Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(1-2): 210-223.e11, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086092

RESUMO

Transcriptional control requires epigenetic changes directed by mitochondrial tricarboxylic acid (TCA) cycle metabolites. In the mouse embryo, global epigenetic changes occur during zygotic genome activation (ZGA) at the 2-cell stage. Pyruvate is essential for development beyond this stage, which is at odds with the low activity of mitochondria in this period. We now show that a number of enzymatically active mitochondrial enzymes associated with the TCA cycle are essential for epigenetic remodeling and are transiently and partially localized to the nucleus. Pyruvate is essential for this nuclear localization, and a failure of TCA cycle enzymes to enter the nucleus correlates with loss of specific histone modifications and a block in ZGA. At later stages, however, these enzymes are exclusively mitochondrial. In humans, the enzyme pyruvate dehydrogenase is transiently nuclear at the 4/8-cell stage coincident with timing of human embryonic genome activation, suggesting a conserved metabolic control mechanism underlying early pre-implantation development.


Assuntos
Ciclo do Ácido Cítrico , Genoma , Zigoto/metabolismo , Animais , Blastocisto/metabolismo , Núcleo Celular/metabolismo , Epigênese Genética , Glicosilação , Histonas/metabolismo , Cetona Oxirredutases/metabolismo , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo
2.
Cell ; 158(6): 1415-1430, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215496

RESUMO

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study, we quantified the transcriptome--a subset of the metabolome--and, using targeted proteomics, quantified a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein, and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. These integrated molecular profiles also allowed further characterization of complex pathways, particularly the mitochondrial unfolded protein response (UPR(mt)). UPR(mt) shows strikingly variant responses at the transcript and protein level that are remarkably conserved among C. elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.


Assuntos
Perfilação da Expressão Gênica , Fígado/química , Camundongos/metabolismo , Mitocôndrias/química , Proteoma/análise , Soro/química , Animais , Glucose/metabolismo , Humanos , Cetona Oxirredutases/metabolismo , Fígado/citologia , Fígado/metabolismo , Camundongos/classificação , Camundongos/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mitocôndrias/metabolismo , Locos de Características Quantitativas , Soro/metabolismo , Resposta a Proteínas não Dobradas
3.
Microb Cell Fact ; 23(1): 173, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867236

RESUMO

BACKGROUND: The microbial chiral product (R)-3-hydroxybutyrate (3-HB) is a gateway to several industrial and medical compounds. Acetyl-CoA is the key precursor for 3-HB, and several native pathways compete with 3-HB production. The principal competing pathway in wild-type Escherichia coli for acetyl-CoA is mediated by citrate synthase (coded by gltA), which directs over 60% of the acetyl-CoA into the tricarboxylic acid cycle. Eliminating citrate synthase activity (deletion of gltA) prevents growth on glucose as the sole carbon source. In this study, an alternative approach is used to generate an increased yield of 3-HB: citrate synthase activity is reduced but not eliminated by targeted substitutions in the chromosomally expressed enzyme. RESULTS: Five E. coli GltA variants were examined for 3-HB production via heterologous overexpression of a thiolase (phaA) and NADPH-dependent acetoacetyl-CoA reductase (phaB) from Cupriavidus necator. In shake flask studies, four variants showed nearly 5-fold greater 3-HB yield compared to the wild-type, although pyruvate accumulated. Overexpression of either native thioesterases TesB or YciA eliminated pyruvate formation, but diverted acetyl-CoA towards acetate formation. Overexpression of pantothenate kinase similarly decreased pyruvate formation but did not improve 3-HB yield. Controlled batch studies at the 1.25 L scale demonstrated that the GltA[A267T] variant produced the greatest 3-HB titer of 4.9 g/L with a yield of 0.17 g/g. In a phosphate-starved repeated batch process, E. coli ldhA poxB pta-ackA gltA::gltA[A267T] generated 15.9 g/L 3-HB (effective concentration of 21.3 g/L with dilution) with yield of 0.16 g/g from glucose as the sole carbon source. CONCLUSIONS: This study demonstrates that GltA variants offer a means to affect the generation of acetyl-CoA derived products. This approach should benefit a wide range of acetyl-CoA derived biochemical products in E. coli and other microbes. Enhancing substrate affinity of the introduced pathway genes like thiolase towards acetyl-CoA will likely further increase the flux towards 3-HB while reducing pyruvate and acetate accumulation.


Assuntos
Ácido 3-Hidroxibutírico , Acetilcoenzima A , Citrato (si)-Sintase , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Acetilcoenzima A/metabolismo , Citrato (si)-Sintase/metabolismo , Citrato (si)-Sintase/genética , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/biossíntese , Engenharia Metabólica/métodos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cetona Oxirredutases/metabolismo , Cetona Oxirredutases/genética , Oxirredutases do Álcool
4.
Blood ; 137(25): 3518-3532, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33720355

RESUMO

Acute myeloid leukemia (AML) cells have an atypical metabolic phenotype characterized by increased mitochondrial mass, as well as a greater reliance on oxidative phosphorylation and fatty acid oxidation (FAO) for survival. To exploit this altered metabolism, we assessed publicly available databases to identify FAO enzyme overexpression. Very long chain acyl-CoA dehydrogenase (VLCAD; ACADVL) was found to be overexpressed and critical to leukemia cell mitochondrial metabolism. Genetic attenuation or pharmacological inhibition of VLCAD hindered mitochondrial respiration and FAO contribution to the tricarboxylic acid cycle, resulting in decreased viability, proliferation, clonogenic growth, and AML cell engraftment. Suppression of FAO at VLCAD triggered an increase in pyruvate dehydrogenase activity that was insufficient to increase glycolysis but resulted in adenosine triphosphate depletion and AML cell death, with no effect on normal hematopoietic cells. Together, these results demonstrate the importance of VLCAD in AML cell biology and highlight a novel metabolic vulnerability for this devastating disease.


Assuntos
Ácidos Graxos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Ácidos Graxos/genética , Glicólise , Humanos , Cetona Oxirredutases/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
6.
Biochem Biophys Res Commun ; 587: 153-159, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34875534

RESUMO

Pyruvate dehydrogenase kinase 1 (PDK1) is a Ser/Thr kinase that inactivates mitochondrial pyruvate dehydrogenase (PDH), leading to switch of glucose metabolism from mitochondrial oxidation to aerobic glycolysis. We previously reported that PDK1 inhibition is a potent therapeutic strategy in multiple myeloma (MM). However, availability of PDK1 inhibitors, which are effective at low concentrations, are limited at present, making PDK1 inhibition difficult to apply in the clinic. In the present study, we examined the efficacy and mechanism of action of JX06, a novel PDK1 inhibitor, against MM cells. We confirmed that PDK1 is highly expressed in normal plasma cells and MM cells using publicly available gene expression datasets. JX06 suppressed cell growth and induced apoptosis against MM cells from approximately 0.5 µM JX06 treatment reduced PDH phosphorylation, suggesting that JX06 is indeed inhibiting PDK1. Intracellular metabolite analysis revealed that JX06 treatment reduced metabolites associated with glucose metabolism of MM cells. Additionally, JX06 in combination with a well-known proteasome inhibitor, bortezomib, significantly increased MM cell death, which raises the possibility of combination use of JX06 with proteasome inhibitors in the clinic. These findings demonstrate that PDK1 can be potentially targeted by JX06 in MM through glycolysis inhibition, leading to a novel therapeutic strategy in MM.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dissulfiram/análogos & derivados , Inibidores Enzimáticos/farmacologia , Glicólise/efeitos dos fármacos , Morfolinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/genética , Bortezomib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Conjuntos de Dados como Assunto , Dissulfiram/farmacologia , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , Humanos , Cetona Oxirredutases/genética , Cetona Oxirredutases/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Terapia de Alvo Molecular , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Fosforilação/efeitos dos fármacos , Plasmócitos/efeitos dos fármacos , Plasmócitos/enzimologia , Plasmócitos/patologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
7.
Cell Mol Life Sci ; 78(23): 7451-7468, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34718827

RESUMO

In human metabolism, pyruvate dehydrogenase complex (PDC) is one of the most intricate and large multimeric protein systems representing a central hub for cellular homeostasis. The worldwide used antiepileptic drug valproic acid (VPA) may potentially induce teratogenicity or a mild to severe hepatic toxicity, where the underlying mechanisms are not completely understood. This work aims to clarify the mechanisms that intersect VPA-related iatrogenic effects to PDC-associated dihydrolipoamide dehydrogenase (DLD; E3) activity. DLD is also a key enzyme of α-ketoglutarate dehydrogenase, branched-chain α-keto acid dehydrogenase, α-ketoadipate dehydrogenase, and the glycine decarboxylase complexes. The molecular effects of VPA will be reviewed underlining the data that sustain a potential interaction with DLD. The drug-associated effects on lipoic acid-related complexes activity may induce alterations on the flux of metabolites through tricarboxylic acid cycle, branched-chain amino acid oxidation, glycine metabolism and other cellular acetyl-CoA-connected reactions. The biotransformation of VPA involves its complete ß-oxidation in mitochondria causing an imbalance on energy homeostasis. The drug consequences as histone deacetylase inhibitor and thus gene expression modulator have also been recognized. The mitochondrial localization of PDC is unequivocal, but its presence and function in the nucleus were also demonstrated, generating acetyl-CoA, crucial for histone acetylation. Bridging metabolism and epigenetics, this review gathers the evidence of VPA-induced interference with DLD or PDC functions, mainly in animal and cellular models, and highlights the uncharted in human. The consequences of this interaction may have significant impact either in mitochondrial or in nuclear acetyl-CoA-dependent processes.


Assuntos
Di-Hidrolipoamida Desidrogenase/metabolismo , Inibidores de Histona Desacetilases/efeitos adversos , Doença Iatrogênica , Complexo Piruvato Desidrogenase/metabolismo , Ácido Valproico/efeitos adversos , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Acetilcoenzima A/biossíntese , Acetilação , Animais , Glicina Desidrogenase (Descarboxilante)/metabolismo , Humanos , Complexo Cetoglutarato Desidrogenase/metabolismo , Cetona Oxirredutases/metabolismo , Fígado/patologia , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Teratogênicos/metabolismo
8.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055169

RESUMO

The aim of this study was to characterize the distribution of the thrombin receptor, protease activated receptor 1 (PAR1), in the neuroretina. Neuroretina samples of wild-type C57BL/6J and PAR1-/- mice were processed for indirect immunofluorescence and Western blot analysis. Reverse transcription quantitative real-time PCR (RT-qPCR) was used to determine mRNA expression of coagulation Factor X (FX), prothrombin (PT), and PAR1 in the isolated neuroretina. Thrombin activity following KCl depolarization was assessed in mouse neuroretinas ex vivo. PAR1 staining was observed in the retinal ganglion cells, inner nuclear layer cells, and photoreceptors in mouse retinal cross sections by indirect immunofluorescence. PAR1 co-localized with rhodopsin in rod outer segments but was not expressed in cone outer segments. Western blot analysis confirmed PAR1 expression in the neuroretina. Factor X, prothrombin, and PAR1 mRNA expression was detected in isolated neuroretinas. Thrombin activity was elevated by nearly four-fold in mouse neuroretinas following KCl depolarization (0.012 vs. 0.044 mu/mL, p = 0.0497). The intrinsic expression of coagulation factors in the isolated neuroretina together with a functional increase in thrombin activity following KCl depolarization may suggest a role for the PAR1/thrombin pathway in retinal function.


Assuntos
Carboidratos Epimerases/metabolismo , Cetona Oxirredutases/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Neurônios Retinianos/metabolismo , Animais , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cloreto de Potássio/farmacologia , Protrombina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Ganglionares da Retina/metabolismo , Segmento Interno das Células Fotorreceptoras da Retina/metabolismo , Rodopsina/metabolismo
9.
J Biol Chem ; 295(23): 8078-8095, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32303640

RESUMO

2-Oxoadipate dehydrogenase (E1a, also known as DHTKD1, dehydrogenase E1, and transketolase domain-containing protein 1) is a thiamin diphosphate-dependent enzyme and part of the 2-oxoadipate dehydrogenase complex (OADHc) in l-lysine catabolism. Genetic findings have linked mutations in the DHTKD1 gene to several metabolic disorders. These include α-aminoadipic and α-ketoadipic aciduria (AMOXAD), a rare disorder of l-lysine, l-hydroxylysine, and l-tryptophan catabolism, associated with clinical presentations such as developmental delay, mild-to-severe intellectual disability, ataxia, epilepsy, and behavioral disorders that cannot currently be managed by available treatments. A heterozygous missense mutation, c.2185G→A (p.G729R), in DHTKD1 has been identified in most AMOXAD cases. Here, we report that the G729R E1a variant when assembled into OADHc in vitro displays a 50-fold decrease in catalytic efficiency for NADH production and a significantly reduced rate of glutaryl-CoA production by dihydrolipoamide succinyl-transferase (E2o). However, the G729R E1a substitution did not affect any of the three side-reactions associated solely with G729R E1a, prompting us to determine the structure-function effects of this mutation. A multipronged systematic analysis of the reaction rates in the OADHc pathway, supplemented with results from chemical cross-linking and hydrogen-deuterium exchange MS, revealed that the c.2185G→A DHTKD1 mutation affects E1a-E2o assembly, leading to impaired channeling of OADHc intermediates. Cross-linking between the C-terminal region of both E1a and G729R E1a with the E2o lipoyl and core domains suggested that correct positioning of the C-terminal E1a region is essential for the intermediate channeling. These findings may inform the development of interventions to counter the effects of pathogenic DHTKD1 mutations.


Assuntos
Variação Genética , Cetona Oxirredutases/química , Cetona Oxirredutases/metabolismo , Lisina/metabolismo , Fibroblastos/química , Fibroblastos/metabolismo , Variação Genética/genética , Humanos , Complexo Cetoglutarato Desidrogenase , Cetona Oxirredutases/genética , Cinética , Lisina/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
10.
J Biol Chem ; 295(14): 4631-4646, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32079675

RESUMO

Increasing hepatic mitochondrial activity through pyruvate dehydrogenase and elevating enterohepatic bile acid recirculation are promising new approaches for metabolic disease therapy, but neither approach alone can completely ameliorate disease phenotype in high-fat diet-fed mice. This study showed that diet-induced hepatosteatosis, hyperlipidemia, and insulin resistance can be completely prevented in mice with liver-specific HCLS1-associated protein X-1 (HAX-1) inactivation. Mechanistically, we showed that HAX-1 interacts with inositol 1,4,5-trisphosphate receptor-1 (InsP3R1) in the liver, and its absence reduces InsP3R1 levels, thereby improving endoplasmic reticulum-mitochondria calcium homeostasis to prevent excess calcium overload and mitochondrial dysfunction. As a result, HAX-1 ablation activates pyruvate dehydrogenase and increases mitochondria utilization of glucose and fatty acids to prevent hepatosteatosis, hyperlipidemia, and insulin resistance. In contrast to the reduction of InsP3R1 levels, hepatic HAX-1 deficiency increases bile salt exporter protein levels, thereby promoting enterohepatic bile acid recirculation, leading to activation of bile acid-responsive genes in the intestinal ileum to augment insulin sensitivity and of cholesterol transport genes in the liver to suppress hyperlipidemia. The dual mechanisms of increased mitochondrial respiration and enterohepatic bile acid recirculation due to improvement of endoplasmic reticulum-mitochondria calcium homeostasis with hepatic HAX-1 inactivation suggest that this may be a potential therapeutic target for metabolic disease intervention.


Assuntos
Ácidos e Sais Biliares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Animais , Glicemia/análise , Cálcio/metabolismo , Dieta Ocidental , Retículo Endoplasmático/metabolismo , Teste de Tolerância a Glucose , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cetona Oxirredutases/metabolismo , Peroxidação de Lipídeos , Lipogênese , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos/sangue
11.
PLoS Biol ; 16(4): e2002907, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29659562

RESUMO

A constellation of metabolic disorders, including obesity, dysregulated lipids, and elevations in blood glucose levels, has been associated with cardiovascular disease and diabetes. Analysis of data from recently published genome-wide association studies (GWAS) demonstrated that reduced-function polymorphisms in the organic cation transporter, OCT1 (SLC22A1), are significantly associated with higher total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride (TG) levels and an increased risk for type 2 diabetes mellitus, yet the mechanism linking OCT1 to these metabolic traits remains puzzling. Here, we show that OCT1, widely characterized as a drug transporter, plays a key role in modulating hepatic glucose and lipid metabolism, potentially by mediating thiamine (vitamin B1) uptake and hence its levels in the liver. Deletion of Oct1 in mice resulted in reduced activity of thiamine-dependent enzymes, including pyruvate dehydrogenase (PDH), which disrupted the hepatic glucose-fatty acid cycle and shifted the source of energy production from glucose to fatty acids, leading to a reduction in glucose utilization, increased gluconeogenesis, and altered lipid metabolism. In turn, these effects resulted in increased total body adiposity and systemic levels of glucose and lipids. Importantly, wild-type mice on thiamine deficient diets (TDs) exhibited impaired glucose metabolism that phenocopied Oct1 deficient mice. Collectively, our study reveals a critical role of hepatic thiamine deficiency through OCT1 deficiency in promoting the metabolic inflexibility that leads to the pathogenesis of cardiometabolic disease.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Longevidade/genética , Obesidade/genética , Fator 1 de Transcrição de Octâmero/genética , Deficiência de Tiamina/genética , Tiamina/metabolismo , Animais , Glicemia/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Gluconeogênese/genética , Humanos , Cetona Oxirredutases/genética , Cetona Oxirredutases/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Fator 1 de Transcrição de Octâmero/deficiência , Transdução de Sinais , Deficiência de Tiamina/metabolismo , Deficiência de Tiamina/patologia , Triglicerídeos/sangue
12.
Proc Natl Acad Sci U S A ; 115(30): E7063-E7072, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29987032

RESUMO

The lack of attachment of lipoic acid to its cognate enzyme proteins results in devastating human metabolic disorders. These mitochondrial disorders are evident soon after birth and generally result in early death. The mutations causing specific defects in lipoyl assembly map in three genes, LIAS, LIPT1, and LIPT2 Although physiological roles have been proposed for the encoded proteins, only the LIPT1 protein had been studied at the enzyme level. LIPT1 was reported to catalyze only the second partial reaction of the classical lipoate ligase mechanism. We report that the physiologically relevant LIPT1 enzyme activity is transfer of lipoyl moieties from the H protein of the glycine cleavage system to the E2 subunits of the 2-oxoacid dehydrogenases required for respiration (e.g., pyruvate dehydrogenase) and amino acid degradation. We also report that LIPT2 encodes an octanoyl transferase that initiates lipoyl group assembly. The human pathway is now biochemically defined.


Assuntos
Aciltransferases/metabolismo , Ácido Tióctico/metabolismo , Aciltransferases/genética , Biocatálise , Humanos , Cetona Oxirredutases/metabolismo , Ácido Tióctico/genética
13.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360775

RESUMO

Coupling glycolysis and mitochondrial tricarboxylic acid cycle, pyruvate dehydrogenase (PDH) complex (PDHC) is highly responsive to cellular demands through multiple mechanisms, including PDH phosphorylation. PDHC also produces acetyl-CoA for protein acetylation involved in circadian regulation of metabolism. Thiamine (vitamin B1) diphosphate (ThDP) is known to activate PDH as both coenzyme and inhibitor of the PDH inactivating kinases. Molecular mechanisms integrating the function of thiamine-dependent PDHC into general redox metabolism, underlie physiological fitness of a cell or an organism. Here, we characterize the daytime- and thiamine-dependent changes in the rat brain PDHC function, expression and phosphorylation, assessing their impact on protein acetylation and metabolic regulation. Morning administration of thiamine significantly downregulates both the PDH phosphorylation at Ser293 and SIRT3 protein level, the effects not observed upon the evening administration. This action of thiamine nullifies the daytime-dependent changes in the brain PDHC activity and mitochondrial acetylation, inducing diurnal difference in the cytosolic acetylation and acetylation of total brain proteins. Screening the daytime dependence of central metabolic enzymes and proteins of thiol/disulfide metabolism reveals that thiamine also cancels daily changes in the malate dehydrogenase activity, opposite to those of the PDHC activity. Correlation analysis indicates that thiamine abrogates the strong positive correlation between the total acetylation of the brain proteins and PDHC function. Simultaneously, thiamine heightens interplay between the expression of PDHC components and total acetylation or SIRT2 protein level. These thiamine effects on the brain acetylation system change metabolic impact of acetylation. The changes are exemplified by the thiamine enhancement of the SIRT2 correlations with metabolic enzymes and proteins of thiol-disulfide metabolism. Thus, we show the daytime- and thiamine-dependent changes in the function and phosphorylation of brain PDHC, contributing to regulation of the brain acetylation system and redox metabolism. The daytime-dependent action of thiamine on PDHC and SIRT3 may be of therapeutic significance in correcting perturbed diurnal regulation.


Assuntos
Encéfalo/metabolismo , Cetona Oxirredutases/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sirtuínas/metabolismo , Tiamina/farmacologia , Acetilação/efeitos dos fármacos , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Fatores de Tempo
14.
J Biol Chem ; 294(13): 5137-5145, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696768

RESUMO

NADPH: 2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) is a bacterial disulfide oxidoreductase (DSOR) that, uniquely in this family, catalyzes CO2 fixation. 2-KPCC differs from other DSORs by having a phenylalanine that replaces a conserved histidine, which in typical DSORs is essential for stabilizing the reduced, reactive form of the active site. Here, using site-directed mutagenesis and stopped-flow kinetics, we examined the reactive form of 2-KPCC and its single turnover reactions with a suicide substrate and CO2 The reductive half-reaction of 2-KPCC was kinetically and spectroscopically similar to that of a typical DSOR, GSH reductase, in which the active-site histidine had been replaced with an alanine. However, the reduced, reactive form of 2-KPCC was distinct from those typical DSORs. In the absence of the histidine, the flavin and disulfide moieties were no longer coupled via a covalent or charge transfer interaction as in typical DSORs. Similar to thioredoxins, the pKa between 7.5 and 8.1 that controls reactivity appeared to be due to a single proton shared between the cysteines of the dithiol, which effectively stabilizes the attacking cysteine sulfide and renders it capable of breaking the strong C-S bond of the substrate. The lack of a histidine protected 2-KPCC's reactive intermediate from unwanted protonation; however, without its input as a catalytic acid-base, the oxidative half-reaction where carboxylation takes place was remarkably slow, limiting the overall reaction rate. We conclude that stringent regulation of protons in the DSOR active site supports C-S bond cleavage and selectivity for CO2 fixation.


Assuntos
Dióxido de Carbono/metabolismo , Cetona Oxirredutases/metabolismo , Xanthobacter/enzimologia , Domínio Catalítico , Cetona Oxirredutases/química , Cinética , Modelos Moleculares , NADP/metabolismo , Oxirredução , Especificidade por Substrato , Xanthobacter/química , Xanthobacter/metabolismo
15.
Cytotherapy ; 22(2): 106-113, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31983606

RESUMO

Rhynchophylline (Rhy) effectively obstructs the expansive signaling pathways of degenerative diseases, including Alzheimer disease, Parkinson disease, epilepsy and amyotrophic lateral sclerosis, and stimulates neurogenesis. Maintenance of stemness and cell proliferation requires sophisticated intracellular environments to achieve pluripotency via specific expression of genes and proteins. We examined whether Rhy promotes this regulation in bone marrow human mesenchymal stromal cells (BM-hMSCs). Results revealed (i) Rhy modulated biological activity by regulating the mitochondria, N-methyl-D-aspartate receptor subunit, and levels of FGFß (basic fibroblast growth factor), BDNF (brain-derived neurotrophic factor), OXTR (oxytocin receptor) and ATP (Adenosine triphosphate); (ii) Rhy altered expression level of BM-MSC proliferation/differentiation-related transcription genes; and (iii) interestingly, Rhy amplified the glycolytic flow ratio and lactate dehydrogenase activity while reducing pyruvate dehydrogenase activity, indicating a BM-hMSC metabolic shift of mitochondrial oxidative phosphorylation into aerobic glycolysis. Altogether, we demonstrated a novel mechanism of action for Rhy-induced BM-hMSC modification, which can enhance the cell transplantation approach by amplifying the metabolic activity of stem cells.


Assuntos
Glicólise/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Oxindóis/farmacologia , Trifosfato de Adenosina/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Cetona Oxirredutases/metabolismo , L-Lactato Desidrogenase/metabolismo , Fosforilação Oxidativa , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Ocitocina/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
FASEB J ; 33(7): 8094-8109, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30939245

RESUMO

Skeletal muscle satellite cells (SMSCs), the major stem cells responsible for the regeneration of skeletal muscle, are normally cell cycle arrested but differentiate to generate myocytes upon muscle damage, forming new myofibers along with self-renewing stem cells in preparation for subsequent injury. In this study, we investigated which factors stimulate the proliferation and differentiation of SMSCs and found that pyruvate, the end product of glycolysis, stimulates their differentiation. Pyruvate antagonizes the effects of hypoxia on preferential self-renewal of SMSCs through dephosphorylation or activation of pyruvate dehydrogenase (PDH), which mediates opening of the gateway from glycolysis to the tricarboxylic acid (TCA) cycle by producing acetyl coenzyme A from pyruvate. PDH kinase 1, highly expressed under hypoxia, is down-regulated under normoxic conditions, leading to an increase in dephosphorylated PDH. Conditional deletion of PDH in SMSCs affects cell divisions generating myocytes and subsequent myotube formation, inefficient skeletal muscle regeneration upon injury, and aggravated pathogenesis of a dystrophin-deficient mouse model of Duchenne muscular dystrophy. Thus, the flow from glycolysis to the TCA cycle mediated by PDH plays a pivotal role in the differentiation of SMSCs, which is critical for the progression of skeletal muscle regeneration.-Hori, S., Hiramuki, Y., Nishimura, D., Sato, F., Sehara-Fujisawa, A. PDH-mediated metabolic flow is critical for skeletal muscle stem cell differentiation and myotube formation during regeneration in mice.


Assuntos
Diferenciação Celular , Cetona Oxirredutases/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Regeneração , Células Satélites de Músculo Esquelético/enzimologia , Animais , Linhagem Celular , Ciclo do Ácido Cítrico , Deleção de Genes , Glicólise , Cetona Oxirredutases/genética , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/citologia , Células Satélites de Músculo Esquelético/citologia
17.
Pituitary ; 23(3): 223-231, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31997055

RESUMO

PURPOSE: The aim of this work was to investigate possible direct effects of the somatostatin analog octreotide on autophagy markers and markers of cellular metabolic activity using in vitro cultured rat pituitary tumor cells (GH3 cell line). METHODS: We measured two markers of the autophagic flux in cell lysates by Western blot and MTT reductive activity, total cellular ATP levels, pyruvate dehydrogenase (PDH) complex activity in cells lysates as markers of cell viability related to metabolic activity. RESULTS: Octreotide (100 nM) treatment induced autophagy activation (increased LC3-I protein lipidation) and enhanced the autophagic flux (SQSTM1/p62 protein downregulation) in GH3 cells in different incubation media, in detail in Hank's balanced salt solution (HBSS) as well as in maintenance medium with serum. We did not observe any decrease of redox activity and energy production related to the induction of autophagy by octreotide. On the other hand, short-term treatments with octreotide in HBSS tended to enhance MTT reduction activity and to increase PDH complex enzymatic activity and ATP levels measured in GH3 cell lysates. CONCLUSIONS: We provided evidence that octreotide can affect autophagy in pituitary tumor cells. The observed effects of octreotide were not related to a decrease of cellular metabolic activity. Finally, the induction of autophagy was either short-lived or overshadowed by other factors in the long term and this limit does not help clarifying their real impact on the pharmacological activity of somatostatin analogs.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Octreotida/farmacologia , Neoplasias Hipofisárias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Autofagia/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Cetona Oxirredutases/metabolismo , Ratos
18.
Cryobiology ; 92: 76-85, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31758919

RESUMO

Melatonin has the ability to improve plant growth and strengthened plant tolerance to environmental stresses; however, the effects of melatonin on mitochondrial respiration in plants and the underlying biochemical and molecular mechanisms are still unclear. The objective of the study is to determine possible effects of melatonin on mitochondrial respiration and energy efficiency in maize leaves grown under optimum temperature and cold stress and to reveal the relationship between melatonin-induced possible alterations in mitochondrial respiration and cold tolerance. Melatonin and cold stress, alone and in combination, caused significant increases in activities and gene expressions of pyruvate dehydrogenase, citrate synthase, and malate dehydrogenase, indicating an acceleration in the rate of tricarboxylic acid cycle. Total mitochondrial respiration rate, cytochrome pathway rate, and alternative respiration rate were increased by the application of melatonin and/or cold stress. Similarly, gene expression and protein levels of cytochrome oxidase and alternative oxidase were also enhanced by melatonin and/or cold stress. The highest values for all these parameters were obtained from the seedlings treated with the combined application of melatonin and cold stress. The activity and gene expression of ATP synthase and ATP concentration were augmented by melatonin under control and cold stress. On the other hand, cold stress reduced markedly plant growth parameters, including root length, plant height, leaf surface area, and chlorophyll content and increased the content of reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide and oxidative damage, including malondialdehyde content and electrolyte leakage level; however, melatonin significantly promoted the plant growth parameters and reduced ROS content and oxidative damage under control and cold stress. These data revealed that melatonin-induced growth promotion and cold tolerance in maize is associated with its modulating effect on mitochondrial respiration.


Assuntos
Antioxidantes/farmacologia , Melatonina/farmacologia , Mitocôndrias/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Citrato (si)-Sintase/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Cetona Oxirredutases/metabolismo , Malato Desidrogenase/metabolismo , Malondialdeído/metabolismo , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oxirredução , Oxirredutases/metabolismo , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/crescimento & desenvolvimento
19.
J Biol Chem ; 293(45): 17402-17417, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30232153

RESUMO

In vertebrate cells, mitochondrial Ca2+ uptake by the mitochondrial calcium uniporter (MCU) leads to Ca2+-mediated stimulation of an intramitochondrial pyruvate dehydrogenase phosphatase (PDP). This enzyme dephosphorylates serine residues in the E1α subunit of pyruvate dehydrogenase (PDH), thereby activating PDH and resulting in increased ATP production. Although a phosphorylation/dephosphorylation cycle for the E1α subunit of PDH from nonvertebrate organisms has been described, the Ca2+-mediated PDP activation has not been studied. In this work, we investigated the Ca2+ sensitivity of two recombinant PDPs from the protozoan human parasites Trypanosoma cruzi (TcPDP) and T. brucei (TbPDP) and generated a TcPDP-KO cell line to establish TcPDP's role in cell bioenergetics and survival. Moreover, the mitochondrial localization of the TcPDP was studied by CRISPR/Cas9-mediated endogenous tagging. Our results indicate that TcPDP and TbPDP both are Ca2+-sensitive phosphatases. Of note, TcPDP-KO epimastigotes exhibited increased levels of phosphorylated TcPDH, slower growth and lower oxygen consumption rates than control cells, an increased AMP/ATP ratio and autophagy under starvation conditions, and reduced differentiation into infective metacyclic forms. Furthermore, TcPDP-KO trypomastigotes were impaired in infecting cultured host cells. We conclude that TcPDP is a Ca2+-stimulated mitochondrial phosphatase that dephosphorylates TcPDH and is required for normal growth, differentiation, infectivity, and energy metabolism in T. cruzi Our results support the view that one of the main roles of the MCU is linked to the regulation of intramitochondrial dehydrogenases.


Assuntos
Doença de Chagas/enzimologia , Metabolismo Energético , Cetona Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Linhagem Celular , Doença de Chagas/genética , Doença de Chagas/patologia , Técnicas de Silenciamento de Genes , Humanos , Cetona Oxirredutases/genética , Fosforilação/genética , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética
20.
J Biol Chem ; 293(18): 6925-6941, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29540484

RESUMO

Cardiac energy demands during early embryonic periods are sufficiently met through glycolysis, but as development proceeds, the oxidative phosphorylation in mitochondria becomes increasingly vital. Adrenergic hormones are known to stimulate metabolism in adult mammals and are essential for embryonic development, but relatively little is known about their effects on metabolism in the embryonic heart. Here, we show that embryos lacking adrenergic stimulation have ∼10-fold less cardiac ATP compared with littermate controls. Despite this deficit in steady-state ATP, neither the rates of ATP formation nor degradation was affected in adrenergic hormone-deficient hearts, suggesting that ATP synthesis and hydrolysis mechanisms were fully operational. We thus hypothesized that adrenergic hormones stimulate metabolism of glucose to provide chemical substrates for oxidation in mitochondria. To test this hypothesis, we employed a metabolomics-based approach using LC/MS. Our results showed glucose 1-phosphate and glucose 6-phosphate concentrations were not significantly altered, but several downstream metabolites in both glycolytic and pentose-phosphate pathways were significantly lower compared with controls. Furthermore, we identified glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase as key enzymes in those respective metabolic pathways whose activity was significantly (p < 0.05) and substantially (80 and 40%, respectively) lower in adrenergic hormone-deficient hearts. Addition of pyruvate and to a lesser extent ribose led to significant recovery of steady-state ATP concentrations. These results demonstrate that without adrenergic stimulation, glucose metabolism in the embryonic heart is severely impaired in multiple pathways, ultimately leading to insufficient metabolic substrate availability for successful transition to aerobic respiration needed for survival.


Assuntos
Coração/embriologia , Metabolômica , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Via de Pentose Fosfato , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Animais , Epinefrina/metabolismo , Feminino , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glucofosfatos/metabolismo , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Glicólise , Hidrólise , Cetona Oxirredutases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Fosforilação , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA