Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 50, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468064

RESUMO

BACKGROUND: Simmondsia chinensis (jojoba) is the only plant known to store wax esters instead of triacylglycerols in its seeds. Wax esters are composed of very-long-chain monounsaturated fatty acids and fatty alcohols and constitute up to 60% of the jojoba seed weight. During jojoba germination, the first step of wax ester mobilization is catalyzed by lipases. To date, none of the jojoba lipase-encoding genes have been cloned and characterized. In this study, we monitored mobilization of storage reserves during germination of jojoba seeds and performed detailed characterization of the jojoba lipases using microsomal fractions isolated from germinating seeds. RESULTS: During 26 days of germination, we observed a 60-70% decrease in wax ester content in the seeds, which was accompanied by the reduction of oleosin amounts and increase in glucose content. The activity of jojoba lipases in the seed microsomal fractions increased in the first 50 days of germination. The enzymes showed higher activity towards triacylglycerols than towards wax esters. The maximum lipase activity was observed at 60 °C and pH around 7 for triacylglycerols and 6.5-8 for wax esters. The enzyme efficiently hydrolyzed various wax esters containing saturated and unsaturated acyl and alcohol moieties. We also demonstrated that jojoba lipases possess wax ester-synthesizing activity when free fatty alcohols and different acyl donors, including triacylglycerols and free fatty acids, are used as substrates. For esterification reactions, the enzyme utilized both saturated and unsaturated fatty alcohols, with the preference towards long chain and very long chain compounds. CONCLUSIONS: In in vitro assays, jojoba lipases catalyzed hydrolysis of triacylglycerols and different wax esters in a broad range of temperatures. In addition, the enzymes had the ability to synthesize wax esters in the backward reaction. Our data suggest that jojoba lipases may be more similar to other plant lipases than previously assumed.


Assuntos
Caryophyllales/enzimologia , Lipase/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Triglicerídeos/metabolismo , Caryophyllales/metabolismo , Ésteres/química , Ésteres/metabolismo , Germinação , Hidrólise , Lipase/química , Lipídeos/análise , Lipídeos/química , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , Microssomos/metabolismo , Orlistate/farmacologia , Proteínas de Plantas/química , Sementes/enzimologia , Especificidade por Substrato , Temperatura , Triglicerídeos/química , Ceras/química , Ceras/metabolismo
2.
BMC Plant Biol ; 20(1): 524, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203377

RESUMO

BACKGROUND: A structural phenomenon seen in certain lineages of angiosperms that has captivated many scholars including Charles Darwin is the evolution of plant carnivory. Evidently, these structural features collectively termed carnivorous syndrome, evolved to aid nutritional acquisition from attracted, captured and digested prey. We now understand why plant carnivory evolved but how carnivorous plants acquired these attributes remains a mystery. In an attempt to understand the evolution of Nepenthes pitcher and to shed more light on its role in prey digestion, we analyzed the transcriptome data of the highly specialized Nepenthes khasiana leaf comprising the leaf base lamina, tendril and the different parts/zones of the pitcher tube viz. digestive zone, waxy zone and lid. RESULTS: In total, we generated around 262 million high-quality Illumina reads. Reads were pooled, normalized and de novo assembled to generate a reference transcriptome of about 412,224 transcripts. We then estimated transcript abundance along the N. khasiana leaf by mapping individual reads from each part/zone to the reference transcriptome. Correlation-based hierarchical clustering analysis of 27,208 commonly expressed genes indicated functional relationship and similar cellular processes underlying the development of the leaf base and the pitcher, thereby implying that the Nepenthes pitcher is indeed a modified leaf. From a list of 2386 differentially expressed genes (DEGs), we identified transcripts encoding key enzymes involved in prey digestion and protection against pathogen attack, some of which are expressed at high levels in the digestive zone. Interestingly, many of these enzyme-encoding genes are also expressed in the unopened N. khasiana pitcher. Transcripts showing homology to both bacteria and fungi were also detected; and in the digestive zone, fungi are more predominant as compared to bacteria. Taking cues from histology and scanning electron microscopy (SEM) photomicrographs, we found altered expressions of key regulatory genes involved in leaf development. Of particular interest, the expression of class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIPIII) and ARGONAUTE (AGO) genes were upregulated in the tendril. CONCLUSIONS: Our findings suggest that N. khasiana pitchers employ a wide range of enzymes for prey digestion and plant defense, harbor microbes and probably evolved through altered expression of leaf polarity genes.


Assuntos
Caryophyllales/genética , Fungos/fisiologia , Transcriptoma , Padronização Corporal/genética , Caryophyllales/enzimologia , Caryophyllales/microbiologia , Caryophyllales/ultraestrutura , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/microbiologia , Estômatos de Plantas/ultraestrutura
3.
Dokl Biochem Biophys ; 484(1): 29-32, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31012007

RESUMO

Fifteen chitinases of classes I-V were identified in the transcriptomes of pitchers and adult leaves of the carnivorous plant Nepenthes sp. Ten of these chitinases were identified for the first time, including the chitinases of classes II and V. The expression levels of all found chitinase genes in leaves and at three stages of pitcher development were determined. The maximum level of transcriptional activity in an open pitcher was observed for the genes encoding chitinase NChi4 (class II) and its isoforms. The expression levels of these genes significantly increased as the pitcher developed. In addition, for the first time, transcription of the genes encoding chitinases of all five classes was detected in the leaves of this plant.


Assuntos
Caryophyllales , Quitinases , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas , Proteínas de Plantas , Caryophyllales/enzimologia , Caryophyllales/genética , Quitinases/biossíntese , Quitinases/genética , Isoenzimas/biossíntese , Isoenzimas/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética
4.
Planta ; 248(2): 451-464, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29767335

RESUMO

MAIN CONCLUSION: Nepenthes regulates enzyme activities by sensing stimuli from the insect prey. Protein is the best inductor mimicking the presence of an insect prey. Carnivorous plants of the genus Nepenthes have evolved passive pitcher traps for prey capture. In this study, we investigated the ability of chemical signals from a prey (chitin, protein, and ammonium) to induce transcription and synthesis of digestive enzymes in Nepenthes × Mixta. We used real-time PCR and specific antibodies generated against the aspartic proteases nepenthesins, and type III and type IV chitinases to investigate the induction of digestive enzyme synthesis in response to different chemical stimuli from the prey. Transcription of nepenthesins was strongly induced by ammonium, protein and live prey; chitin induced transcription only very slightly. This is in accordance with the amount of released enzyme and proteolytic activity in the digestive fluid. Although transcription of type III chitinase was induced by all investigated stimuli, a significant accumulation of the enzyme in the digestive fluid was found mainly after protein and live prey addition. Protein and live prey were also the best inducers for accumulation of type IV chitinase in the digestive fluid. Although ammonium strongly induced transcription of all investigated genes probably through membrane depolarization, strong acidification of the digestive fluid affected stability and abundance of both chitinases in the digestive fluid. The study showed that the proteins are universal inductors of enzyme activities in carnivorous pitcher plants best mimicking the presence of insect prey. This is not surprising, because proteins are a much valuable source of nitrogen, superior to chitin. Extensive vesicular activity was observed in prey-activated glands.


Assuntos
Caryophyllales/enzimologia , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Cloreto de Amônio/farmacologia , Carnivoridade , Caryophyllales/fisiologia , Caryophyllales/ultraestrutura , Quitina/metabolismo , Enzimas/genética , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Proteínas de Plantas/genética , Soroalbumina Bovina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA