Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7926): 335-340, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853476

RESUMO

Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria1-3. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens1,4,5. However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.


Assuntos
Acinetobacter baumannii , Microscopia Crioeletrônica , Fímbrias Bacterianas , Chaperonas Moleculares , Acinetobacter baumannii/citologia , Acinetobacter baumannii/ultraestrutura , Elasticidade , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/ultraestrutura , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura
2.
Nature ; 601(7893): 465-469, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937936

RESUMO

Hsp90 is a conserved and essential molecular chaperone responsible for the folding and activation of hundreds of 'client' proteins1-3. The glucocorticoid receptor (GR) is a model client that constantly depends on Hsp90 for activity4-9. GR ligand binding was previously shown to nr inhibited by Hsp70 and restored by Hsp90, aided by the co-chaperone p2310. However, a molecular understanding of the chaperone-mediated remodelling that occurs between the inactive Hsp70-Hsp90 'client-loading complex' and an activated Hsp90-p23 'client-maturation complex' is lacking for any client, including GR. Here we present a cryo-electron microscopy (cryo-EM) structure of the human GR-maturation complex (GR-Hsp90-p23), revealing that the GR ligand-binding domain is restored to a folded, ligand-bound conformation, while being simultaneously threaded through the Hsp90 lumen. In addition, p23 directly stabilizes native GR using a C-terminal helix, resulting in enhanced ligand binding. This structure of a client bound to Hsp90 in a native conformation contrasts sharply with the unfolded kinase-Hsp90 structure11. Thus, aided by direct co-chaperone-client interactions, Hsp90 can directly dictate client-specific folding outcomes. Together with the GR-loading complex structure12, we present the molecular mechanism of chaperone-mediated GR remodelling, establishing the first, to our knowledge, complete chaperone cycle for any Hsp90 client.


Assuntos
Microscopia Crioeletrônica , Proteínas de Choque Térmico HSP90 , Prostaglandina-E Sintases , Receptores de Glucocorticoides , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/ultraestrutura , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/ultraestrutura , Humanos , Ligantes , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura , Prostaglandina-E Sintases/química , Prostaglandina-E Sintases/metabolismo , Prostaglandina-E Sintases/ultraestrutura , Ligação Proteica , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/ultraestrutura
3.
Mol Cell ; 67(2): 322-333.e6, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28689658

RESUMO

The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly.


Assuntos
Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/ultraestrutura , Modelos Moleculares , Chaperonas Moleculares/ultraestrutura , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Proto-Oncogênicas/ultraestrutura , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura , Transfecção
4.
Proc Natl Acad Sci U S A ; 117(14): 7814-7823, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198203

RESUMO

Hsp70 is a conserved molecular chaperone that plays an indispensable role in regulating protein folding, translocation, and degradation. The conformational dynamics of Hsp70 and its regulation by cochaperones are vital to its function. Using bulk and single-molecule fluorescence resonance energy transfer (smFRET) techniques, we studied the interdomain conformational distribution of human stress-inducible Hsp70A1 and the kinetics of conformational changes induced by nucleotide and the Hsp40 cochaperone Hdj1. We found that the conformations between and within the nucleotide- and substrate-binding domains show heterogeneity. The conformational distribution in the ATP-bound state can be induced by Hdj1 to form an "ADP-like" undocked conformation, which is an ATPase-stimulated state. Kinetic measurements indicate that Hdj1 binds to monomeric Hsp70 as the first step, then induces undocking of the two domains and closing of the substrate-binding cleft. Dimeric Hdj1 then facilitates dimerization of Hsp70 and formation of a heterotetrameric Hsp70-Hsp40 complex. Our results provide a kinetic view of the conformational cycle of Hsp70 and reveal the importance of the dynamic nature of Hsp70 for its function.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/ultraestrutura , Chaperonas Moleculares/ultraestrutura , Conformação Proteica , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Transferência Ressonante de Energia de Fluorescência , Heterogeneidade Genética , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP70/química , Humanos , Cinética , Modelos Moleculares , Chaperonas Moleculares/química , Ligação Proteica/genética , Domínios Proteicos/genética , Dobramento de Proteína , Multimerização Proteica/genética
5.
Proc Natl Acad Sci U S A ; 117(1): 381-387, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31848241

RESUMO

The vast majority of biological carbon dioxide fixation relies on the function of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most cases the enzyme exhibits a tendency to become inhibited by its substrate RuBP and other sugar phosphates. The inhibition is counteracted by diverse molecular chaperones known as Rubisco activases (Rcas). In some chemoautotrophic bacteria, the CbbQO-type Rca Q2O2 repairs inhibited active sites of hexameric form II Rubisco. The 2.2-Å crystal structure of the MoxR AAA+ protein CbbQ2 from Acidithiobacillus ferrooxidans reveals the helix 2 insert (H2I) that is critical for Rca function and forms the axial pore of the CbbQ hexamer. Negative-stain electron microscopy shows that the essential CbbO adaptor protein binds to the conserved, concave side of the CbbQ2 hexamer. Site-directed mutagenesis supports a model in which adenosine 5'-triphosphate (ATP)-powered movements of the H2I are transmitted to CbbO via the concave residue L85. The basal ATPase activity of Q2O2 Rca is repressed but strongly stimulated by inhibited Rubisco. The characterization of multiple variants where this repression is released indicates that binding of inhibited Rubisco to the C-terminal CbbO VWA domain initiates a signal toward the CbbQ active site that is propagated via elements that include the CbbQ α4-ß4 loop, pore loop 1, and the presensor 1-ß hairpin (PS1-ßH). Detailed mechanistic insights into the enzyme repair chaperones of the highly diverse CO2 fixation machinery of Proteobacteria will facilitate their successful implementation in synthetic biology ventures.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Acidithiobacillus/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Chaperonas Moleculares/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/ultraestrutura , Acidithiobacillus/genética , Acidithiobacillus/ultraestrutura , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Proteínas de Transporte/genética , Proteínas de Transporte/ultraestrutura , Domínio Catalítico/genética , Cristalografia por Raios X , Ativação Enzimática , Ensaios Enzimáticos , Microscopia Eletrônica , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/ultraestrutura , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estrutura Secundária de Proteína , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/ultraestrutura
6.
Nucleic Acids Res ; 48(3): 1531-1550, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31807785

RESUMO

FKBP53 is one of the seven multi-domain FK506-binding proteins present in Arabidopsis thaliana, and it is known to get targeted to the nucleus. It has a conserved PPIase domain at the C-terminus and a highly charged N-terminal stretch, which has been reported to bind to histone H3 and perform the function of a histone chaperone. To better understand the molecular details of this PPIase with histone chaperoning activity, we have solved the crystal structures of its terminal domains and functionally characterized them. The C-terminal domain showed strong PPIase activity, no role in histone chaperoning and revealed a monomeric five-beta palm-like fold that wrapped over a helix, typical of an FK506-binding domain. The N-terminal domain had a pentameric nucleoplasmin-fold; making this the first report of a plant nucleoplasmin structure. Further characterization revealed the N-terminal nucleoplasmin domain to interact with H2A/H2B and H3/H4 histone oligomers, individually, as well as simultaneously, suggesting two different binding sites for H2A/H2B and H3/H4. The pentameric domain assists nucleosome assembly and forms a discrete complex with pre-formed nucleosomes; wherein two pentamers bind to a nucleosome.


Assuntos
Proteínas de Arabidopsis/ultraestrutura , Histonas/genética , Chaperonas Moleculares/ultraestrutura , Nucleoplasminas/química , Proteínas de Ligação a Tacrolimo/ultraestrutura , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Montagem e Desmontagem da Cromatina/genética , Cristalografia por Raios X , Histonas/química , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Nucleoplasminas/genética , Nucleossomos/química , Nucleossomos/genética , Peptidilprolil Isomerase/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Dobramento de Proteína , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/genética
7.
Nature ; 526(7571): 140-143, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416747

RESUMO

Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block--although compositionally identical--engage in different local sets of interactions and conformations.


Assuntos
Microscopia Crioeletrônica , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Poro Nuclear/química , Poro Nuclear/ultraestrutura , Sítios de Ligação , Células HeLa , Humanos , Espectrometria de Massas , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica
8.
Proc Natl Acad Sci U S A ; 114(7): 1548-1553, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137839

RESUMO

The proteasome is assembled via the nine-subunit lid, nine-subunit base, and 28-subunit core particle (CP). Previous work has shown that the chaperones Rpn14, Nas6, Hsm3, and Nas2 each bind a specific ATPase subunit of the base and antagonize base-CP interaction. Here, we show that the Nas6 chaperone also obstructs base-lid association. Nas6 alternates between these two inhibitory modes according to the nucleotide state of the base. When ATP cannot be hydrolyzed, Nas6 interferes with base-lid, but not base-CP, association. In contrast, under conditions of ATP hydrolysis, Nas6 obstructs base-CP, but not base-lid, association. Modeling of Nas6 into cryoelectron microscopy structures of the proteasome suggests that Nas6 controls both base-lid affinity and base-CP affinity through steric hindrance; Nas6 clashes with the lid in the ATP-hydrolysis-blocked proteasome, but clashes instead with the CP in the ATP-hydrolysis-competent proteasome. Thus, Nas6 provides a dual mechanism to control assembly at both major interfaces of the proteasome.


Assuntos
Chaperonas Moleculares/metabolismo , Nucleotídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Hidrólise , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Nucleotídeos/química , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
9.
Small ; 15(20): e1805558, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30920729

RESUMO

Precisely organized enzyme complexes are often found in nature to support complex metabolic reactions in a highly efficient and specific manner. Scaffolding enzymes on artificial materials has thus gained attention as a promising biomimetic strategy to design biocatalytic systems with enhanced productivity. Herein, a versatile scaffolding platform that can immobilize enzymes on customizable nanofibers is reported. An ultrastable self-assembling filamentous protein, the gamma-prefoldin (γ-PFD), is genetically engineered to display an array of peptide tags, which can specifically and stably bind enzymes containing the counterpart domain through simple in vitro mixing. Successful immobilization of proteins along the filamentous template in tunable density is first verified using fluorescent proteins. Then, two different model enzymes, glucose oxidase and horseradish peroxidase, are used to demonstrate that scaffold attachment could enhance the intrinsic catalytic activity of the immobilized enzymes. Considering the previously reported ability of γ-PFD to bind and stabilize a broad range of proteins, the filament's interaction with the bound enzymes may have created a favorable microenvironment for catalysis. It is envisioned that the strategy described here may provide a generally applicable methodology for the scaffolded assembly of multienzymatic complexes for use in biocatalysis.


Assuntos
Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Chaperonas Moleculares/química , Biocatálise , Enzimas Imobilizadas/metabolismo , Fluorescência , Cinética , Chaperonas Moleculares/ultraestrutura
10.
PLoS Comput Biol ; 13(1): e1005299, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095400

RESUMO

Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms.


Assuntos
Evolução Molecular , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Modelos Químicos , Modelos Moleculares , Regulação Alostérica/genética , Aminoácidos , Sítios de Ligação , Simulação por Computador , Proteínas de Choque Térmico HSP70/ultraestrutura , Modelos Genéticos , Chaperonas Moleculares/genética , Chaperonas Moleculares/ultraestrutura , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Estrutura-Atividade
11.
Methods ; 116: 12-22, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28088364

RESUMO

Antibodies represent a highly successful class of molecules that bind a wide-range of targets in therapeutic-, diagnostic- and research-based applications. The antibody repertoire is composed of the building blocks required to develop an effective adaptive immune response against foreign insults. A number of species have developed novel genetic and structural mechanisms from which they derive these antibody repertoires, however, traditionally antibodies are isolated from human, and rodent sources. Due to their high-value therapeutic, diagnostic, biotechnological and research applications, much innovation has resulted in techniques and approaches to isolate novel antibodies. These approaches are bolstered by advances in our understanding of species immune repertoires, next generation sequencing capacity, combinatorial antibody discovery and high-throughput screening. Structural determination of antibodies and antibody-antigen complexes has proven to be pivotal to our current understanding of the immune repertoire for a range of species leading to advances in man-made libraries and fine tuning approaches to develop antibodies from immune-repertoires. Furthermore, the isolation of antibodies directed against antigens of importance in health, disease and developmental processes, has yielded a plethora of structural and functional insights. This review highlights the significant contribution of antibody-based crystallography to our understanding of adaptive immunity and its application to providing critical information on a range of human-health related indications.


Assuntos
Imunização Passiva/métodos , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Imunoglobulina G/ultraestrutura , Anticorpos de Cadeia Única/ultraestrutura , Imunidade Adaptativa , Animais , Antígenos/imunologia , Cristalografia por Raios X , Humanos , Fragmentos Fab das Imunoglobulinas/biossíntese , Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Modelos Moleculares , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/química , Especificidade da Espécie
12.
PLoS Pathog ; 10(8): e1004316, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25122114

RESUMO

Adhesive pili on the surface of pathogenic bacteria comprise polymerized pilin subunits and are essential for initiation of infections. Pili assembled by the chaperone-usher pathway (CUP) require periplasmic chaperones that assist subunit folding, maintain their stability, and escort them to the site of bioassembly. Until now, CUP chaperones have been classified into two families, FGS and FGL, based on the short and long length of the subunit-interacting loops between its F1 and G1 ß-strands, respectively. CfaA is the chaperone for assembly of colonization factor antigen I (CFA/I) pili of enterotoxigenic E. coli (ETEC), a cause of diarrhea in travelers and young children. Here, the crystal structure of CfaA along with sequence analyses reveals some unique structural and functional features, leading us to propose a separate family for CfaA and closely related chaperones. Phenotypic changes resulting from mutations in regions unique to this chaperone family provide insight into their function, consistent with involvement of these regions in interactions with cognate subunits and usher proteins during pilus assembly.


Assuntos
Escherichia coli Enterotoxigênica/patogenicidade , Escherichia coli Enterotoxigênica/ultraestrutura , Fímbrias Bacterianas/ultraestrutura , Chaperonas Moleculares/ultraestrutura , Escherichia coli Enterotoxigênica/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/ultraestrutura , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica
13.
PLoS Comput Biol ; 11(10): e1004444, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26512985

RESUMO

How chaperones interact with protein chains to assist in their folding is a central open question in biology. Obtaining atomistic insight is challenging in particular, given the transient nature of the chaperone-substrate complexes and the large system sizes. Recent single-molecule experiments have shown that the chaperone Trigger Factor (TF) not only binds unfolded protein chains, but can also guide protein chains to their native state by interacting with partially folded structures. Here, we used all-atom MD simulations to provide atomistic insights into how Trigger Factor achieves this chaperone function. Our results indicate a crucial role for the tips of the finger-like appendages of TF in the early interactions with both unfolded chains and partially folded structures. Unfolded chains are kinetically trapped when bound to TF, which suppresses the formation of transient, non-native end-to-end contacts. Mechanical flexibility allows TF to hold partially folded structures with two tips (in a pinching configuration), and to stabilize them by wrapping around its appendages. This encapsulation mechanism is distinct from that of chaperones such as GroEL, and allows folded structures of diverse size and composition to be protected from aggregation and misfolding interactions. The results suggest that an ATP cycle is not required to enable both encapsulation and liberation.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Modelos Químicos , Simulação de Dinâmica Molecular , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/ultraestrutura , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Especificidade por Substrato
14.
PLoS Comput Biol ; 10(5): e1003624, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24831085

RESUMO

The versatile functions of the heat shock protein 70 (Hsp70) family of molecular chaperones rely on allosteric interactions between their nucleotide-binding and substrate-binding domains, NBD and SBD. Understanding the mechanism of interdomain allostery is essential to rational design of Hsp70 modulators. Yet, despite significant progress in recent years, how the two Hsp70 domains regulate each other's activity remains elusive. Covariance data from experiments and computations emerged in recent years as valuable sources of information towards gaining insights into the molecular events that mediate allostery. In the present study, conservation and covariance properties derived from both sequence and structural dynamics data are integrated with results from Perturbation Response Scanning and in vivo functional assays, so as to establish the dynamical basis of interdomain signal transduction in Hsp70s. Our study highlights the critical roles of SBD residues D481 and T417 in mediating the coupled motions of the two domains, as well as that of G506 in enabling the movements of the α-helical lid with respect to the ß-sandwich. It also draws attention to the distinctive role of the NBD subdomains: Subdomain IA acts as a key mediator of signal transduction between the ATP- and substrate-binding sites, this function being achieved by a cascade of interactions predominantly involving conserved residues such as V139, D148, R167 and K155. Subdomain IIA, on the other hand, is distinguished by strong coevolutionary signals (with the SBD) exhibited by a series of residues (D211, E217, L219, T383) implicated in DnaJ recognition. The occurrence of coevolving residues at the DnaJ recognition region parallels the behavior recently observed at the nucleotide-exchange-factor recognition region of subdomain IIB. These findings suggest that Hsp70 tends to adapt to co-chaperone recognition and activity via coevolving residues, whereas interdomain allostery, critical to chaperoning, is robustly enabled by conserved interactions.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/ultraestrutura , Modelos Químicos , Modelos Moleculares , Sítios de Ligação , Simulação por Computador , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
15.
Nature ; 453(7197): 885-90, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18496527

RESUMO

All organisms have to monitor the folding state of cellular proteins precisely. The heat-shock protein DegP is a protein quality control factor in the bacterial envelope that is involved in eliminating misfolded proteins and in the biogenesis of outer-membrane proteins. Here we describe the molecular mechanisms underlying the regulated protease and chaperone function of DegP from Escherichia coli. We show that binding of misfolded proteins transforms hexameric DegP into large, catalytically active 12-meric and 24-meric multimers. A structural analysis of these particles revealed that DegP represents a protein packaging device whose central compartment is adaptable to the size and concentration of substrate. Moreover, the inner cavity serves antagonistic functions. Whereas the encapsulation of folded protomers of outer-membrane proteins is protective and might allow safe transit through the periplasm, misfolded proteins are eliminated in the molecular reaction chamber. Oligomer reassembly and concomitant activation on substrate binding may also be critical in regulating other HtrA proteases implicated in protein-folding diseases.


Assuntos
Escherichia coli/enzimologia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas de Choque Térmico/ultraestrutura , Modelos Moleculares , Chaperonas Moleculares/ultraestrutura , Proteínas Periplásmicas/ultraestrutura , Dobramento de Proteína , Estrutura Quaternária de Proteína , Serina Endopeptidases/ultraestrutura , Relação Estrutura-Atividade
16.
Nucleic Acids Res ; 40(8): 3316-28, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22187157

RESUMO

Nucleoid-associated proteins are bacterial proteins that are responsible for chromosomal DNA compaction and global gene regulation. One such protein is Escherichia coli Histone-like nucleoid structuring protein (H-NS) which functions as a global gene silencer. Whereas the DNA-binding mechanism of H-NS is well-characterized, its paralogue, StpA which is also able to silence genes is less understood. Here we show that StpA is similar to H-NS in that it is able to form a rigid filament along DNA. In contrast to H-NS, the StpA filament interacts with a naked DNA segment to cause DNA bridging which results in simultaneous stiffening and bridging of DNA. DNA accessibility is effectively blocked after the formation of StpA filament on DNA, suggesting rigid filament formation is the important step in promoting gene silencing. We also show that >1 mM magnesium promotes higher order DNA condensation, suggesting StpA may also play a role in chromosomal DNA packaging.


Assuntos
Proteínas de Ligação a DNA/ultraestrutura , DNA/química , Proteínas de Escherichia coli/ultraestrutura , Chaperonas Moleculares/ultraestrutura , DNA/metabolismo , DNA/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Inativação Gênica , Cinética , Magnésio/química , Microscopia de Força Atômica , Chaperonas Moleculares/metabolismo , Conformação de Ácido Nucleico , Cloreto de Potássio/química
17.
Nat Genet ; 20(1): 92-5, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9731540

RESUMO

Desmin-related myopathies (DRM) are inherited neuromuscular disorders characterized by adult onset and delayed accumulation of aggregates of desmin, a protein belonging to the type III intermediate filament family, in the sarcoplasma of skeletal and cardiac muscles. In this paper, we have mapped the locus for DRM in a large French pedigree to a 26-cM interval in chromosome 11q21-23. This region contains the alphaB-crystallin gene (CRYAB), a candidate gene encoding a 20-kD protein that is abundant in lens and is also present in a number of non-ocular tissues, including cardiac and skeletal muscle. AlphaB-crystallin is a member of the small heat shock protein (shsp) family and possesses molecular chaperone activity. We identified an R120G missense mutation in CRYAB that co-segregates with the disease phenotype in this family. Muscle cell lines transfected with the mutant CRYAB cDNA showed intracellular aggregates that contain both desmin and alphaB-crystallin as observed in muscle fibers from DRM patients. These results are the first to identify a defect in a molecular chaperone as a cause for an inherited human muscle disorder.


Assuntos
Cristalinas/genética , Cristalinas/metabolismo , Desmina/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Doenças Musculares/genética , Mutação , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Cricetinae , Cristalinas/ultraestrutura , Desmina/ultraestrutura , Feminino , Marcadores Genéticos , Proteínas de Choque Térmico/ultraestrutura , Humanos , Escore Lod , Masculino , Microscopia Imunoeletrônica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Doenças Musculares/metabolismo , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Arch Biochem Biophys ; 520(1): 1-6, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22306514

RESUMO

Hsp100 family of molecular chaperones shows a unique capability to resolubilize and reactivate aggregated proteins. The Hsp100-mediated protein disaggregation is linked to the activity of other chaperones from the Hsp70 and Hsp40 families. The best-studied members of the Hsp100 family are the bacterial ClpB and Hsp104 from yeast. Hsp100 chaperones are members of a large super-family of energy-driven conformational "machines" known as AAA+ ATPases. This review describes the current mechanistic model of the chaperone-induced protein disaggregation and explains how the structural architecture of Hsp100 supports disaggregation and how the co-chaperones may participate in the Hsp100-mediated reactions.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/ultraestrutura , Modelos Químicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Sítios de Ligação , Simulação por Computador , Dimerização , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Conformação Proteica
19.
Nat Commun ; 13(1): 749, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136069

RESUMO

Tousled-like kinases (TLKs) are nuclear serine-threonine kinases essential for genome maintenance and proper cell division in animals and plants. A major function of TLKs is to phosphorylate the histone chaperone proteins ASF1a and ASF1b to facilitate DNA replication-coupled nucleosome assembly, but how TLKs selectively target these critical substrates is unknown. Here, we show that TLK2 selectivity towards ASF1 substrates is achieved in two ways. First, the TLK2 catalytic domain recognizes consensus phosphorylation site motifs in the ASF1 C-terminal tail. Second, a short sequence at the TLK2 N-terminus docks onto the ASF1a globular N-terminal domain in a manner that mimics its histone H3 client. Disrupting either catalytic or non-catalytic interactions through mutagenesis hampers ASF1 phosphorylation by TLK2 and cell growth. Our results suggest that the stringent selectivity of TLKs for ASF1 is enforced by an unusual interaction mode involving mutual recognition of a short sequence motifs by both kinase and substrate.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Mimetismo Molecular , Proteínas Quinases/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Domínio Catalítico/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/ultraestrutura , Sequência Conservada , Cristalografia por Raios X , Histonas/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/isolamento & purificação , Chaperonas Moleculares/ultraestrutura , Simulação de Acoplamento Molecular , Mutagênese , Biblioteca de Peptídeos , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/isolamento & purificação , Proteínas Quinases/ultraestrutura , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Especificidade por Substrato
20.
Traffic ; 10(11): 1711-21, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19686298

RESUMO

Most newly synthesized peroxisomal proteins are imported in a receptor-mediated fashion, depending on the interaction of a peroxisomal targeting signal (PTS) with its cognate targeting receptor Pex5 or Pex7 located in the cytoplasm. Apart from this classic mechanism, heterologous protein complexes that have been proposed more than a decade ago are also to be imported into peroxisomes. However, it remains still unclear if this so-called piggyback import is of physiological relevance in mammals. Here, we show that Cu/Zn superoxide dismutase 1 (SOD1), an enzyme without an endogenous PTS, is targeted to peroxisomes using its physiological interaction partner 'copper chaperone of SOD1' (CCS) as a shuttle. Both proteins have been identified as peroxisomal constituents by 2D-liquid chromatography mass spectrometry of isolated rat liver peroxisomes. Yet, while a major fraction of CCS was imported into peroxisomes in a PTS1-dependent fashion in CHO cells, overexpressed SOD1 remained in the cytoplasm. However, increasing the concentrations of both CCS and SOD1 led to an enrichment of SOD1 in peroxisomes. In contrast, CCS-mediated SOD1 import into peroxisomes was abolished by deletion of the SOD domain of CCS, which is required for heterodimer formation. SOD1/CCS co-import is the first demonstration of a physiologically relevant piggyback import into mammalian peroxisomes.


Assuntos
Mamíferos/metabolismo , Chaperonas Moleculares/fisiologia , Peroxissomos/metabolismo , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cobre/metabolismo , Cricetinae , Cricetulus , Cobaias , Imuno-Histoquímica , Fígado/metabolismo , Mamíferos/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura , Peroxissomos/ultraestrutura , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Ratos , Frações Subcelulares/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA