Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.514
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 93(1): 211-231, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38603556

RESUMO

Almost all outer membrane proteins (OMPs) in Gram-negative bacteria contain a ß-barrel domain that spans the outer membrane (OM). To reach the OM, OMPs must be translocated across the inner membrane by the Sec machinery, transported across the crowded periplasmic space through the assistance of molecular chaperones, and finally assembled (folded and inserted into the OM) by the ß-barrel assembly machine. In this review, we discuss how considerable new insights into the contributions of these factors to OMP biogenesis have emerged in recent years through the development of novel experimental, computational, and predictive methods. In addition, we describe recent evidence that molecular machines that were thought to function independently might interact to form dynamic intermembrane supercomplexes. Finally, we discuss new results that suggest that OMPs are inserted primarily near the middle of the cell and packed into supramolecular structures (OMP islands) that are distributed throughout the OM.


Assuntos
Proteínas da Membrana Bacteriana Externa , Chaperonas Moleculares , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Transporte Proteico , Dobramento de Proteína , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/genética , Membrana Externa Bacteriana/metabolismo , Modelos Moleculares , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/genética , Canais de Translocação SEC/química , Periplasma/metabolismo
2.
Cell ; 185(1): 158-168.e11, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995514

RESUMO

Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the ΔF508 mutant and are widely used to treat patients. To investigate the molecular mechanism of their action, we determined cryo-electron microscopy structures of CFTR in complex with the FDA-approved correctors lumacaftor or tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermodynamically unstable. Mutating residues at the binding site rendered ΔF508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its premature degradation, and thereby allosterically rescuing many disease-causing mutations.


Assuntos
Aminopiridinas/metabolismo , Benzodioxóis/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Indóis/metabolismo , Dobramento de Proteína , Aminopiridinas/química , Aminopiridinas/uso terapêutico , Animais , Benzodioxóis/química , Benzodioxóis/uso terapêutico , Sítios de Ligação , Células CHO , Membrana Celular/química , Membrana Celular/metabolismo , Cricetulus , Microscopia Crioeletrônica , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indóis/química , Indóis/uso terapêutico , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/uso terapêutico , Mutação , Domínios Proteicos/genética , Células Sf9 , Transfecção
3.
Annu Rev Biochem ; 90: 581-603, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33823650

RESUMO

SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE-SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease.


Assuntos
Proteínas SNARE/química , Proteínas SNARE/metabolismo , Doença/genética , Humanos , Fusão de Membrana , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Mutação , Pinças Ópticas , Fosforilação , Domínios Proteicos , Dobramento de Proteína , Proteínas SNARE/genética
4.
Annu Rev Biochem ; 89: 443-470, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569525

RESUMO

Manipulation of individual molecules with optical tweezers provides a powerful means of interrogating the structure and folding of proteins. Mechanical force is not only a relevant quantity in cellular protein folding and function, but also a convenient parameter for biophysical folding studies. Optical tweezers offer precise control in the force range relevant for protein folding and unfolding, from which single-molecule kinetic and thermodynamic information about these processes can be extracted. In this review, we describe both physical principles and practical aspects of optical tweezers measurements and discuss recent advances in the use of this technique for the study of protein folding. In particular, we describe the characterization of folding energy landscapes at high resolution, studies of structurally complex multidomain proteins, folding in the presence of chaperones, and the ability to investigate real-time cotranslational folding of a polypeptide.


Assuntos
Escherichia coli/genética , Chaperonas Moleculares/genética , Pinças Ópticas , Biossíntese de Proteínas , Proteoma/química , Ribossomos/genética , Escherichia coli/metabolismo , Humanos , Cinética , Microscopia de Força Atômica , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteoma/biossíntese , Proteoma/genética , Proteostase/genética , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Termodinâmica
5.
Annu Rev Biochem ; 89: 389-415, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569518

RESUMO

Folding of polypeptides begins during their synthesis on ribosomes. This process has evolved as a means for the cell to maintain proteostasis, by mitigating the risk of protein misfolding and aggregation. The capacity to now depict this cellular feat at increasingly higher resolution is providing insight into the mechanistic determinants that promote successful folding. Emerging from these studies is the intimate interplay between protein translation and folding, and within this the ribosome particle is the key player. Its unique structural properties provide a specialized scaffold against which nascent polypeptides can begin to form structure in a highly coordinated, co-translational manner. Here, we examine how, as a macromolecular machine, the ribosome modulates the intrinsic dynamic properties of emerging nascent polypeptide chains and guides them toward their biologically active structures.


Assuntos
Escherichia coli/genética , Chaperonas Moleculares/genética , Biossíntese de Proteínas , Proteoma/química , Ribossomos/genética , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteoma/biossíntese , Proteoma/genética , Proteostase/genética , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Ribossomos/metabolismo , Ribossomos/ultraestrutura
6.
Annu Rev Biochem ; 89: 471-499, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31935115

RESUMO

Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone-mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein-mediated maturation of mitochondrial Fe/S proteins and the importance for human disease.


Assuntos
Ataxia de Friedreich/genética , Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Regulação da Expressão Gênica , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Frataxina
7.
Cell ; 177(3): 751-765.e15, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30955883

RESUMO

Maintaining proteostasis in eukaryotic protein folding involves cooperation of distinct chaperone systems. To understand how the essential ring-shaped chaperonin TRiC/CCT cooperates with the chaperone prefoldin/GIMc (PFD), we integrate cryoelectron microscopy (cryo-EM), crosslinking-mass-spectrometry and biochemical and cellular approaches to elucidate the structural and functional interplay between TRiC/CCT and PFD. We find these hetero-oligomeric chaperones associate in a defined architecture, through a conserved interface of electrostatic contacts that serves as a pivot point for a TRiC-PFD conformational cycle. PFD alternates between an open "latched" conformation and a closed "engaged" conformation that aligns the PFD-TRiC substrate binding chambers. PFD can act after TRiC bound its substrates to enhance the rate and yield of the folding reaction, suppressing non-productive reaction cycles. Disrupting the TRiC-PFD interaction in vivo is strongly deleterious, leading to accumulation of amyloid aggregates. The supra-chaperone assembly formed by PFD and TRiC is essential to prevent toxic conformations and ensure effective cellular proteostasis.


Assuntos
Chaperonina com TCP-1/metabolismo , Chaperonas Moleculares/metabolismo , Proteostase/fisiologia , Actinas/química , Actinas/metabolismo , Chaperonina com TCP-1/química , Chaperonina com TCP-1/genética , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dobramento de Proteína , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Eletricidade Estática
8.
Cell ; 173(3): 706-719.e13, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677514

RESUMO

Cytoplasmic FUS aggregates are a pathological hallmark in a subset of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). A key step that is disrupted in these patients is nuclear import of FUS mediated by the import receptor Transportin/Karyopherin-ß2. In ALS-FUS patients, this is caused by mutations in the nuclear localization signal (NLS) of FUS that weaken Transportin binding. In FTD-FUS patients, Transportin is aggregated, and post-translational arginine methylation, which regulates the FUS-Transportin interaction, is lost. Here, we show that Transportin and arginine methylation have a crucial function beyond nuclear import-namely to suppress RGG/RG-driven phase separation and stress granule association of FUS. ALS-associated FUS-NLS mutations weaken the chaperone activity of Transportin and loss of FUS arginine methylation, as seen in FTD-FUS, promote phase separation, and stress granule partitioning of FUS. Our findings reveal two regulatory mechanisms of liquid-phase homeostasis that are disrupted in FUS-associated neurodegeneration.


Assuntos
Arginina/química , Proteína FUS de Ligação a RNA/química , beta Carioferinas/química , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Citoplasma/metabolismo , Metilação de DNA , DNA Complementar/metabolismo , Densitometria , Degeneração Lobar Frontotemporal/metabolismo , Células HeLa , Homeostase , Humanos , Carioferinas/química , Espectroscopia de Ressonância Magnética , Metilação , Chaperonas Moleculares/química , Mutação , Doenças Neurodegenerativas/metabolismo , Ligação Proteica , Domínios Proteicos
9.
Cell ; 173(3): 677-692.e20, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677512

RESUMO

RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-ß2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-ß1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-ß2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-ß2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.


Assuntos
Transporte Ativo do Núcleo Celular , Príons/química , Proteínas de Ligação a RNA/química , Receptores Citoplasmáticos e Nucleares/química , Adulto , Idoso , Animais , Citoplasma/química , Proteínas de Ligação a DNA/química , Drosophila melanogaster , Feminino , Proteínas de Fluorescência Verde/química , Células HEK293 , Células HeLa , Homeostase , Humanos , Carioferinas/química , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/química , Mutação , Doenças Neurodegenerativas/patologia , Domínios Proteicos , Proteína EWS de Ligação a RNA/química , Fatores Associados à Proteína de Ligação a TATA/química , beta Carioferinas/química
10.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677515

RESUMO

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Assuntos
Arginina/química , Chaperonas Moleculares/química , Proteína FUS de Ligação a RNA/química , Esclerose Lateral Amiotrófica/metabolismo , Animais , Cátions , Metilação de DNA , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteína FUS de Ligação a RNA/metabolismo , Tirosina/química , Xenopus laevis
11.
Cell ; 174(4): 818-830.e11, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30057113

RESUMO

Rtt109 is a unique histone acetyltransferase acetylating histone H3 lysine 56 (H3K56), a modification critical for DNA replication-coupled nucleosome assembly and genome stability. In cells, histone chaperone Asf1 is essential for H3K56 acetylation, yet the mechanisms for H3K56 specificity and Asf1 requirement remain unknown. We have determined the crystal structure of the Rtt109-Asf1-H3-H4 complex and found that unwinding of histone H3 αN, where K56 is normally located, and stabilization of the very C-terminal ß strand of histone H4 by Asf1 are prerequisites for H3K56 acetylation. Unexpectedly, an interaction between Rtt109 and the central helix of histone H3 is also required. The observed multiprotein, multisite substrate recognition mechanism among histone modification enzymes provides mechanistic understandings of Rtt109 and Asf1 in H3K56 acetylation, as well as valuable insights into substrate recognition by histone modification enzymes in general.


Assuntos
Aspergillus fumigatus/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/química , Lisina/metabolismo , Chaperonas Moleculares/metabolismo , Acetilação , Sequência de Aminoácidos , Histona Acetiltransferases/química , Histonas/metabolismo , Lisina/química , Chaperonas Moleculares/química , Conformação Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência , Especificidade por Substrato
13.
Mol Cell ; 84(14): 2601-2617.e12, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38925115

RESUMO

The evolutionarily conserved HIRA/Hir histone chaperone complex and ASF1a/Asf1 co-chaperone cooperate to deposit histone (H3/H4)2 tetramers on DNA for replication-independent chromatin assembly. The molecular architecture of the HIRA/Hir complex and its mode of histone deposition have remained unknown. Here, we report the cryo-EM structure of the S. cerevisiae Hir complex with Asf1/H3/H4 at 2.9-6.8 Å resolution. We find that the Hir complex forms an arc-shaped dimer with a Hir1/Hir2/Hir3/Hpc2 stoichiometry of 2/4/2/4. The core of the complex containing two Hir1/Hir2/Hir2 trimers and N-terminal segments of Hir3 forms a central cavity containing two copies of Hpc2, with one engaged by Asf1/H3/H4, in a suitable position to accommodate a histone (H3/H4)2 tetramer, while the C-terminal segments of Hir3 harbor nucleic acid binding activity to wrap DNA around the Hpc2-assisted histone tetramer. The structure suggests a model for how the Hir/Asf1 complex promotes the formation of histone tetramers for their subsequent deposition onto DNA.


Assuntos
Proteínas de Ciclo Celular , Microscopia Crioeletrônica , Chaperonas de Histonas , Histonas , Ligação Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Histonas/química , Histonas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Multimerização Proteica , Sítios de Ligação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Domínios e Motivos de Interação entre Proteínas
14.
Nature ; 633(8030): 718-724, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39169182

RESUMO

Approximately 40% of the mammalian proteome undergoes N-terminal methionine excision and acetylation, mediated sequentially by methionine aminopeptidase (MetAP) and N-acetyltransferase A (NatA), respectively1. Both modifications are strictly cotranslational and essential in higher eukaryotic organisms1. The interaction, activity and regulation of these enzymes on translating ribosomes are poorly understood. Here we perform biochemical, structural and in vivo studies to demonstrate that the nascent polypeptide-associated complex2,3 (NAC) orchestrates the action of these enzymes. NAC assembles a multienzyme complex with MetAP1 and NatA early during translation and pre-positions the active sites of both enzymes for timely sequential processing of the nascent protein. NAC further releases the inhibitory interactions from the NatA regulatory protein huntingtin yeast two-hybrid protein K4,5 (HYPK) to activate NatA on the ribosome, enforcing cotranslational N-terminal acetylation. Our results provide a mechanistic model for the cotranslational processing of proteins in eukaryotic cells.


Assuntos
Metionina , Chaperonas Moleculares , Complexos Multienzimáticos , Processamento de Proteína Pós-Traducional , Ribossomos , Animais , Humanos , Acetilação , Domínio Catalítico , Metionil Aminopeptidases/química , Metionil Aminopeptidases/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/química , Acetiltransferase N-Terminal A/química , Acetiltransferase N-Terminal A/metabolismo , Ribossomos/química , Ribossomos/enzimologia , Ribossomos/metabolismo , Metionina/química , Metionina/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Caenorhabditis elegans
15.
Annu Rev Biochem ; 83: 697-725, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24635478

RESUMO

Superfamily 2 helicase proteins are ubiquitous in RNA biology and have an extraordinarily broad set of functional roles. Central among these roles are the promotion of rearrangements of structured RNAs and the remodeling of ribonucleoprotein complexes (RNPs), allowing formation of native RNA structure or progression through a functional cycle of structures. Although all superfamily 2 helicases share a conserved helicase core, they are divided evolutionarily into several families, and it is principally proteins from three families, the DEAD-box, DEAH/RHA, and Ski2-like families, that function to manipulate structured RNAs and RNPs. Strikingly, there are emerging differences in the mechanisms of these proteins, both between families and within the largest family (DEAD-box), and these differences appear to be tuned to their RNA or RNP substrates and their specific roles. This review outlines basic mechanistic features of the three families and surveys individual proteins and the current understanding of their biological substrates and mechanisms.


Assuntos
Quadruplex G , Chaperonas Moleculares/química , RNA Helicases/química , Spliceossomos/química , Processamento Alternativo , Catálise , DNA Helicases/química , Escherichia coli/metabolismo , Humanos , Íntrons , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA/química , Splicing de RNA , Ribonucleoproteínas Nucleares Pequenas/química , Ribossomos/química , Saccharomyces cerevisiae/metabolismo
16.
Nat Rev Mol Cell Biol ; 18(6): 345-360, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28429788

RESUMO

The heat shock protein 90 (HSP90) chaperone machinery is a key regulator of proteostasis under both physiological and stress conditions in eukaryotic cells. As HSP90 has several hundred protein substrates (or 'clients'), it is involved in many cellular processes beyond protein folding, which include DNA repair, development, the immune response and neurodegenerative disease. A large number of co-chaperones interact with HSP90 and regulate the ATPase-associated conformational changes of the HSP90 dimer that occur during the processing of clients. Recent progress has allowed the interactions of clients with HSP90 and its co-chaperones to be defined. Owing to the importance of HSP90 in the regulation of many cellular proteins, it has become a promising drug target for the treatment of several diseases, which include cancer and diseases associated with protein misfolding.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína
17.
Mol Cell ; 81(17): 3496-3508.e5, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34380015

RESUMO

The Hsp90 chaperone promotes folding and activation of hundreds of client proteins in the cell through an ATP-dependent conformational cycle guided by distinct cochaperone regulators. The FKBP51 immunophilin binds Hsp90 with its tetratricopeptide repeat (TPR) domain and catalyzes peptidyl-prolyl isomerase (PPIase) activity during folding of kinases, nuclear receptors, and tau. Here we determined the cryoelectron microscopy (cryo-EM) structure of the human Hsp90:FKBP51:p23 complex to 3.3 Å, which, together with mutagenesis and crosslinking analyses, reveals the basis for cochaperone binding to Hsp90 during client maturation. A helix extension in the TPR functions as a key recognition element, interacting across the Hsp90 C-terminal dimer interface presented in the closed, ATP conformation. The PPIase domain is positioned along the middle domain, adjacent to Hsp90 client binding sites, whereas a single p23 makes stabilizing interactions with the N-terminal dimer. With this architecture, FKBP51 is positioned to act on specific client residues presented during Hsp90-catalyzed remodeling.


Assuntos
Proteínas de Choque Térmico HSP90/química , Proteínas de Ligação a Tacrolimo/química , Sequência de Aminoácidos , Sítios de Ligação , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Microscopia Crioeletrônica/métodos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Conformação Molecular , Ligação Proteica , Proteínas de Ligação a Tacrolimo/metabolismo , Proteína Tumoral 1 Controlada por Tradução
18.
Annu Rev Biochem ; 82: 323-55, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23746257

RESUMO

The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.


Assuntos
Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteínas/metabolismo , Proteoma/metabolismo , Deficiências na Proteostase/fisiopatologia , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiologia , Proteínas/química
19.
Trends Biochem Sci ; 49(9): 752-753, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906726

RESUMO

A recent study by Amankwah et al. reports how co-chaperone proteins and ATP hydrolysis fine-tune the function of endoplasmic reticulum (ER)-resident Hsp90 paralog Grp94.


Assuntos
Chaperonas Moleculares , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Retículo Endoplasmático/metabolismo , Animais , Trifosfato de Adenosina/metabolismo
20.
Cell ; 153(3): 628-39, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622246

RESUMO

ClpX, a AAA+ ring homohexamer, uses the energy of ATP binding and hydrolysis to power conformational changes that unfold and translocate target proteins into the ClpP peptidase for degradation. In multiple crystal structures, some ClpX subunits adopt nucleotide-loadable conformations, others adopt unloadable conformations, and each conformational class exhibits substantial variability. Using mutagenesis of individual subunits in covalently tethered hexamers together with fluorescence methods to assay the conformations and nucleotide-binding properties of these subunits, we demonstrate that dynamic interconversion between loadable and unloadable conformations is required to couple ATP hydrolysis by ClpX to mechanical work. ATP binding to different classes of subunits initially drives staged allosteric changes, which set the conformation of the ring to allow hydrolysis and linked mechanical steps. Subunit switching between loadable and unloadable conformations subsequently isomerizes or resets the configuration of the nucleotide-loaded ring and is required for mechanical function.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Endopeptidase Clp/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Chaperonas Moleculares/química , Nucleotídeos/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Conformação Proteica , Dobramento de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA