamento farmacológico , Interleucina-13 , Interleucina-5/efeitos adversos , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/efeitos adversos , Extratos Vegetais/uso terapêutico , Pneumonia/tratamento farmacológico , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA