Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677714

RESUMO

CAD is a 1.5 MDa hexameric protein with four enzymatic domains responsible for initiating de novo biosynthesis of pyrimidines nucleotides: glutaminase, carbamoyl phosphate synthetase, aspartate transcarbamoylase (ATC), and dihydroorotase. Despite its central metabolic role and implication in cancer and other diseases, our understanding of CAD is poor, and structural characterization has been frustrated by its large size and sensitivity to proteolytic cleavage. Recently, we succeeded in isolating intact CAD-like particles from the fungus Chaetomium thermophilum with high yield and purity, but their study by cryo-electron microscopy is hampered by the dissociation of the complex during sample grid preparation. Here we devised a specific crosslinking strategy to enhance the stability of this mega-enzyme. Based on the structure of the isolated C. thermophilum ATC domain, we inserted by site-directed mutagenesis two cysteines at specific locations that favored the formation of disulfide bridges and covalent oligomers. We further proved that this covalent linkage increases the stability of the ATC domain without damaging the structure or enzymatic activity. Thus, we propose that this cysteine crosslinking is a suitable strategy to strengthen the contacts between subunits in the CAD particle and facilitate its structural characterization.


Assuntos
Aspartato Carbamoiltransferase , Ácido Aspártico , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Microscopia Crioeletrônica , Proteínas , Di-Hidro-Orotase/química , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/química , Aspartato Carbamoiltransferase/metabolismo
2.
Subcell Biochem ; 93: 505-538, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31939163

RESUMO

CAD is a 1.5 MDa particle formed by hexameric association of a 250 kDa protein that carries the enzymatic activities for the first three steps in the de novo biosynthesis of pyrimidine nucleotides: glutamine-dependent Carbamoyl phosphate synthetase, Aspartate transcarbamoylase and Dihydroorotase. This metabolic pathway is essential for cell growth and proliferation and is conserved in all living organisms. However, the fusion of the first three enzymatic activities of the pathway into a single multienzymatic protein only occurs in animals. In prokaryotes, by contrast, these activities are encoded as distinct monofunctional enzymes that function independently or by forming more or less transient complexes. Whereas the structural information about these enzymes in bacteria is abundant, the large size and instability of CAD has only allowed a fragmented characterization of its structure. Here we retrace some of the most significant efforts to decipher the architecture of CAD and to understand its catalytic and regulatory mechanisms.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Pirimidinas/biossíntese , Animais , Aspartato Carbamoiltransferase/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Di-Hidro-Orotase/química
3.
J Biol Chem ; 293(49): 18903-18913, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30315107

RESUMO

The dihydroorotase (DHOase) domain of the multifunctional protein carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD) catalyzes the third step in the de novo biosynthesis of pyrimidine nucleotides in animals. The crystal structure of the DHOase domain of human CAD (huDHOase) revealed that, despite evolutionary divergence, its active site components are highly conserved with those in bacterial DHOases, encoded as monofunctional enzymes. An important element for catalysis, conserved from Escherichia coli to humans, is a flexible loop that closes as a lid over the active site. Here, we combined mutagenic, structural, biochemical, and molecular dynamics analyses to characterize the function of the flexible loop in the activity of CAD's DHOase domain. A huDHOase chimera bearing the E. coli DHOase flexible loop was inactive, suggesting the presence of distinctive elements in the flexible loop of huDHOase that cannot be replaced by the bacterial sequence. We pinpointed Phe-1563, a residue absolutely conserved at the tip of the flexible loop in CAD's DHOase domain, as a critical element for the conformational equilibrium between the two catalytic states of the protein. Substitutions of Phe-1563 with Ala, Leu, or Thr prevented the closure of the flexible loop and inactivated the protein, whereas substitution with Tyr enhanced the interactions of the loop in the closed position and reduced fluctuations and the reaction rate. Our results confirm the importance of the flexible loop in CAD's DHOase domain and explain the key role of Phe-1563 in configuring the active site and in promoting substrate strain and catalysis.


Assuntos
Aspartato Carbamoiltransferase/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Di-Hidro-Orotase/química , Aspartato Carbamoiltransferase/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Catálise , Domínio Catalítico , Di-Hidro-Orotase/genética , Humanos , Simulação de Dinâmica Molecular , Mutagênese , Mutação , Fenilalanina/química , Conformação Proteica , Domínios Proteicos
4.
Artigo em Inglês | MEDLINE | ID: mdl-24316846

RESUMO

Aspartate transcarbamoylase (ATCase) catalyzes the synthesis of N-carbamoyl-L-aspartate from carbamoyl phosphate and aspartate in the second step of the de novo biosynthesis of pyrimidines. In prokaryotes, the first three activities of the pathway, namely carbamoyl phosphate synthetase (CPSase), ATCase and dihydroorotase (DHOase), are encoded as distinct proteins that function independently or in noncovalent association. In animals, CPSase, ATCase and DHOase are part of a 243 kDa multifunctional polypeptide named CAD. Up-regulation of CAD is essential for normal and tumour cell proliferation. Although the structures of numerous prokaryotic ATCases have been determined, there is no structural information about any eukaryotic ATCase. In fact, the only detailed structural information about CAD is that it self-assembles into hexamers and trimers through interactions of the ATCase domains. Here, the expression, purification and crystallization of the ATCase domain of human CAD is reported. The recombinant protein, which was expressed in bacteria and purified with good yield, formed homotrimers in solution. Crystallization experiments both in the absence and in the presence of the inhibitor PALA yielded small crystals that diffracted X-rays to 2.1 Å resolution using synchrotron radiation. The crystals appeared to belong to the hexagonal space group P6(3)22, and Matthews coefficient calculation indicated the presence of one ATCase subunit per asymmetric unit, with a solvent content of 48%. However, analysis of the intensity statistics suggests a special case of the P21 lattice with pseudo-symmetry and possibly twinning.


Assuntos
Aspartato Carbamoiltransferase/química , Ácido Aspártico/análogos & derivados , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Di-Hidro-Orotase/química , Inibidores Enzimáticos/química , Ácido Fosfonoacéticos/análogos & derivados , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Cristalização , Cristalografia por Raios X , Di-Hidro-Orotase/genética , Di-Hidro-Orotase/metabolismo , Inibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Ácido Fosfonoacéticos/química , Ácido Fosfonoacéticos/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Síncrotrons
5.
Can J Microbiol ; 59(6): 374-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23750951

RESUMO

A major problem when pyrimidine de novo biosynthesis is used for cytidine production is the existence of many negative regulatory factors. Cytidine biosynthesis in Bacillus amyloliquefaciens proceeds via a pathway that is controlled by uridine monophosphate (UMP) through feedback inhibition of carbamoyl phosphate synthetase (CPS), the enzyme that converts CO2, NH3, and glutamine to carbamoyl phosphate. In this study, the gene carB encoding the large subunit of CPS from B. amyloliquefaciens CYT1 was site directed, and the UMP binding sites of feedback inhibition in Bam-CPS are described. The residues Thr-941, Thr-970, and Lys-986 in CPS from B. amyloliquefaciens were subjected to site-directed mutagenesis to alter UMP's feedback inhibition of CPS. To find feedback-resistant B. amyloliquefaciens, the influence of the T941F, T970A, K986I, T941F/K986I, and T941F/T970A/K986I mutations on CPS enzymatic properties was studied. The recombinant B. amyloliquefaciens with mutated T941F/K986I and T941F/T970A/K986I CPS showed a 3.7- and 5.7-fold increase, respectively, in cytidine production in comparison with the control expressing wild-type CPS, which was more suitable for further application of the cytidine synthesis. To a certain extent, the 5 mutations were found to release the enzyme from UMP inhibition and to improve B. amyloliquefaciens cytidine-producing strains.


Assuntos
Bacillus/enzimologia , Bacillus/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Citidina/biossíntese , Uridina Monofosfato/metabolismo , Sequência de Aminoácidos , Bacillus/metabolismo , Sítios de Ligação/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/isolamento & purificação , Carbamoil-Fosfato/metabolismo , Retroalimentação Fisiológica , Glutamina/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
6.
Nat Metab ; 5(2): 277-293, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36747088

RESUMO

Metabolism is a fundamental cellular process that is coordinated with cell cycle progression. Despite this association, a mechanistic understanding of cell cycle phase-dependent metabolic pathway regulation remains elusive. Here we report the mechanism by which human de novo pyrimidine biosynthesis is allosterically regulated during the cell cycle. Combining traditional synchronization methods and metabolomics, we characterize metabolites by their accumulation pattern during cell cycle phases and identify cell cycle phase-dependent regulation of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase and dihydroorotase (CAD), the first, rate-limiting enzyme in de novo pyrimidine biosynthesis. Through systematic mutational scanning and structural modelling, we find allostery as a major regulatory mechanism that controls the activity change of CAD during the cell cycle. Specifically, we report evidence of two Animalia-specific loops in the CAD allosteric domain that involve sensing and binding of uridine 5'-triphosphate, a CAD allosteric inhibitor. Based on homology with a mitochondrial carbamoyl-phosphate synthetase homologue, we identify a critical role for a signal transmission loop in regulating the formation of a substrate channel, thereby controlling CAD activity.


Assuntos
Carbamoil Fosfato Sintase (Glutamina-Hidrolizante) , Pirimidinas , Humanos , Regulação Alostérica , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Ciclo Celular , Pirimidinas/farmacologia , Fosfatos
7.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 11): 1341-5, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23143245

RESUMO

CAD is a 243 kDa eukaryotic multifunctional polypeptide that catalyzes the first three reactions of de novo pyrimidine biosynthesis: glutamine-dependent carbamyl phosphate synthetase, aspartate transcarbamylase and dihydroorotase (DHO). In prokaryotes, these activities are associated with monofunctional proteins, for which crystal structures are available. However, there is no detailed structural information on the full-length CAD protein or any of its functional domains apart from that it associates to form a homohexamer of ∼1.5 MDa. Here, the expression, purification and crystallization of the DHO domain of human CAD are reported. The DHO domain forms homodimers in solution. Crystallization experiments yielded small crystals that were suitable for X-ray diffraction studies. A diffraction data set was collected to 1.75 Šresolution using synchrotron radiation at the SLS, Villigen, Switzerland. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a=82.1, b=159.3, c=61.5 Å. The Matthews coefficient calculation suggested the presence of one protein molecule per asymmetric unit, with a solvent content of 48%.


Assuntos
Aspartato Carbamoiltransferase/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Di-Hidro-Orotase/química , Aspartato Carbamoiltransferase/biossíntese , Aspartato Carbamoiltransferase/isolamento & purificação , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/biossíntese , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/isolamento & purificação , Domínio Catalítico , Cromatografia de Afinidade , Cromatografia em Gel , Cristalização , Cristalografia por Raios X , Di-Hidro-Orotase/biossíntese , Di-Hidro-Orotase/isolamento & purificação , Escherichia coli , Humanos , Luz , Estrutura Quaternária de Proteína , Espalhamento de Radiação
8.
Protein Sci ; 30(10): 1995-2008, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34288185

RESUMO

CAD is a 1.5 MDa particle formed by hexameric association of a 250 kDa protein divided into different enzymatic domains, each catalyzing one of the initial reactions for de novo biosynthesis of pyrimidine nucleotides: glutaminase-dependent Carbamoyl phosphate synthetase, Aspartate transcarbamoylase, and Dihydroorotase. The pathway for de novo pyrimidine synthesis is essential for cell proliferation and is conserved in all living organisms, but the covalent linkage of the first enzymatic activities into a multienzymatic CAD particle is unique to animals. In other organisms, these enzymatic activities are encoded as monofunctional proteins for which there is abundant structural and biochemical information. However, the knowledge about CAD is scarce and fragmented. Understanding CAD requires not only to determine the three-dimensional structures and define the catalytic and regulatory mechanisms of the different enzymatic domains, but also to comprehend how these domains entangle and work in a coordinated and regulated manner. This review summarizes significant progress over the past 10 years toward the characterization of CAD's architecture, function, regulatory mechanisms, and cellular compartmentalization, as well as the recent finding of a new and rare neurometabolic disorder caused by defects in CAD activities.


Assuntos
Aspartato Carbamoiltransferase , Encefalopatias Metabólicas/enzimologia , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante) , Di-Hidro-Orotase , Animais , Aspartato Carbamoiltransferase/química , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/química , Di-Hidro-Orotase/metabolismo , Humanos , Domínios Proteicos
9.
Cells ; 9(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370067

RESUMO

Ebola virus (EBOV) is a zoonotic pathogen causing severe hemorrhagic fevers in humans and non-human primates with high case fatality rates. In recent years, the number and extent of outbreaks has increased, highlighting the importance of better understanding the molecular aspects of EBOV infection and host cell interactions to control this virus more efficiently. Many viruses, including EBOV, have been shown to recruit host proteins for different viral processes. Based on a genome-wide siRNA screen, we recently identified the cellular host factor carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) as being involved in EBOV RNA synthesis. However, mechanistic details of how this host factor plays a role in the EBOV life cycle remain elusive. In this study, we analyzed the functional and molecular interactions between EBOV and CAD. To this end, we used siRNA knockdowns in combination with various reverse genetics-based life cycle modelling systems and additionally performed co-immunoprecipitation and co-immunofluorescence assays to investigate the influence of CAD on individual aspects of the EBOV life cycle and to characterize the interactions of CAD with viral proteins. Following this approach, we could demonstrate that CAD directly interacts with the EBOV nucleoprotein NP, and that NP is sufficient to recruit CAD into inclusion bodies dependent on the glutaminase (GLN) domain of CAD. Further, siRNA knockdown experiments indicated that CAD is important for both viral genome replication and transcription, while substrate rescue experiments showed that the function of CAD in pyrimidine synthesis is indeed required for those processes. Together, this suggests that NP recruits CAD into inclusion bodies via its GLN domain in order to provide pyrimidines for EBOV genome replication and transcription. These results define a novel mechanism by which EBOV hijacks host cell pathways in order to facilitate genome replication and transcription and provide a further basis for the development of host-directed broad-spectrum antivirals.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/metabolismo , Ebolavirus/fisiologia , Genoma Viral , Corpos de Inclusão Viral/metabolismo , Nucleoproteínas/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Replicação Viral , Animais , Aspartato Carbamoiltransferase/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Linhagem Celular , Di-Hidro-Orotase/química , Ebolavirus/genética , Técnicas de Silenciamento de Genes , Humanos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Pirimidinas/farmacologia , RNA/metabolismo
10.
Arch Microbiol ; 191(1): 73-82, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18807014

RESUMO

In studying the pyrimidine synthesising pathway in Deinococcus radiophilus two instances of anomalous behaviour were observed. One was the strikingly different results obtained for two types of assay for carbamoyl phosphate synthetase. Both depend on the fixation of 14C from the substrate bicarbonate to give radioactive products. In the coupled assay the carbamoyl phosphate product of the enzyme is converted to carbamoyl aspartate in the presence of aspartate and aspartate transcarbamoylase. In the direct assay aspartate is omitted from the reaction mixture and the carbamoyl phosphate is converted to urea. It was found that the radioactive counts in the direct assay were about 5% of those measured in the coupled assay. The second anomaly was that omission of glutamine from both assay mixtures had no significant effect on the fixation of radioactive carbon. These results suggested that aspartate amino-N could be the source of nitrogen for glutamine synthesis by a substrate-channelled pathway which delivered glutamine to carbamoyl phosphate synthetase, and that externally added glutamine could not access its binding site on the enzyme.


Assuntos
Deinococcus/química , Deinococcus/metabolismo , Pirimidinas/metabolismo , Aspartato Carbamoiltransferase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/isolamento & purificação , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Carbamoil-Fosfato/metabolismo , Deinococcus/enzimologia , Di-Hidro-Orotato Desidrogenase , Glutamina/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/isolamento & purificação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Especificidade por Substrato
11.
Curr Opin Struct Biol ; 8(6): 679-85, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9914247

RESUMO

The direct transfer of metabolites from one protein to another in a biochemical pathway or between one active site and another within a single enzyme has been described as substrate channeling. The first structural visualization of such a phenomenon was provided by the X-ray crystallographic analysis of tryptophan synthase, in which a tunnel of approximately 25 A in length was observed. The recently determined three-dimensional structure of carbamoyl phosphate synthetase sets a new long distance record in that the three active sites are separated by nearly 100 A.


Assuntos
Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Sítios de Ligação , Biopolímeros , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Cristalografia por Raios X , Conformação Proteica
12.
Structure ; 25(6): 912-923.e5, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28552578

RESUMO

CAD, the multifunctional protein initiating and controlling de novo biosynthesis of pyrimidines in animals, self-assembles into ∼1.5 MDa hexamers. The structures of the dihydroorotase (DHO) and aspartate transcarbamoylase (ATC) domains of human CAD have been previously determined, but we lack information on how these domains associate and interact with the rest of CAD forming a multienzymatic unit. Here, we prove that a construct covering human DHO and ATC oligomerizes as a dimer of trimers and that this arrangement is conserved in CAD-like from fungi, which holds an inactive DHO-like domain. The crystal structures of the ATC trimer and DHO-like dimer from the fungus Chaetomium thermophilum confirm the similarity with the human CAD homologs. These results demonstrate that, despite being inactive, the fungal DHO-like domain has a conserved structural function. We propose a model that sets the DHO and ATC complex as the central element in the architecture of CAD.


Assuntos
Aspartato Carbamoiltransferase/química , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/química , Di-Hidro-Orotase/metabolismo , Aspartato Carbamoiltransferase/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil-Fosfato/química , Carbamoil-Fosfato/metabolismo , Chaetomium/enzimologia , Cristalografia por Raios X , Di-Hidro-Orotase/genética , Humanos , Microscopia Eletrônica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios Proteicos , Multimerização Proteica , Pirimidinas/biossíntese
13.
Curr Mol Med ; 17(1): 60-69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28231751

RESUMO

BACKGROUND: STIM/ORAI-mediated store-operated Ca2+ entry (SOCE) mediates a myriad of Ca2+-dependent cellular activities in mammals. Genetic defects in STIM1/ORAI1 lead to devastating severe combined immunodeficiency; whereas gain-offunction mutations in STIM1/ORAI1 are intimately associated with tubular aggregate myopathy. At molecular level, a decrease in the Ca2+ concentrations within the lumen of endoplasmic reticulum (ER) initiates multimerization of the STIM1 luminal domain to switch on the STIM1 cytoplasmic domain to engage and gate ORAI channels, thereby leading to the ultimate Ca2+ influx from the extracellular space into the cytosol. Despite tremendous progress made in dissecting functional STIM1-ORAI1 coupling, the activation mechanism of SOCE remains to be fully characterized. OBJECTIVE AND METHODS: Building upon a robust fluorescence resonance energy transfer assay designed to monitor STIM1 intramolecular autoinhibition, we aimed to systematically dissect the molecular determinants required for the activation and oligomerization of STIM1. RESULTS: Here we showed that truncation of the STIM1 luminal domain predisposes STIM1 to adopt a more active conformation. Replacement of the single transmembrane (TM) domain of STIM1 by a more rigid dimerized TM domain of glycophorin A abolished STIM1 activation. But this adverse effect could be partially reversed by disrupting the TM dimerization interface. Moreover, our study revealed regions that are important for the optimal assembly of hetero-oligomers composed of full-length STIM1 with its minimal STIM1-ORAI activating region, SOAR. CONCLUSIONS: Our study clarifies the roles of major STIM1 functional domains in maintaining a quiescent configuration of STIM1 to prevent preactivation of SOCE.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Sequência de Aminoácidos , Aspartato Carbamoiltransferase/química , Aspartato Carbamoiltransferase/metabolismo , Sinalização do Cálcio , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular , Di-Hidro-Orotase/química , Di-Hidro-Orotase/metabolismo , Humanos , Ativação do Canal Iônico , Microscopia Confocal , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transdução de Sinais , Molécula 1 de Interação Estromal/agonistas , Molécula 1 de Interação Estromal/química , Relação Estrutura-Atividade
14.
Nucleic Acids Res ; 32(15): 4524-30, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15326225

RESUMO

The human Rad9 checkpoint protein is a subunit of the heterotrimeric Rad9-Rad1-Hus1 (9-1-1) complex that plays a role as a damage sensor in the DNA damage checkpoint response. Rad9 has been found to interact with several other proteins outside the context of the 9-1-1 complex with no obvious checkpoint functions. During our studies on the 9-1-1 complex, we found that Rad9 immunoprecipitates contained a 240 kDa protein that was identified as carbamoyl phosphate synthetase/aspartate transcarbamoylase/dihydroorotase (CAD), a multienzymatic protein required for the de novo synthesis of pyrimidine nucleotides and cell growth. Further investigations revealed that only free Rad9, but not Rad9 within the 9-1-1 complex, bound to CAD. The rate-limiting step in de novo pyrimidine nucleotide synthesis is catalyzed by the carbamoyl phosphate synthetase II (CPSase) domain of CAD. We find that Rad9 binds to the CPSase domain, and, moreover, this binding results in a 2-fold stimulation of the CPSase activity of CAD. Similar results were also obtained with an N-terminal Rad9 fragment. These findings suggest that Rad9 may play a role in ribonucleotide biosynthesis.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Proteínas de Ciclo Celular/fisiologia , Di-Hidro-Orotase/metabolismo , Aspartato Carbamoiltransferase/química , Sítios de Ligação , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Proteínas de Ciclo Celular/química , Linhagem Celular , Di-Hidro-Orotase/química , Ativação Enzimática , Humanos , Substâncias Macromoleculares , Estrutura Terciária de Proteína
15.
Protein Sci ; 14(1): 37-44, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15576558

RESUMO

Carbamoyl phosphate synthetase synchronizes the utilization of two ATP molecules at duplicated ATP-grasp folds to catalyze carbamoyl phosphate formation. To define the dedicated functional role played by each of the two ATP sites, we have carried out pulse/labeling studies using the synthetases from Aquifex aeolicus and Methanococcus jannaschii, hyperthermophilic organisms that encode the two ATP-grasp folds on separate subunits. These studies allowed us to differentially label each active site with [gamma-(32)P]ATP and determine the fate of the labeled gamma-phosphate in the synthetase reaction. Our results provide the first direct demonstration that enzyme-catalyzed transfer of phosphate from ATP to carbamate occurs on the more C-terminal of the two ATP-grasp folds. These findings rule out one mechanism proposed for carbamoyl phosphate synthetase, where one ATP acts as a molecular switch, and provide additional support for a sequential reaction mechanism where the gamma-phosphate groups of both ATP molecules are transferred to reactants. CP synthesis by subunit C in our single turnover pulse/chase assays did not require subunit N, but subunit N was required for detectable CP synthesis in the traditional continuous assay. These findings suggest that cross-talk between domain N and C is required for product release from subunit C.


Assuntos
Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil-Fosfato/síntese química , Trifosfato de Adenosina/química , Bactérias/enzimologia , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/isolamento & purificação , Catálise , Ativação Enzimática , Mathanococcus/enzimologia , Dobramento de Proteína , Estrutura Terciária de Proteína
16.
Biochim Biophys Acta ; 1387(1-2): 462-8, 1998 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-9748664

RESUMO

Genes for carbamoyl-phosphate synthetase II (CPS II), the first enzyme of de novo pyrimidine biosynthesis, were cloned from kinetoplastids, Trypanosoma cruzi and Leishmania mexicana. T. cruzi CPS II gene encodes a protein of 1524 amino acids that encompasses the glutaminase and CPS domains, but incorporates neither aspartate carbamoyltransferase nor dihydroorotase. The residue corresponding to lysine 993 of Escherichia coli CPS, a residue that characterizes the CPS inhibited by UMP and that is replaced by tryptophan in those inhibited by UTP, is in kinetoplastids a hydrophilic glutamine, in line with the preferential inhibition by UDP of kinetoplastid CPS II.


Assuntos
Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Leishmania mexicana/enzimologia , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Clonagem Molecular , Kinetoplastida/enzimologia , Dados de Sequência Molecular , Proteínas de Protozoários/química , Alinhamento de Sequência , Análise de Sequência de DNA , Uridina Trifosfato/farmacologia
17.
Biochim Biophys Acta ; 1341(1): 35-48, 1997 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9300807

RESUMO

Carbamoyl-phosphate synthetases (CPSases) utilize two molecules of ATP at two homologous domains, B and C, with ATP(B) used to form the enzyme-bound intermediate carboxy-phosphate and ATP(C) used to phosphorylate the carbamate intermediate. To further define the role of one CPSase peptide suggested by affinity labeling studies to be near the ATP(B) site, we have carried out site-directed mutagenic analysis of peptide 234-242 of the Saccharomyces cerevisiae arginine-specific CPSase. Mutants E234A, E234D, E236A, E236D and E238A were unable to complement the CPSase-deficient yeast strain LPL26 whereas mutants Y237A, E238D, R241K, R241E and R241P supported LPL26 growth as well as wild-type CPSase. Kinetic analysis of E234A and Y237A indicated impaired utilization of ATP(B) but not of ATP(C). D242A, a temperature-sensitive mutant, retained no detectable activity when assayed in vitro. These findings, together with the affinity labeling data and primary sequence analysis, strongly suggest that the yeast CPSase peptide 234-242 is located at the ATP(B) site and that some of its residues are important for functioning of the enzyme. D242 appears to occupy a critical structural position and E234, E236 and E238 appear to be critical for function, with the spatial arrangement of the carboxyl side chain also critical for E234 and E236.


Assuntos
Trifosfato de Adenosina/metabolismo , Aminoácidos/análise , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil-Fosfato/metabolismo , Escherichia coli/enzimologia , Teste de Complementação Genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmídeos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Alinhamento de Sequência
18.
Curr Opin Chem Biol ; 2(5): 624-32, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9818189

RESUMO

The formation of carbamoyl phosphate is catalyzed by a single enzyme using glutamine, bicarbonate and two molecules of ATP via a reaction mechanism that requires a minimum of four consecutive reactions and three unstable intermediates. The recently determined X-ray crystal structure of carbamoyl phosphate synthetase has revealed the location of three separate active sites connected by two molecular tunnels that run through the interior of the protein. It has been demonstrated that the amidotransferase domain within the small subunit of the enzyme from Escherichia coli hydrolyzes glutamine to ammonia via a thioester intermediate with Cys269. The ammonia migrates through the interior of the protein, where it reacts with carboxy phosphate to produce the carbamate intermediate. The carboxy phosphate intermediate is formed by the phosphorylation of bicarbonate by ATP at a site contained within the amino-terminal half of the large subunit. The carbamate intermediate is transported through the interior of the protein to a second site within the carboxy-terminal half of the large subunit, where it is phosphorylated by another ATP to yield the final product, carbamoyl phosphate. The entire journey from substrate to product covers a distance of nearly 100 A.


Assuntos
Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil-Fosfato/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/fisiologia , Sítio Alostérico/fisiologia , Sequência de Aminoácidos , Bicarbonatos/metabolismo , Domínio Catalítico/fisiologia , Cristalografia por Raios X , Escherichia coli/enzimologia , Glutamina/metabolismo , Isoenzimas , Sequências Reguladoras de Ácido Nucleico
19.
J Mol Biol ; 243(1): 131-40, 1994 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-7932737

RESUMO

The amino acid sequence of carbamyl phosphate synthetase (CPS) III from liver of spiny dogfish shark Squalus acanthias was deduced from the nucleotide sequence of its cDNA. Alignment of the derived amino acid sequence of CPS III with sequences of rat and frog CPS I and hamster CPS II reveals a high degree of amino acid identity, indicating that CPS III shares the same common ancestral genes as CPSs I and II. All of the CPSs examined show a high conservation of sequences in the adenine nucleotide binding domains and in residues that have been implicated in catalysis. The active-site cysteine residue required for glutamine-dependent activity by CPS II is preserved in the sequence of CPS III. Nevertheless, analysis of the protein sequences indicates that CPS III is more closely related to CPS I than to CPS II. The structure of CPS III, which is composed of a single polypeptide, is consistent with the view that CPS III evolved by fusion of separate genes coding for the glutaminase and synthetase domains of the enzyme and, like other CPSs, the synthetase domain evolved by duplication and fusion of an ancestral kinase gene. These results, together with the recent finding that frog CPS I retains the active site cysteine residue in the glutaminase domain required for glutamine-dependent activity, indicate that other amino acid substitutions critical for glutamine-dependent activity preceded loss of this catalytic cysteine residue. The results described here together with earlier biochemical evidence support the view that acetylglutamate and glutamine-dependent CPS III found in invertebrates and fish species represents an intermediate in the evolution of ancestral glutamine-dependent CPS II toward the acetylglutamate and ammonia-dependent CPS I of ureotelic terrestrial vertebrates.


Assuntos
Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Sequência Conservada , Cação (Peixe) , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
20.
J Mol Biol ; 243(2): 364-6, 1994 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-7932764

RESUMO

The Drosophila CAD gene, also known as rudimentary, encodes a protein that carries out the first three enzymatic steps of de novo pyrimidine biosynthesis. The sequence for this gene, as previously published, appears to contain several errors. The correction of six bases in a 250 bp stretch encoding the aspartate transcarbamylase domain leads to changes of frame in two areas of the predicted amino acid sequence, consisting of lengths of 30 and 15 amino acid residues, respectively. The revised sequence shows significantly improved positional identity with both Syrian hamster and Escherichia coli aspartate transcarbamylases.


Assuntos
Aspartato Carbamoiltransferase/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Di-Hidro-Orotase/química , Drosophila melanogaster/enzimologia , Complexos Multienzimáticos/química , Sequência de Aminoácidos , Animais , Aspartato Carbamoiltransferase/genética , Sequência de Bases , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Di-Hidro-Orotase/genética , Drosophila melanogaster/genética , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA