Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.016
Filtrar
Mais filtros

Intervalo de ano de publicação
2.
J Bacteriol ; 206(4): e0006924, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38488356

RESUMO

Bacteria are capable of withstanding large changes in osmolality and cytoplasmic pH, unlike eukaryotes that tightly regulate their pH and cellular composition. Previous studies on the bacterial acid stress response described a rapid, brief acidification, followed by immediate recovery. More recent experiments with better pH probes have imaged single living cells, and we now appreciate that following acid stress, bacteria maintain an acidic cytoplasm for as long as the stress remains. This acidification enables pathogens to sense a host environment and turn on their virulence programs, for example, enabling survival and replication within acidic vacuoles. Single-cell analysis identified an intracellular pH threshold of ~6.5. Acid stress reduces the internal pH below this threshold, triggering the assembly of a type III secretion system in Salmonella and the secretion of virulence factors in the host. These pathways are significant because preventing intracellular acidification of Salmonella renders it avirulent, suggesting that acid stress pathways represent a potential therapeutic target. Although we refer to the acid stress response as singular, it is actually a complex response that involves numerous two-component signaling systems, several amino acid decarboxylation systems, as well as cellular buffering systems and electron transport chain components, among others. In a recent paper in the Journal of Bacteriology, M. G. Gorelik, H. Yakhnin, A. Pannuri, A. C. Walker, C. Pourciau, D. Czyz, T. Romeo, and P. Babitzke (J Bacteriol 206:e00354-23, 2024, https://doi.org/10.1128/jb.00354-23) describe a new connection linking the carbon storage regulator CsrA to the acid stress response, highlighting new additional layers of complexity.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Cebolas/metabolismo , Proteínas de Bactérias/metabolismo , Citoplasma/metabolismo , Vacúolos/metabolismo , Salmonella/metabolismo , Ácidos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Escherichia coli/metabolismo
3.
Mol Plant Microbe Interact ; 37(6): 507-519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489400

RESUMO

Burkholderia gladioli pv. alliicola, B. cepacia, and B. orbicola are common bacterial pathogens of onion. Onions produce organosulfur thiosulfinate defensive compounds after cellular decompartmentalization. Using whole-genome sequencing and in silico analysis, we identified putative thiosulfinate tolerance gene (TTG) clusters in multiple onion-associated Burkholderia species similar to those characterized in other Allium-associated bacterial endophytes and pathogens. Sequence analysis revealed the presence of three Burkholderia TTG cluster types, with both Type A and Type B being broadly distributed in B. gladioli, B. cepacia, and B. orbicola in both the chromosome and plasmids. Based on isolate natural variation and generation of isogenic strains, we determined the in vitro and in vivo contribution of TTG clusters in B. gladioli, B. cepacia, and B. orbicola. The Burkholderia TTG clusters contributed to enhanced allicin tolerance and improved growth in filtered onion extracts by all three species. TTG clusters also made clear contributions to B. gladioli foliar necrosis symptoms and bacterial populations. Surprisingly, the TTG cluster did not contribute to bacterial populations in onion bulb scales by these three species. Based on our findings, we hypothesize onion-associated Burkholderia may evade or inhibit the production of thiosulfinates in onion bulb tissues. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Burkholderia , Família Multigênica , Cebolas , Cebolas/microbiologia , Burkholderia/genética , Burkholderia/efeitos dos fármacos , Doenças das Plantas/microbiologia , Ácidos Sulfínicos/farmacologia
4.
Anal Chem ; 96(21): 8432-8440, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38709576

RESUMO

Cytoarchitectural staining is of great importance in disease diagnosis and cell biology research. This study developed user-friendly multifunctional red-emissive carbon dots (R-CDs) for rapid cell nucleus staining via targeting nuclear proteins. R-CDs, simply prepared by electrochemical treatment of 1,2,4-benzenetriamine, exhibit strong emission at 635 nm when excited at 507 nm. The R-CDs can rapidly stain the nucleus of human SH-SY5Y, HepG2, and HUH-7 cells with a high signal-to-noise ratio owing to fluorescence enhancement after entering the nucleus. Compared to conventional cytosolic dyes such as Hoechst and DAPI, R-CDs are cheaper, more highly dispersed in water, and more stable (requiring no stringent storage conditions). The R-CDs show stable optical properties with insignificant photobleaching over 7 days and salt resistance up to 2 M of NaCl. More importantly, R-CDs, possessing a positive charge, allow rapid staining of live cells (3 min) and dead cells (10 s) in saline. According to kinetic variation, R-CDs can distinguish live cells from dead cells. Staining exhibits high efficiency in onion epidermal cells, Aspergillus niger, Caenorhabditis elegans, and human spermatozoa. The mechanism for efficient staining is based on their fast accumulation in the nucleus due to their small size and positive charge and strong interaction with nuclear proteins at amino acid residues of histidine and arginine, resulting in fluorescence enhancement by dozens of times. The developed R-CDs do not bind to DNA and would not cause genetic damage and will find various safe applications in biological and medical fields.


Assuntos
Carbono , Núcleo Celular , Pontos Quânticos , Humanos , Carbono/química , Núcleo Celular/química , Núcleo Celular/metabolismo , Pontos Quânticos/química , Animais , Proteínas Nucleares/metabolismo , Proteínas Nucleares/análise , Corantes Fluorescentes/química , Coloração e Rotulagem , Caenorhabditis elegans/química , Cebolas/química , Cebolas/citologia
5.
BMC Plant Biol ; 24(1): 237, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566021

RESUMO

BACKGROUND: Onions are economically and nutritionally important vegetable crops. Despite advances in technology and acreage, Indian onion growers face challenges in realizing their full productivity potential. This study examines the technical efficiency of onion growers, the factors influencing it, and the constraints faced by those adopting drip irrigation in the Ghod river basin of western Maharashtra. A sample of 480 farmers including those practicing drip irrigation and those not practicing it, was selected from Junnar, Shirur, Parner, and Shrigonda blocks of the basin. The primary data was collected through semi-structured interviews. Analytical tools such as the Cobb-Douglas production function (represents technological relationship between multiple inputs and the resulting output), a single-stage stochastic frontier model, the Tobit model, and descriptive statistics were used to assess the technical efficiency of onion production at the farm level. RESULTS: According to the maximum likelihood estimates of the stochastic frontier analysis, drip adopters exhibited a mean technical efficiency of 92%, while for non-adopters it was 65%. It indicates that the use of drip irrigation technology is associated with higher technical efficiency. The association of technical efficiency and socio-economic characters of households showed that education, extension contacts, social participation, and use of information sources had a positive influence on technical efficiency, while family size had a negative influence on the drip irrigation adopters. For non-drip adopters, significant positive effects were observed for landholding, extension contact, and information source use. The major constraints faced by drip system adopters included a lack of knowledge about the proper operating techniques for drip systems and the cost of maintenance. CONCLUSION: The differences with inputs associated with two irrigation methods showed that the response of inputs to increase onion yield is greater for farmers who use drip irrigation than for farmers who do not, and are a result of the large differences in the technical efficiencies. These inefficiencies and other limitations following the introduction of drip irrigation, such as lack of knowledge about the proper operations, need to be addressed through tailored training for farmers and further interventions.


Assuntos
Irrigação Agrícola , Cebolas , Irrigação Agrícola/métodos , Índia , Fazendas , Produtos Agrícolas
6.
BMC Plant Biol ; 24(1): 85, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308226

RESUMO

BACKGROUND: Onion seeds have limited storage capacity compared to other vegetable seeds. It is crucial to identify the mechanisms that induce tolerance to storage conditions and reduce seed deterioration. To address this goal, an experiment was conducted to evaluate changes in germination, biochemical, physiological, and molecular characteristics of onion seed landraces (Horand, Kazerun landraces and Zargan cultivar) at different aging levels (control, three-days and six-days accelerated aging, and natural aging for one year). RESULTS: The findings suggest that there was an increase in glucose, fructose, total sugar, and electrolyte leakage in the Horand (HOR), Kazerun (KAZ) landraces, and Zarghan (ZAR) cultivar, with Kazerun exhibiting the greatest increase. The percentage and rate of germination of Kazerun decreased by 54% and 33%, respectively, in six-day accelerated aging compared to the control, while it decreased by 12% and 14%, respectively, in Horand. Protein content decreased with increasing levels of aging, with a decrease of 26% in Kazerun landrace at six days of aging, while it was 16% in Horand landrace. The antioxidant activities of catalase, superoxide dismutase, and glutathione peroxidase decreased more intensively in Kazerun. The expression of AMY1, BMY1, CTR1, and NPR1 genes were lower in Kazerun landraces than in Horand and Zargan at different aging levels. CONCLUSIONS: The AMY1, BMY1, CTR1, and NPR1 genes play a pivotal role in onion seed germination, and their downregulation under stressful conditions has been shown to decrease germination rates. In addition, the activity of CAT, SOD, and GPx enzymes decreased by seed aging, and the amount of glucose, fructose, total sugar and electrolyte leakage increased, which ultimately led to seed deterioration. Based on the results of this experiment, it is recommended to conduct further studies into the molecular aspects involved in onion seed deterioration. More research on the genes related to this process is suggested, as well as investigating the impact of different priming treatments on the genes expression involved in the onion seed aging process.


Assuntos
Germinação , Cebolas , Cebolas/genética , Germinação/genética , Sementes/metabolismo , Eletrólitos/análise , Eletrólitos/metabolismo , Frutose/análise , Frutose/metabolismo , Glucose/metabolismo , Açúcares/metabolismo
7.
BMC Plant Biol ; 24(1): 777, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143569

RESUMO

Chromium (Cr) is a toxic metal in soil-plant system, hence causing possible health risks prominently in the areas with forgoing industrial activities. Copper nanoparticles (Cu NPs) have been reported as an excellent adsorbent for pollutants. Therefore, this study investigates how copper nanoparticles enhance onion growth while decreasing chromium uptake in onion plants. Additionally, it examines the potential health risks of consuming onion plants with elevated chromium levels. The results demonstrated that the addition of CuNPs at 15 mg kg-1 significantly improved the plant height (48%), leaf length (37%), fresh weight of root (61%), root dry weight (70%), fresh weight of bulb (52%), bulb dry weight (59%), leaves fresh weight (52%) and dry weight of leaves (59%), leaf area (72%), number of onion leaves per plant (60%), Chl. a (42%), chl. b (36%), carotenoids (40%), total chlorophyll (40%), chlorophyll contents SPAD value (56%), relative water contents (35%), membrane stability index (16%), total sugars (25%), crude protein (21%), ascorbic acid (19%) and ash contents (64%) at 10 mg kg-1 Cr. Whereas, maximum decline of Cr by 46% in roots, 68% in leaves and 92% in bulb was found with application of 15 mg kg-1 of Cu NPs in onion plants under 10 mg kg-1 Cr toxicity. The health risk assessment parameters of onion plants showed minimum values 0.0028 for average daily intake (ADI), 0.001911 for Non-cancer risk (NCR), and 0.001433 for cancer risk (CR) in plants treated with Cu NPs at 15 mg kg-1 concentration grown in soil spiked with 10 mg kg-1 chromium. It is concluded that Cu NPs at 15 mg kg-1 concentration improved growth of plants in control as well as Cr contaminated soil. Therefore, use of Cu NPs at 15 mg kg-1 concentration is recommended for improving growth of plants under normal and metal contaminated soils.


Assuntos
Cromo , Cobre , Nanopartículas Metálicas , Cebolas , Poluentes do Solo , Cebolas/efeitos dos fármacos , Cebolas/crescimento & desenvolvimento , Cobre/toxicidade , Cromo/toxicidade , Poluentes do Solo/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Clorofila/metabolismo
8.
Small ; 20(30): e2311832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386283

RESUMO

The molecular foundations of epidermal cell wall mechanics are critical for understanding structure-function relationships of primary cell walls in plants and facilitating the design of bioinspired materials. To uncover the molecular mechanisms regulating the high extensibility and strength of the cell wall, the onion epidermal wall is stretched uniaxially to various strains and cell wall structures from mesoscale to atomic scale are characterized. Upon longitudinal stretching to high strain, epidermal walls contract in the transverse direction, resulting in a reduced area. Atomic force microscopy shows that cellulose microfibrils exhibit orientation-dependent rearrangements at high strains: longitudinal microfibrils are straightened out and become highly ordered, while transverse microfibrils curve and kink. Small-angle X-ray scattering detects a 7.4 nm spacing aligned along the stretch direction at high strain, which is attributed to distances between individual cellulose microfibrils. Furthermore, wide-angle X-ray scattering reveals a widening of (004) lattice spacing and contraction of (200) lattice spacing in longitudinally aligned cellulose microfibrils at high strain, which implies longitudinal stretching of the cellulose crystal. These findings provide molecular insights into the ability of the wall to bear additional load after yielding: the aggregation of longitudinal microfibrils impedes sliding and enables further stretching of the cellulose to bear increased loads.


Assuntos
Parede Celular , Celulose , Microscopia de Força Atômica , Epiderme Vegetal , Parede Celular/química , Parede Celular/ultraestrutura , Epiderme Vegetal/citologia , Epiderme Vegetal/química , Celulose/química , Microfibrilas/química , Difração de Raios X , Espalhamento a Baixo Ângulo , Cebolas/citologia , Cebolas/química , Estresse Mecânico
9.
Microb Pathog ; 193: 106716, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848932

RESUMO

The yellow spot disease caused by the virus species Orthotospovirus iridimaculaflavi (Iris yellow spot virus-IYSV), belonging to the genus Orthotospovirus, the family Tospoviridae, order Bunyavirales and transmitted by Thrips tabaci Lindeman. At present, emerging as a major threat in onion (Allium cepa) in Tamil Nadu, India. The yellow spot disease incidence was found to be 53-73 % in six districts out of eight major onion-growing districts surveyed in Tamil Nadu during 2021-2023. Among the onion cultivars surveyed, the cultivar CO 5 was the most susceptible to IYSV. The population of thrips was nearly 5-9/plant during vegetative and flowering stages. The thrips infestation was 34-60 %. The tospovirus involved was confirmed as IYSV through DAS-ELISA, followed by molecular confirmation through RT-PCR using the nucleocapsid (N) gene. The predominant thrips species present in onion crops throughout the growing seasons was confirmed as Thrips tabaci based on the nucleotide sequence of the MtCOI gene. The mechanical inoculation of IYSV in different hosts viz., Vigna unguiculata, Gomphrena globosa, Chenopodium amaranticolor, Chenopodium quinoa and Nicotiana benthamiana resulted in chlorotic and necrotic lesion symptoms. The electron microscopic studies with partially purified sap from onion lesions revealed the presence of spherical to pleomorphic particles measuring 100-230 nm diameter. The transmission of IYSV was successful with viruliferous adult Thrips tabaci in cowpea (Cv. CO7), which matured from 1st instar larva fed on infected cowpea leaves (24 h AAP). Small brown necrotic symptoms were produced on inoculated plants after an interval of four weeks. The settling preference of non-viruliferous and viruliferous T. tabaci towards healthy and infected onion leaves resulted in the increased preference of non-viruliferous thrips towards infected (onion-61.33 % and viruliferous thrips towards healthy onion leaves (75.33 %). The study isolates shared 99-100 % identity at a nucleotide and amino acid level with Indian isolates of IYSV in the N gene. The multiple alignment of the amino acid sequence of the N gene of IYSV isolates collected from different locations and IYSV isolates from the database revealed amino acid substitution in the isolate ITPR4. All the IYSV isolates from India exhibited characteristic amino acid substitution of serine at the 6th position in the place of threonine in the isolates from Australia, Japan and USA. The phylogenetic analysis revealed the monophyletic origin of the IYSV isolates in India.


Assuntos
Cebolas , Doenças das Plantas , Tisanópteros , Tospovirus , Índia , Tisanópteros/virologia , Animais , Cebolas/virologia , Cebolas/parasitologia , Doenças das Plantas/virologia , Tospovirus/genética , Tospovirus/isolamento & purificação , Tospovirus/fisiologia , Tospovirus/patogenicidade , Filogenia , Insetos Vetores/virologia , Insetos Vetores/parasitologia
10.
Exp Eye Res ; 240: 109816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309514

RESUMO

The ocular surface is subject to a range of potentially hazardous environmental factors and substances, owing to its anatomical location, sensitivity, and physiological makeup. Xenobiotic stress exerted by chronic pesticide exposure on the cornea is primarily responsible for ocular irritation, excessive tear production (hyper-lacrimation), corneal abrasions and decreased visual acuity. Traditional medicine hails the humble onion (Allium cepa) for its multi-faceted properties including but not limited to anti-microbial, antioxidant, anti-inflammatory and wound healing. However, there is a lacuna regarding its impact on the ocular surface. Thereby, the current study investigated whether topical application of crude extract of Allium cepa aided in mitigating pesticide-induced damage to the ocular surface. The deleterious effects of pesticide exposure and their mitigation through the topical application of herbal extract of Allium cepa were analysed initially through in vitro evaluation on cell lines and then on the ocular surface via various in-vivo and ex-vivo techniques. Pathophysiological alterations to the ocular surface that impacted vision were explored through detailed neurophysiological screening with special emphasis on visual acuity wherein it was observed that the murine group treated with topical application of Allium cepa extract had comparable visual capacity to the non-pesticide exposed group. Additionally, SOD2 was utilized as an oxidative stress marker along with the expression of cellular apoptotic markers such as Bcl-xL to analyse the impact of pesticide exposure and subsequent herbal intervention on oxidative stress-induced corneal damage. The impact on the corneal epithelial progenitor cell population (ABCG2 and TERT positive cells) was also flowcytometrically analysed. Therefore, from our observations, it can be postulated that the topical application of Allium cepa extract might serve as an effective strategy to alleviate pesticide exposure related ocular damage.


Assuntos
Cebolas , Praguicidas , Camundongos , Animais , Cebolas/fisiologia , Praguicidas/toxicidade , Córnea , Antioxidantes/farmacologia , Estresse Oxidativo
11.
Theor Appl Genet ; 137(6): 118, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709404

RESUMO

KEY MESSAGE: Through a map-based cloning approach, a gene coding for an R2R3-MYB transcription factor was identified as a causal gene for the I locus controlling the dominant white bulb color in onion. White bulb colors in onion (Allium cepa L.) are determined by either the C or I loci. The causal gene for the C locus was previously isolated, but the gene responsible for the I locus has not been identified yet. To identify candidate genes for the I locus, an approximately 7-Mb genomic DNA region harboring the I locus was obtained from onion and bunching onion (A. fistulosum) whole genome sequences using two tightly linked molecular markers. Within this interval, the AcMYB1 gene, known as a positive regulator of anthocyanin production, was identified. No polymorphic sequences were found between white and red AcMYB1 alleles in the 4,860-bp full-length genomic DNA sequences. However, a 4,838-bp LTR-retrotransposon was identified in the white allele, in the 79-bp upstream coding region from the stop codon. The insertion of this LTR-retrotransposon created a premature stop codon, resulting in the replacement of 26 amino acids with seven different residues. A molecular marker was developed based on the insertion of this LTR-retrotransposon to genotype the I locus. A perfect linkage between bulb color phenotypes and marker genotypes was observed among 5,303 individuals of segregating populations. The transcription of AcMYB1 appeared to be normal in both red and white onions, but the transcription of CHS-A, which encodes chalcone synthase and is involved in the first step of the anthocyanin biosynthesis pathway, was inactivated in the white onions. Taken together, an aberrant AcMYB1 protein produced from the mutant allele might be responsible for the dominant white bulb color in onions.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Cebolas , Pigmentação , Alelos , Antocianinas/genética , Cor , Marcadores Genéticos , Cebolas/genética , Fenótipo , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retroelementos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Mutagenesis ; 39(4-5): 219-237, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39178319

RESUMO

The purposes of this review were to investigate the application of the comet assay in Allium cepa root cells to assess the genotoxicity of environmental samples and to analyse the experimental procedures employed. A literature search was performed selecting articles published between January 2000 and October 2023 from online databases using the combined search terms 'comet assay' and 'A. cepa'. Only 18 papers met the inclusion criteria. None of these were published in the first eight years (2000-2007), highlighting the increasing interest in using the comet assay on A. cepa to analyse environmental samples over the last decade. The majority of the selected studies (15/18, 83%) were performed on samples belonging to the water compartment on onion bulbs. Half of the selected studies (9/18) were conducted to demonstrate the DNA damaging effect of the sample, while the other half of the studies not only recognized the presence of genotoxic agents but also addressed possible remediation measures. Detailed analysis of the experimental procedures revealed heterogeneity in many key steps, such as exposure time, test controls, nuclei isolation solutions, duration of electrophoresis, and number of nuclei scored. This literature review has shown that the comet assay on A. cepa, although recognized as an appropriate tool, is underutilized in environmental toxicology. Greater standardization could lead to its more widespread use, providing valuable information on the genotoxicity of environmental samples and the ability of different processes to mitigate their negative effects on plants.


Assuntos
Ensaio Cometa , Dano ao DNA , Cebolas , Cebolas/genética , Cebolas/efeitos dos fármacos , Ensaio Cometa/métodos , Mutagênicos/toxicidade , Monitoramento Ambiental/métodos , Raízes de Plantas/genética , Poluentes Ambientais/toxicidade
13.
Arch Microbiol ; 206(6): 262, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753198

RESUMO

The employment of versatile bacterial strains for the efficient degradation of carcinogenic textile dyes is a sustainable technology of bioremediation for a neat, clean, and evergreen globe. The present study has explored the eco-friendly degradation of complex Reactive Green 12 azo dye to its non-toxic metabolites for safe disposal in an open environment. The bacterial degradation was performed with the variable concentrations (50, 100, 200, 400, and 500 mg/L) of Reactive Green 12 dye. The degradation and toxicity of the dye were validated by high-performance liquid chromatography, Fourier infrared spectroscopy analysis, and phytotoxicity and genotoxicity assay, respectively. The highest 97.8% decolorization was achieved within 12 h. Alternations in the peaks and retentions, thus, along with modifications in the functional groups and chemical bonds, confirmed the degradation of Reactive Green 12. The disappearance of a major peak at 1450 cm-1 corresponding to the -N=N- azo link validated the breaking of azo bonds and degradation of the parent dye. The 100% germination of Triticum aestivum seed and healthy growth of plants verified the lost toxicity of degraded dye. Moreover, the chromosomal aberration of Allium cepa root cell treatment also validated the removal of toxicity through bacterial degradation. Thereafter, for efficient degradation of textile dye, the bacterium is recommended for adaptation to the sustainable degradation of dye and wastewater for further application of degraded metabolites in crop irrigation for sustainable agriculture.


Assuntos
Biodegradação Ambiental , Corantes , Cebolas , Indústria Têxtil , Triticum , Corantes/metabolismo , Corantes/química , Corantes/toxicidade , Triticum/microbiologia , Cebolas/efeitos dos fármacos , Compostos Azo/metabolismo , Compostos Azo/toxicidade , Têxteis , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Testes de Mutagenicidade
14.
Microb Cell Fact ; 23(1): 17, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200553

RESUMO

BACKGROUND: Yeast treatment has been used for purification of fructooligosaccharides (FOSs). However, the main drawback of this approach is that yeast can only partially remove sucrose from crude FOSs. The main objective of this research was to screen yeast strains for the capability of selectively consuming unwanted sugars, namely fructose, glucose, and sucrose, in crude FOSs extracted from red onion (Allium cepa var. viviparum) with minimal effect on FOS content. RESULTS: Among 43 yeast species isolated from Miang, ethnic fermented tea leaves, and Assam tea flowers, Candida orthopsilosis FLA44.2 and Priceomyces melissophilus FLA44.8 exhibited the greatest potential to specifically consume these unwanted sugars. In a shake flask, direct cultivation of C. orthopsilosis FLA44.2 was achieved in the original crude FOSs containing an initial FOSs concentration of 88.3 ± 1.2 g/L and 52.9 ± 1.2 g/L of the total contents of fructose, glucose, and sucrose. This was successful with 93.7% purity and 97.8% recovery after 24 h of cultivation. On the other hand, P. melissophilus FLA48 was limited by initial carbohydrate concentration of crude FOSs in terms of growth and sugar utilization. However, it could directly purify two-fold diluted crude FOSs to 95.2% purity with 92.2% recovery after 72 h of cultivation. Purification of crude FOSs in 1-L fermenter gave similar results to the samples purified in a shake flask. Extracellular ß-fructosidase was assumed to play a key role in the effective removal of sucrose. Both Candida orthopsilosis FLA44.2 and P. melissophilus FLA44.8 showed γ-hemolytic activity, while their culture broth had no cytotoxic effect on viability of small intestinal epithelial cells, preliminarily indicating their safety for food processing. The culture broth obtained from yeast treatment was passed through an activated charcoal column for decolorization and deodorization. After being freeze dried, the final purified FOSs appeared as a white granular powder similar to refined sugar and was odorless since the main sulfur-containing volatile compounds, including dimethyl disulfide and dipropyl trisulfide, were almost completely removed. CONCLUSION: The present purification process is considered simple and straight forward, and provides new and beneficial insight into utilization of alternative yeast species for purification of FOSs.


Assuntos
Glucose , Oligossacarídeos , Cebolas , Sacarose , Candida parapsilosis , Frutose , Chá
15.
Epidemiol Infect ; 152: e106, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344903

RESUMO

An investigation into an outbreak of Salmonella Newport infections in Canada was initiated in July 2020. Cases were identified across several provinces through whole-genome sequencing (WGS). Exposure data were gathered through case interviews. Traceback investigations were conducted using receipts, invoices, import documentation, and menus. A total of 515 cases were identified in seven provinces, related by 0-6 whole-genome multi-locus sequence typing (wgMLST) allele differences. The median age of cases was 40 (range 1-100), 54% were female, 19% were hospitalized, and three deaths were reported. Forty-eight location-specific case sub-clusters were identified in restaurants, grocery stores, and congregate living facilities. Of the 414 cases with exposure information available, 71% (295) had reported eating onions the week prior to becoming ill, and 80% of those cases who reported eating onions, reported red onion specifically. The traceback investigation identified red onions from Grower A in California, USA, as the likely source of the outbreak, and the first of many food recall warnings was issued on 30 July 2020. Salmonella was not detected in any tested food or environmental samples. This paper summarizes the collaborative efforts undertaken to investigate and control the largest Salmonella outbreak in Canada in over 20 years.


Assuntos
Surtos de Doenças , Cebolas , Intoxicação Alimentar por Salmonella , Humanos , Canadá/epidemiologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Pré-Escolar , Adolescente , Adulto Jovem , Criança , Idoso , Lactente , Idoso de 80 Anos ou mais , Intoxicação Alimentar por Salmonella/epidemiologia , Intoxicação Alimentar por Salmonella/microbiologia , Cebolas/microbiologia , Sequenciamento Completo do Genoma , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Salmonella/genética , Salmonella/classificação , Salmonella/isolamento & purificação , Tipagem de Sequências Multilocus
16.
Mol Biol Rep ; 51(1): 962, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235644

RESUMO

The MD-2-related lipid-recognition (ML/Md-2) domain is a lipid/sterol-binding domain that are involved in sterol transfer and innate immunity in eukaryotes. Here we report a genome-wide survey of this family, identifying 84 genes in 30 fungi including plant pathogens. All the studied species were found to have varied ML numbers, and expansion of the family was observed in Rhizophagus irregularis (RI) with 33 genes. The molecular docking studies of these proteins with cholesterol derivatives indicate lipid-binding functional conservation across the animal and fungi kingdom. The phylogenetic studies among eukaryotic ML proteins showed that Puccinia ML members are more closely associated with animal (insect) npc2 proteins than other fungal ML members. One of the candidates from leaf rust fungus Puccinia triticina, Pt5643 was PCR amplified and further characterized using various studies such as qRT-PCR, subcellular localization studies, yeast functional complementation, signal peptide validation, and expression studies. The Pt5643 exhibits the highest expression on the 5th day post-infection (dpi). The confocal microscopy of Pt5643 in onion epidermal cells and N. benthamiana shows its location in the cytoplasm and nucleus. The functional complementation studies of Pt5643 in npc2 mutant yeast showed its functional similarity to the eukaryotic/yeast npc2 gene. Furthermore, the overexpression of Pt5643 also suppressed the BAX, NEP1, and H2O2-induced program cell death in Nicotiana species and yeast. Altogether the present study reports the novel function of ML domain proteins in plant fungal pathogens and their possible role as effector molecules in host defense manipulation.


Assuntos
Morte Celular , Proteínas Fúngicas , Filogenia , Doenças das Plantas , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Nicotiana/genética , Basidiomycota/patogenicidade , Basidiomycota/metabolismo , Basidiomycota/genética , Puccinia/patogenicidade , Puccinia/metabolismo , Domínios Proteicos , Simulação de Acoplamento Molecular , Cebolas/microbiologia , Cebolas/metabolismo , Cebolas/genética
17.
J Chem Ecol ; 50(7-8): 364-372, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795224

RESUMO

Onion flowers require pollinator-mediated cross-pollination. However, the cues that pollinators use to locate the flowers are not well understood. The floral scent, along with floral visual cues, might acts as important signal to pollinators in order to locate the floral resources. We used electrophysiological methods combined with behavioural assays to determine which compounds in a floral scent are more attractive and thus biologically important to foraging scollid wasps. The majority of the molecules identified as floral fragrances in onions are common compounds that are already known from other angiosperms, and onion floral scents were predominately composed of aromatic components. The antennae of scoliid wasps responded to a large number of compounds, among them o-cymene, cis-ß-ocimene, benzaldehyde and allo-ocimene were behaviourally active. In contrast to other wasp flowers investigated nectar analysis demonstrated the dominance of hexose sugars over sucrose. Our findings provide fresh insights into the floral volatile chemistry of a key vegetable crop grown around the world. We demonstrate here that onion is using generalist floral volatiles to attract floral visitors. This insight could be utilised to make onion blooms more attractive to minor pollinators as well as major pollinators in order to maximise seed set.


Assuntos
Flores , Odorantes , Cebolas , Polinização , Compostos Orgânicos Voláteis , Vespas , Animais , Vespas/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/farmacologia , Flores/química , Cebolas/química , Odorantes/análise , Comportamento Animal/efeitos dos fármacos
18.
BMC Vet Res ; 20(1): 334, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061083

RESUMO

BACKGROUND: Gills monogenean infestation causes significant mortalities in cultured fishes as a result of respiratory manifestation. Medicinal plants are currently being heavily emphasized in aquaculture due to their great nutritional, therapeutic, antimicrobial activities, and financial value. METHODS: The current study is designed to assess the effect of garlic (Allium sativum) and onion (Allium cepa) extracts as a water treatment on the hematological profile, innate immunity, and immune cytokines expression besides histopathological features of gills of Nile tilapia (Oreochromis niloticus L.) infected with gills monogenetic trematodes (Dactylogyrus sp.). Firstly, the 96-hour lethal concentration 50 (96 h-LC50) of garlic extract (GE) and onion extract (OE) were estimated to be 0.4 g/ L and 3.54 g/ L for GE and OE, respectively. Moreover, the in-vitro anti-parasitic potential for (GE) was found between 0.02 and 0.18 mg/mL and 0.4 to 1.8 mg/mL for OE. For the therapeutic trial, fish (n = 120; body weight: 40-60 g) were randomly distributed into four groups in triplicates (30 fish/group, 10 fish/replicate) for 3 days. Group1 (G1) was not infected or treated and served as control. G2 was infected with Dactylogyrus spp. and not exposed to any treatment. G3, G4 were infected with Dactylogyrus sp. and treated with 1/10 and 1/5 of 96 h LC50 of OE, respectively. G5, G6 were infected with Dactylogyrus sp. and treated with 1/10 and 1/5 of 96 h LC50 of GE, respectively. RESULTS: No apparent signs or behaviors were noted in the control group. Dactylogyrus spp. infected group suffered from clinical signs as Pale color and damaged tissue. Dactylogyrus spp. infection induced lowering of the hematological (HB, MCH, MCHC and WBCs), and immunological variables (lysozyme, nitric oxide, serum Anti- protease activities, and complement 3). the expression of cytokine genes IL-ß and TNF-α were modulated and improved by treatment with A. sativum and A. cepa extracts. The obtained histopathological alterations of the gills of fish infected with (Dactylogyrus spp.) were hyperplasia leading to fusion of the gill filament, lifting of epithelial tissue, aneurism and edema. The results indecated that G4 and G5 is more regenarated epithelium in compare with the control group. CONCLUSION: A. sativum and A. cepa extracts enhance the blood profile and nonspecific immune parameters, and down-regulated the expression level of (IL-1ß and TNF-α).


Assuntos
Ciclídeos , Citocinas , Doenças dos Peixes , Alho , Brânquias , Cebolas , Extratos Vegetais , Trematódeos , Infecções por Trematódeos , Animais , Brânquias/parasitologia , Brânquias/patologia , Brânquias/efeitos dos fármacos , Doenças dos Peixes/parasitologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/imunologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ciclídeos/imunologia , Ciclídeos/parasitologia , Alho/química , Citocinas/genética , Citocinas/metabolismo , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/tratamento farmacológico , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/imunologia , Trematódeos/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos
19.
Phytopathology ; 114(6): 1263-1275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38105219

RESUMO

Leaves of Welsh onion (Allium fistulosum) are subject to various fungal diseases such as anthracnose (Colletotrichum species) and Stemphylium leaf blight (Stemphylium vesicarium). These diseases are the main biotic limitations to Welsh onion production in northern Taiwan. From 2018 to 2020, anthracnose symptoms were observed throughout Welsh onion fields in northern Taiwan, mainly the Sanxing area. In total, 33 strains of Colletotrichum species were isolated from diseased leaves, and major causative agents were identified based on a multilocus phylogenetic analysis using four genomic regions (act, tub2, gapdh, and internal transcribed spacer). Based on this phylogeny, Colletotrichum species causing anthracnose of Welsh onion were identified as C. spaethianum (C. spaethianum species complex) and C. circinans (C. dematium species complex) in the Sanxing area, northern Taiwan. To determine and compare the pathogenicity of each species, representative fungal strains of each species were inoculated on the cultivar 'Siao-Lyu' by spraying spore suspension onto the leaf surface. Welsh onion plants were susceptible to both species, but disease incidence and severity were higher in C. spaethianum. In total, 31 fungicides were tested to determine their efficacy in reducing mycelial growth and conidial germination of representative strains of C. spaethianum and C. circinans under laboratory conditions. Five fungicides-fluazinam, metiram, mancozeb, thiram, and dithianon-effectively reduced mycelial growth and spore germination in both C. spaethianum and C. circinans. In contrast, difenoconazole and trifloxystrobin + tebuconazole, which are commonly used in Welsh onion production in northern Taiwan, mainly the Sanxing area, were ineffective. These results serve as valuable insights for growers, enabling them to identify and address the emergence of anthracnose caused by C. spaethianum and C. circinans of Welsh onion, employing fungicides with diverse modes of action. The findings of this study support sustainable management of anthracnose in Sanxing, northern Taiwan, although further field tests of the fungicides are warranted.


Assuntos
Colletotrichum , Cebolas , Filogenia , Doenças das Plantas , Colletotrichum/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Taiwan , Cebolas/microbiologia , Folhas de Planta/microbiologia , Fungicidas Industriais/farmacologia
20.
Phytopathology ; 114(6): 1237-1243, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38349769

RESUMO

Downy mildew of onion caused by a soil-inhabiting water mold, Peronospora destructor, is one of the most devastating diseases that can destroy entire onion fields in a matter of days. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay that allows for rapid detection of P. destructor by visual inspection. The internal transcribed spacer 2 region of P. destructor was used to design primer sets for LAMP reactions. The optimal temperature and incubation time were determined for the most efficient primer set. In the optimized condition, the LAMP assay exhibited at least 100 times more sensitivity than conventional PCR, detecting femtogram levels of P. destructor genomic DNA (gDNA). Detection of the pathogen from a small number of spores without gDNA extraction further confirmed the high sensitivity of the assay. For specificity, the LAMP assay was negative for gDNA of other fungal pathogens that cause various diseases on onion and oomycetes, whereas the assay was positive for gDNA extracted from onion tissues showing the typical downy mildew symptoms. Finally, we examined the efficacy of the LAMP assay in detection of P. destructor in soils. Soils collected from onion fields that had been contaminated with P. destructor were solarized for 60 days. Whereas the LAMP assay was negative for the solarized soils, we were able to detect P. destructor that oversummers in fields. The LAMP assay developed in this study enables rapid detection and diagnosis of downy mildew of onion in infected tissues and in soil.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Cebolas , Peronospora , Doenças das Plantas , Microbiologia do Solo , Cebolas/microbiologia , Doenças das Plantas/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Peronospora/genética , Peronospora/isolamento & purificação , Sensibilidade e Especificidade , DNA Fúngico/genética , Solo , Técnicas de Diagnóstico Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA