Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.389
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 262: 110183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479439

RESUMO

Vitamin D deficiency is a risk factor for developing multiple sclerosis. The PrevANZ trial was conducted to determine if vitamin D3 supplementation can prevent recurrent disease activity in people with a first demyelinating event. As a sub-study of this trial, we investigated the effect of supplementation on peripheral immune cell gene expression. Participants were randomized to 1000, 5000 or 10,000 international units daily of vitamin D3 or placebo. Peripheral blood was collected at baseline and 12 weeks and sent for ribonucleic acid sequencing. Datasets from 55 participants were included. Gene expression was modulated by high dose supplementation. Antigen presentation and viral response pathways were upregulated. Oxidative phosphorylation and immune signaling pathways, including tumor necrosis factor-alpha and interleukin-17 signaling, were downregulated. Overall, vitamin D3 supplementation for 12 weeks modulated the peripheral immune cell transcriptome with induction of anti-inflammatory gene expression profiles. Our results support a dose-dependent effect of vitamin D3 supplementation on immune gene expression.


Assuntos
Colecalciferol , Deficiência de Vitamina D , Humanos , Colecalciferol/farmacologia , Suplementos Nutricionais , Método Duplo-Cego , Fatores de Risco , Transcriptoma , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/genética
2.
Biol Reprod ; 110(3): 521-535, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38145497

RESUMO

Vitamin D receptors and vitamin D3-metabolizing enzymes have been found to be highly expressed in the ovaries and spermatophores of fish. However, the role of vitamin D3 on fish gonadal development has rarely been reported. In this study, 2-month-old female zebrafish were fed with different concentrations of vitamin D3 diets (0, 700, 1400, and 11 200 IU/kg) to investigate the effects of vitamin D3 on ovarian development. The diet with 0 IU/kg vitamin D3 resulted in elevated interstitial spaces, follicular atresia, and reproductive toxicity in zebrafish ovaries. Supplementation with 700 and 1400 IU/kg of vitamin D3 significantly increased the oocyte maturation rate; upregulated ovarian gonadal steroid hormone synthesis capacity; and elevated plasma estradiol, testosterone, and ovarian vitellogenin levels. Furthermore, the current study identified a vitamin D response element in the cyp19a1a promoter and demonstrated that 1.25(OH)2D3-vitamin D response directly activated cyp19a1a production through activating the vitamin D response element. In conclusion, this study shows that an appropriate concentration of vitamin D3 can promote zebrafish ovarian development and affect vitellogenin synthesis through the vdr/cyp19a1a/er/vtg gene axis.


Assuntos
Colecalciferol , Peixe-Zebra , Animais , Feminino , Colecalciferol/farmacologia , Vitelogeninas/genética , Atresia Folicular , Vitamina D , Hormônios Esteroides Gonadais , Oócitos
3.
Stem Cells ; 41(8): 775-791, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37228023

RESUMO

Cytochrome P450 3A4 (CYP3A4) is involved in first-pass metabolism in the small intestine and is heavily implicated in oral drug bioavailability and pharmacokinetics. We previously reported that vitamin D3 (VD3), a known CYP enzyme inducer, induces functional maturation of iPSC-derived enterocyte-like cells (iPSC-ent). Here, we identified a Notch activator and CYP modulator valproic acid (VPA), as a promotor for the maturation of iPSC-ent. We performed bulk RNA sequencing to investigate the changes in gene expression during the differentiation and maturation periods of these cells. VPA potentiated gene expression of key enterocyte markers ALPI, FABP2, and transporters such as SULT1B1. RNA-sequencing analysis further elucidated several function-related pathways involved in fatty acid metabolism, significantly upregulated by VPA when combined with VD3. Particularly, VPA treatment in tandem with VD3 significantly upregulated key regulators of enterohepatic circulation, such as FGF19, apical bile acid transporter SLCO1A2 and basolateral bile acid transporters SLC51A and SLC51B. To sum up, we could ascertain the genetic profile of our iPSC-ent cells to be specialized toward fatty acid absorption and metabolism instead of transporting other nutrients, such as amino acids, with the addition of VD3 and VPA in tandem. Together, these results suggest the possible application of VPA-treated iPSC-ent for modelling enterohepatic circulation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ácido Valproico , Humanos , Ácido Valproico/farmacologia , Ácido Valproico/metabolismo , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Enterócitos/metabolismo , Células Cultivadas
4.
Exp Dermatol ; 33(1): e14926, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702410

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease in which defective T cells, immune complex deposition and other immune system alterations contribute to pathological changes of multiple organ systems. The vitamin D metabolite c is a critical immunomodulator playing pivotal roles in the immune system. Epidemiological evidence indicates that vitamin D deficiency is correlated with the severity of SLE. Our aim is to investigate the effects of 1,25(OH)2D3 (VitD3) on the activation of myeloid dendritic cells (mDCs) by autologous DNA-containing immune complex (DNA-ICs), and the effects of VitD3 on immune system balance during SLE. We purified DNA-ICs from the serum of SLE patients and isolated mDCs from normal subjects. In vitro studies showed that DNA-ICs were internalized and consumed by mDCs. VitD3 blocked the effects of DNA-ICs on RelB, IL-10 and TNF-α in mDCs. Further analysis indicated that DNA-ICs stimulated histone acetylation in the RelB promoter region, which was inhibited by VitD3. Knockdown of the histone deacetylase 3 gene (HDAC3) blocked these VitD3-mediated effects. Co-culture of mDCs and CD4+ T cells showed that VitD3 inhibited multiple processes mediated by DNA-ICs, including proliferation, downregulation of IL-10, TGF-ß and upregulation of TNF-α. Moreover, VitD3 could also reverse the effects of DNA-IC-induced imbalance of CD4+ CD127- Foxp3+ T cells and CD4+ IL17+ T cells. Taken together, our results indicated that autologous DNA-ICs stimulate the activation of mDCs in the pathogenesis of SLE, and VitD3 inhibits this stimulatory effects of DNA-ICs by negative transcriptional regulation of RelB gene and maintaining the Treg/Th17 immune cell balance. These results suggest that vitamin D may have therapeutic value for the treatment of SLE.


Assuntos
Colecalciferol , Lúpus Eritematoso Sistêmico , Humanos , Colecalciferol/farmacologia , Interleucina-10 , Complexo Antígeno-Anticorpo , Fator de Necrose Tumoral alfa , Inflamação , Vitamina D/farmacologia , Células Dendríticas/metabolismo , DNA
5.
Circ Res ; 131(12): 1037-1054, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36354004

RESUMO

BACKGROUND: Vascular calcification is closely related to the all-cause mortality of cardiovascular events. Basement membrane protein nidogen-2 is a key component of the vascular extracellular matrix microenvironment and we recently found it is pivotal for the maintenance of contractile phenotype in vascular smooth muscle cells (VSMCs). However, whether nidogen-2 is involved in VSMCs osteochondrogenic transition and vascular calcification remains unclear. METHODS: VSMCs was treated with high-phosphate to study VSMC calcification in vitro. Three different mice models (5/6 nephrectomy-induced chronic renal failure, cholecalciferol-overload, and periadventitially administered with CaCl2) were used to study vascular calcification in vivo. Membrane protein interactome, coimmunoprecipitation, flow cytometric binding assay, surface plasmon resonance, G protein signaling, VSMCs calcium assays were performed to clarify the phenotype and elucidate the molecular mechanisms. RESULTS: Nidogen-2 protein levels were significantly reduced in calcified VSMCs and aortas from mice in different vascular calcification model. Nidogen-2 deficiency exacerbated high-phosphate-induced VSMC calcification, whereas the addition of purified nidogen-2 protein markedly alleviated VSMC calcification in vitro. Nidogen-2-/- mice exhibited aggravated aorta calcification compared to wild-type (WT) mice in response to 5/6 nephrectomy, cholecalciferol-overload, and CaCl2 administration. Further unbiased coimmunoprecipitation and interactome analysis of purified nidogen-2 and membrane protein in VSMCs revealed that nidogen-2 directly binds to LGR4 (leucine-rich repeat G-protein-coupled receptor 4) with KD value 26.77 nM. LGR4 deficiency in VSMCs in vitro or in vivo abolished the protective effect of nidogen-2 on vascular calcification. Of interest, nidogen-2 biased activated LGR4-Gαq-PKCα (protein kinase Cα)-AMPKα1 (AMP-activated protein kinase α1) signaling to counteract VSMCs osteogenic transition and mineralization. CONCLUSIONS: Nidogen-2 is a novel endogenous ligand of LGR4 that biased activated Gαq- PKCα-AMPKα1 signaling and inhibited vascular calcification.


Assuntos
Glicoproteínas de Membrana , Músculo Liso Vascular , Receptores Acoplados a Proteínas G , Calcificação Vascular , Animais , Camundongos , Cloreto de Cálcio , Células Cultivadas , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Ligantes , Glicoproteínas de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfatos/efeitos adversos , Proteína Quinase C-alfa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Calcificação Vascular/prevenção & controle , Calcificação Vascular/genética
6.
Cell Biol Int ; 48(9): 1326-1342, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38890788

RESUMO

Chronic stress is a universal condition commonly associated with many psychiatric diseases. An extensive body of evidence discussed hippocampal affection upon chronic stress exposure, however, the underlying molecular pathways still need to be identified. We investigated the impact of chronic stress on miR200/BMP/Olig-2 signaling and hippocampal myelination. We also compared the effects of chronic administration of amitriptyline and cholecalciferol on chronically stressed hippocampi. Both amitriptyline and cholecalciferol significantly decreased serum cortisol levels, reduced immobility time in the forced swim test, increased the number of crossed squares in open field test, decreased the hippocampal expression of bone morphogenetic protein 4 (BMP4) and its messenger RNA (mRNA) levels, reduced miR200 expression as compared to untreated chronically stressed rats. Also, both drugs amended the hippocampal neuronal damage, enhanced the surviving cell count, and increased the pyramidal layer thickness of Cornu Ammonis subregion 1 (CA1) and granule cell layer of the dentate gyrus. Cholecalciferol was more effective in increasing the area percentage of myelin basic protein (MBP) and Olig-2 positive cells count in hippocampi of chronic stress-exposed rats than amitriptyline, thus enhancing myelination. We also found a negative correlation between the expression of BMP4, its mRNA, miR200, and the immunoexpression of MBP and Olig-2 proteins. This work underscores the amelioration of the stress-induced behavioral changes, inhibition of miR200/BMP4 signaling, and enhancement of hippocampal myelination following chronic administration of either amitriptyline or cholecalciferol, though cholecalciferol seemed more effective in brain remyelination.


Assuntos
Amitriptilina , Proteína Morfogenética Óssea 4 , Colecalciferol , Hipocampo , MicroRNAs , Transdução de Sinais , Animais , Masculino , Ratos , Amitriptilina/farmacologia , Proteína Morfogenética Óssea 4/metabolismo , Colecalciferol/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , MicroRNAs/metabolismo , MicroRNAs/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/metabolismo
7.
Fish Shellfish Immunol ; 147: 109455, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369072

RESUMO

As a fat-soluble vitamin, vitamin D3 relies on fat to perform its biological function, affecting lipid metabolism and innate immunity. This study used different percentages of lipid and vitamin D3 diets to evaluate the synergistic effects on the growth, lipid metabolism and immunity of juvenile Eriocheir sinensis (5.83 ± 0.01 g) for 56 days, including low lipid (LL, 1.5%) and normal lipid (NL, 7.5%) and three levels of vitamin D3: low (LVD, 0 IU/kg), medium (MVD, 9000 IU/kg) and high (HVD, 27,000, IU/kg). The synergistic effect of lipid and vitamin D3 was not significant on growth but significant on ash content, total protein, hepatopancreas lipid content, hemolymph 1α,25-hydroxy vitamin D3 [1α,25(OH)2D3] content, hepatopancreas lipolysis and synthesis genes. Crabs fed normal lipid (7.5%) and medium vitamin D3 (9000 IU/kg) had the highest hepatopancreas index, hemolymph 1α,25(OH)2D3 content, antibacterial ability, immune-related genes and hepatopancreatic lipid synthesis genes expression, but down-regulated the lipolysis genes expression. In contrast, crabs fed diets with low lipid percentage (1.5%) had low growth performance, hemolymph 1α,25(OH)2D3, mRNA levels of lipid synthesis genes, antibacterial ability and immune-related gene expression. At the 1.5% lipid level, excessive or insufficient vitamin D3 supplementation led to the obstruction of ash and protein deposition, reduced growth and molting, aggravated the reduction in antioxidant capacity, hindered antimicrobial peptide gene expression and reduced innate immunity, and resulted in abnormal lipid accumulation and the risk of oxidative stress. This study suggests that diets' lipid and vitamin D3 percentage can enhance antioxidant capacity, lipid metabolism and innate immunity in E. sinensis. A low lipid diet can cause growth retardation, reduce antioxidant capacity and innate immunity, and enhance lipid metabolism disorder.


Assuntos
Antioxidantes , Braquiúros , Animais , Antioxidantes/metabolismo , Metabolismo dos Lipídeos , Colecalciferol/farmacologia , Imunidade Inata , Antibacterianos/farmacologia , Braquiúros/metabolismo
8.
Mol Biol Rep ; 51(1): 456, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536498

RESUMO

BACKGROUND: To better understand the molecular mechanism responsible for the therapeutic potential of vitamin D, we conducted an analysis of the liver transcriptomes of adult female rats. METHODS: Adult female rats (n = 18) were divided into three groups, receiving different doses of vitamin D: group I, 0; group II, 1000 U/kg; and group III, 5000 U/kg. Growth, body weight, the weight of main organs, blood haematological and biochemical parameters were evaluated. Gene expression in the liver were analyzed using RNA-seq and qPCR techniques. RESULTS: We observed a lower platelet count (p < 0,008) and a significantly greater (p < 0.02) number of WBCs in rats supplemented with 1000 U/kg than in rats from group III (5000 U/kg). Moreover, we noted a trend (p < 0.06) in total cholesterol concentration, suggesting a linear decrease with increasing doses of vitamin D. RNA-seq analysis did not reveal any differentially expressed genes with FDR < 0.05. However, GSEA revealed significant activation of a number of processes and pathways, including: "metallothionein, and TspO/MBR family", and "negative regulation of tumor necrosis factor production". qPCR analysis revealed significant upregulation of the Mt1, Mt2 and Orm1 genes in animals receiving high doses of vitamin D (p < 0.025, p < 0.025, and p < 0009, respectively). Moreover, Srebp2 and Insig2 were significantly lower in both experimental groups than in the control group (p < 0.003 and p < 0.036, respectively). CONCLUSIONS: Our results support the anti-inflammatory, anitioxidant and anticholesterologenic potential of vitamin D but suggest that high doses of vitamin D are needed to obtain significant results in this regard.


Assuntos
Colecalciferol , Vitamina D , Ratos , Feminino , Animais , Colecalciferol/farmacologia , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Vitaminas/farmacologia , Suplementos Nutricionais , Fígado/metabolismo , Expressão Gênica , Orosomucoide/farmacologia
9.
Eur J Nutr ; 63(1): 155-172, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37740812

RESUMO

PURPOSE: Individuals with vitamin D (VD) insufficiency have a greater tendency to develop obesity and have increased systemic inflammation. Gut microbiota are involved in the regulation of host inflammation and energy metabolism, which plays a role in the pathogenesis of obesity. Thus, we aimed to evaluate the effects of different doses of VD3 on body weight, serum lipids, inflammatory factors, and intestinal barrier function in obese mice and to explore the regulatory effect of VD3 on gut microbiota in obese mice. METHODS: Male C57BL/6 J mice received a normal chow diet (NCD, 10% fat) or high-fat diet (HFD, 60% fat) to induce obesity within 10 weeks. Then, HFD mice were supplemented with 5650, 8475, or 11,300 IU VD3/kg diet for 8 weeks. Finally, 16 s rRNA analysis was performed to analyze gut microbiota composition in cecal contents. In addition, body weight, serum lipids, inflammatory factors, and intestinal barrier function were analyzed. RESULTS: VD3 supplementation reduced body weight and the levels of TG, TC, HDL-C, TNF-α, IL-1ß and LPS, and increased ZO-1 in HFD-fed mice. Moreover, it increased α-diversity, reduced F/B ratio and altered microbiota composition by increasing relative abundance of Bacteroidetes, Proteobacteria, Desulfovibrio, Dehalobacterium, Odoribacter, and Parabacteroides and reducing relative abundance of Firmicutes and Ruminococcus. There were significant differences between HFD and NCD groups in several metabolic pathways, including endotoxin biosynthesis, tricarboxylic acid cycle, lipid synthesis and metabolism, and glycolysis. CONCLUSIONS: Low, medium, and high doses of VD3 inhibited weight gain, reduced levels of blood lipids and inflammatory factors, and improved endotoxemia and gut barrier function in obese mice. It also increased the α-diversity of gut microbiota in obese mice and reduced the relative abundance of some intestinal pathogenic bacteria, increased the relative abundance of some beneficial bacteria, and corrected the intestinal flora disorder of obese mice, with the low- and high-dose groups showing better effects than the medium-dose group.


Assuntos
Microbioma Gastrointestinal , Doenças não Transmissíveis , Masculino , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Colecalciferol/farmacologia , Camundongos Obesos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Peso Corporal , Inflamação/complicações , Lipídeos , Suplementos Nutricionais
10.
BMC Vet Res ; 20(1): 221, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38783276

RESUMO

BACKGROUND: Limited studies are available on vitamin D supplementation in dogs. This study evaluates the effect of a commercial vitamin D3 supplement on serum 25-hydroxy vitamin D as well as selected biochemical and hematological parameters in healthy dogs. Eight intact male adult dogs with a mean body weight of 20 kg from mixed breeds were included in the study. After adaptation period, dogs received vitamin D3 supplement at the dose of 50 IU/kg body weight per day. Blood samples were collected on days 0, 14, 28 and 42 of supplementation. Food was used for analysis of vitamin D3 content. RESULTS: Significant increase in serum level of 25-hydroxy vitamin D3 was detected since day 14 of supplementation. Changes in serum 25-hydroxy vitamin D3 concentration during time showed an upward significance (p < 0.05). Vitamin D3 content of the food was 2900 IU/kg dry matter. Changes in serum phosphorus levels were upward significant. No dog showed calcium or phosphorus levels above the highest reference level. Liver and kidney parameters remained in the reference range during the experiment. A gradual significant increase was observed in hemoglobin and hematocrit which was started from day 14. Vitamin D3 supplementation had no significant effect on neutrophils, monocytes and lymphocytes percent during the study. CONCLUSIONS: Vitamin D3 supplementation at 50 IU/kg BW daily, increases serum levels of 25-hydroxy vitamin D in healthy dogs fed with a diet containing proper amount of this vitamin. It also increases hemoglobin and hematocrit levels in a time dependent manner without inducing adverse effects.


Assuntos
Colecalciferol , Suplementos Nutricionais , Vitamina D , Animais , Cães/sangue , Masculino , Vitamina D/análogos & derivados , Vitamina D/sangue , Vitamina D/administração & dosagem , Vitamina D/farmacologia , Colecalciferol/farmacologia , Colecalciferol/administração & dosagem , Hematócrito/veterinária , Hemoglobinas/análise , Fósforo/sangue
11.
Cell Biochem Funct ; 42(4): e4026, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693631

RESUMO

This work investigates the efficiency of cholecalciferol and low dose gamma radiation in modulating cytokine storm through their impact on inflammatory and anti-inflammatory cytokine and protecting against lung and liver injuries. Male Swiss albino mice were exposed to 0.2 Gy gamma radiation/week for four consecutive weeks then injected intraperitoneally (i.p) with a single dose of 8.3 × 106 CFU Escherichia coli/g b.w. then injected i.p. with 1.0 mg/kg cholecalciferol (Vit D3) for 7 days starting 4 h after E. coli injection. The results revealed that Cholecalciferol and low dose gamma radiation caused significant depletion in the severity of E. coli infection (colony forming unit per milliliter), log10 of E. coli, Tumor necrosis factor alpha, Interleukin 6, VEGF, alanine aminotransferase, and aspartate aminotransferase levels and significant elevation in IL-10, IL-4, and HO-1. Immunohistochemical analysis of caspase-3 expression in lung tissue section showed low caspase-3 expression in cholecalciferol and low dose gamma radiation treated group. Histopathological examinations were performed in both lung and liver tissues which also emphasis the biochemical findings. Our results exhibit the importance of cholecalciferol and low dose gamma radiation in improving liver function and providing anti-inflammatory response in diseases causing cytokine storm.


Assuntos
Colecalciferol , Infecções por Escherichia coli , Escherichia coli , Raios gama , Animais , Camundongos , Colecalciferol/farmacologia , Masculino , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/patologia , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Citocinas/metabolismo , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/etiologia , Aspartato Aminotransferases/sangue
12.
BMC Pulm Med ; 24(1): 9, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166725

RESUMO

BACKGROUND: Pulmonary metabolic dysfunction can cause lung tissue injury. There is still no ideal drug to protect against hypoxia-induced lung injury, therefore, the development of new drugs to prevent and treat hypoxia-induced lung injury is urgently needed. We aimed to explore the ameliorative effects and molecular mechanisms of vitamin D3 (VD3) on hypoxia-induced lung tissue injury. METHODS: Sprague-Dawley (SD) rats were randomly divided into three groups: normoxia, hypoxia, and hypoxia + VD3. The rat model of hypoxia was established by placing the rats in a hypobaric chamber. The degree of lung injury was determined using hematoxylin and eosin (H&E) staining, lung water content, and lung permeability index. Transcriptome data were subjected to differential gene expression and pathway analyses. In vitro, type II alveolar epithelial cells were co-cultured with hepatocytes and then exposed to hypoxic conditions for 24 h. For VD3 treatment, the cells were treated with low and high concentrations of VD3. RESULTS: Transcriptome and KEGG analyses revealed that VD3 affects the complement and coagulation cascade pathways in hypoxia-induced rats, and the genes enriched in this pathway were Fgb/Fga/LOC100910418. Hypoxia can cause increases in lung edema, inflammation, and lung permeability disruption, which are attenuated by VD3 treatment. VD3 weakened the complement and coagulation cascade in the lung and liver of hypoxia-induced rats, characterized by lower expression of fibrinogen alpha chain (Fga), fibrinogen beta chain (Fgb), protease-activated receptor 1 (PAR1), protease-activated receptor 3 (PAR3), protease-activated receptor 4 (PAR4), complement (C) 3, C3a, and C5. In addition, VD3 improved hypoxic-induced type II alveolar epithelial cell damage and inflammation by inhibiting the complement and coagulation cascades. Furthermore, VD3 inhibited hypoxia-induced autophagy in vivo and in vitro, which was abolished by the mitophagy inducer, carbonyl cyanide-m-chlorophenylhydrazone (CCCP). CONCLUSION: VD3 alleviated hypoxia-induced pulmonary edema by inhibiting the complement and coagulation cascades and autophagy pathways.


Assuntos
Lesão Pulmonar , Edema Pulmonar , Ratos , Animais , Colecalciferol/farmacologia , Ratos Sprague-Dawley , Inflamação , Hipóxia/complicações , Autofagia , Fibrinogênio
13.
J Dairy Sci ; 107(3): 1707-1718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863290

RESUMO

Heat stress (HS) impedes cattle behavior and performance and is an animal comfort and welfare issue. The objective of this study was to characterize the time budget and circadian rhythm of lying behavior in dairy cows during HS and to assess the effect of dietary supplementation of vitamin D3 and Ca. Twelve multiparous Holstein cows (42.2 ± 5.6 kg milk/d; 83 ± 27 d in milk) housed in tiestalls were used in a split-plot design with the concentration of dietary vitamin E and Se as main plots (LESe: 11.1 IU/kg and 0.55 mg/kg, and HESe: 223 IU/kg and 1.8 mg/kg, respectively). Within each plot cows were randomly assigned to (1) HS with low concentrations of vitamin D3 and Ca (HS, 1,012 IU/kg and 0.73%, respectively), (2) HS with high concentrations of vitamin D3 and Ca (HS+D3/Ca; 3,764 IU/kg and 0.97%, respectively), or (3) thermoneutral pair-fed (TNPF) with low concentrations of vitamin D3 and Ca (1,012 IU/kg and 0.73%, respectively) in a Latin square design with 14-d periods and 7-d washouts. Lying behavior was measured with HOBO Loggers in 15-min intervals. Overall, cows in HS spent less time lying per day relative to TNPF from d 7 to 14. Daily lying time was positively correlated with milk yield, energy-corrected milk yield, and feed efficiency, and was negatively correlated with rectal temperature, respiratory rate, fecal calprotectin, tumor necrosis factor-α, and C-reactive protein. A treatment by time interaction was observed for lying behavior: the time spent lying was lesser for cows in HS than in TNPF in the early morning (0000-0600 h) and in the night (1800-2400 h). The circadian rhythm of lying behavior was characterized by fitting a cosine function of time into linear mixed model. Daily rhythmicity of lying was detected for cows in TNPF and HS+D3/Ca, whereas only a tendency in HS cows was observed. Cows in TNPF had the highest mesor (the average level of diurnal fluctuations; 34.2 min/h) and amplitude (the distance between the peak and mesor; 17.9 min/h). Both the mesor and amplitude were higher in HS+D3/Ca relative to HS (26.6 vs. 25.2 min/h and 3.91 min/h vs. 2.18 min/h, respectively). The acrophase (time of the peak) of lying time in TNPF, HS, and HS+D3/Ca were 0028, 0152, and 0054 h, respectively. Lastly, a continuous increase in daily lying time in TNPF was observed during the first 4 d of the experimental period in which DMI was gradually restricted, suggesting that intake restrictions may shift feeding behavior and introduce biases in the behavior of animals. In conclusion, lying behavior was compromised in dairy cows under HS, characterizing reduced daily lying time and disrupted circadian rhythms, and the compromised lying behavior can be partially restored by supplementation of vitamin D3 and Ca. Further research may be required for a more suitable model to study behavior of cows under HS.


Assuntos
Cálcio , Lactação , Feminino , Bovinos , Animais , Cálcio/farmacologia , Colecalciferol/farmacologia , Resposta ao Choque Térmico , Suplementos Nutricionais , Ritmo Circadiano
14.
Reprod Domest Anim ; 59(7): e14660, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962998

RESUMO

The objectives of this experiment were to evaluate the effects of supplementation of Nellore (Bos indicus) cows with ß-carotene + vitamins A + D3 + E + biotin on body condition score (BCS), oestrus, pregnancy, and foetal morphometry. Lactating cows (n = 497) from two herds were balanced for BCS and calving period [early calving (EC); late calving (LC)] and were assigned randomly to: Control (n = 251)-supplementation with a mineral supplement; and SUP (n = 246)-supplementation with the mineral supplement fed to control + ß-carotene (150 mg/day) + vitamin A (40,000 IU/day) + vitamin D3 (5000 IU/day) + vitamin E (300 mg/day) + biotin (20 mg/day). Cows were supplemented from Days -30 to 30 (Day 0 = timed artificial insemination; TAI). Pregnancy was diagnosed 30 days after TAI and foetal crown-rump distance and thoracic diameter were measured at 30 and 77 days of gestation. Cows in the SUP treatment were more likely to have BCS ≥3.0 on Day 0 (63.0 ± 3.1 vs. 60.2 ± 3.1; p < .01) and were more likely to gain BCS from Days -30 to 30 (57.7 ± 3.3 vs. 44.1 ± 3.3%; p < .01). Fewer LC cows in the SUP treatment were detected in oestrus at the time of the first TAI (Control: LC: 75.4 ± 4.4 vs. SUP: LC: 64.0 ± 5.2 vs. Control: EC: 65.3 ± 4.0 vs. SUP: EC: 71.8 ± 3.7; p = .04). There was a tendency for the SUP treatment to increase pregnancy to the first TAI (64.2 ± 3.0 vs. 56.6 ± 3.1%; p = .08). A greater percentage of SUP cows was detected in oestrus at the time of the second TAI (70.1 ± 5.0 vs. 52.3 ± 4.8%; p = .01). The SUP treatment increased pregnancy to the second TAI among LC cows (SUP: LC: 75.9 ± 8.0% vs. Control: LC: 50.0 ± 8.3% vs. Control: EC: 52.0 ± 5.9% vs. SUP: EC: 41.4 ± 6.5%; p = .02). The SUP treatment increased foetal size (crown-rump; p = .04 and thoracic diameter; p < .01) at 30 days of gestation and, despite decreasing crow-rump length at 77 days after the first TAI among EC cows (p < .01), it increased the thoracic diameter at 77 days after the first TAI independent of calving season. Our results support that pregnancy establishment and foetal growth can be improved when grazing Nellore cows are supplemented with ß-carotene and vitamins A + D3 + E + biotin.


Assuntos
Biotina , Suplementos Nutricionais , Estro , Vitamina A , Vitamina E , beta Caroteno , Animais , Bovinos , Feminino , Gravidez , Vitamina A/administração & dosagem , Vitamina A/farmacologia , beta Caroteno/administração & dosagem , beta Caroteno/farmacologia , Vitamina E/administração & dosagem , Vitamina E/farmacologia , Estro/efeitos dos fármacos , Biotina/administração & dosagem , Biotina/farmacologia , Colecalciferol/farmacologia , Colecalciferol/administração & dosagem , Folículo Ovariano/efeitos dos fármacos , Dieta/veterinária , Vitaminas/administração & dosagem , Vitaminas/farmacologia , Ração Animal , Lactação , Feto/efeitos dos fármacos
15.
Bioprocess Biosyst Eng ; 47(5): 753-766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38573334

RESUMO

Green synthesis of metal oxides as a treatment for bone diseases is still exploring. Herein, MgO and Fe2O3 NPs were prepared from the extract of Hibiscus sabdariffa L. to study their effect on vit D3, Ca+2, and alkaline phosphatase enzyme ALP associated with osteoporosis. Computational chemistry was utilized to gain insight into the possible interactions. These oxides were characterized by X-ray diffraction, SEM, FTIR, and AFM. Results revealed that green synthesis of MgO and Fe2O3 NPs was successful with abundant. MgO NPs were in vitro applied on osteoporosis patients (n = 35) and showed a significant elevation of vit D3 and Ca+2 (0.0001 > p < 0.001) levels, compared to healthy volunteers (n = 25). Thus, Hibiscus sabdariffa L. is a good candidate to prepare MgO NPs, with a promising enhancing effect on vit D3 and Ca+2 in osteoporosis. In addition, interactions of Fe2O3 and MgO NPs with ALP were determined by molecular docking study.


Assuntos
Hibiscus , Óxido de Magnésio , Osteoporose , Hibiscus/química , Humanos , Osteoporose/tratamento farmacológico , Óxido de Magnésio/química , Compostos Férricos/química , Extratos Vegetais/química , Feminino , Masculino , Cálcio/química , Simulação de Acoplamento Molecular , Nanopartículas Metálicas/química , Pessoa de Meia-Idade , Óxidos/química , Fosfatase Alcalina/metabolismo , Colecalciferol/química , Colecalciferol/farmacologia
16.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396866

RESUMO

Vitamin D3 (VitD3) plays a crucial role in various cellular functions through its receptor interaction. The biological activity of Vitamin D3 can vary based on its solubility and stability. Thus, the challenge lies in maximizing its biological effects through its complexation within cyclodextrin (ßNS-CDI 1:4) nanosponges (NS) (defined as VitD3NS). Therefore, its activity has been evaluated on two different gut-brain axes (healthy gut/degenerative brain and inflammatory bowel syndrome gut/degenerative brain axis). At the gut level, VitD3-NS mitigated liposaccharide-induced damage (100 ng/mL; for 48 h), restoring viability, integrity, and activity of tight junctions and reducing ROS production, lipid peroxidation, and cytokines levels. Following intestinal transit, VitD3-NS improved the neurodegenerative condition in the healthy axis and the IBS model, suggesting the ability of VitD3-NS to preserve efficacy and beneficial effects even in IBS conditions. In conclusion, this study demonstrates the ability of this novel form of VitD3, named VitD3-NS, to act on the gut-brain axis in healthy and damaged conditions, emphasizing enhanced biological activity through VitD3 complexation, as such complexation increases the beneficial effect of vitamin D3 in both the gut and brain by about 50%.


Assuntos
Colecalciferol , Síndrome do Intestino Irritável , Humanos , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Síndrome do Intestino Irritável/tratamento farmacológico , Eixo Encéfalo-Intestino , Citocinas , Encéfalo , Vitamina D/farmacologia , Vitamina D/uso terapêutico
17.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396804

RESUMO

Unlike other vitamins, vitamin D3 is synthesised in skin cells in the body. Vitamin D3 has been known as a bone-related hormone. Recently, however, it has been considered as an immune vitamin. Vitamin D3 deficiency influences the onset of a variety of diseases. Vitamin D3 regulates the production of proinflammatory cytokines such as tumour necrosis factor-α (TNF-α) through binding to vitamin D receptors (VDRs) in immune cells. Since blood levels of vitamin D3 (25-OH-D3) were low in coronavirus disease 2019 (COVID-19) patients, there has been growing interest in the importance of vitamin D3 to maintaining a healthy condition. On the other hand, phytochemicals are compounds derived from plants with over 7000 varieties and have various biological activities. They mainly have health-promoting effects and are classified as terpenoids, carotenoids, flavonoids, etc. Flavonoids are known as the anti-inflammatory compounds that control TNF-α production. Chronic inflammation is induced by the continuous production of TNF-α and is the fundamental cause of diseases like obesity, dyslipidaemia, diabetes, heart and brain diseases, autoimmune diseases, Alzheimer's disease, and cancer. In addition, the ageing process is induced by chronic inflammation. This review explains the cooperative effects of vitamin D3 and phytochemicals in the suppression of inflammatory responses, how it balances the natural immune response, and its link to anti-ageing effects. In addition, vitamin D3 and phytochemicals synergistically contribute to anti-ageing by working with ageing-related genes. Furthermore, prevention of ageing processes induced by the chronic inflammation requires the maintenance of healthy gut microbiota, which is related to daily dietary habits. In this regard, supplementation of vitamin D3 and phytochemicals plays an important role. Recently, the association of the prevention of the non-disease condition called "ME-BYO" with the maintenance of a healthy condition has been an attractive regimen, and the anti-ageing effect discussed here is important for a healthy and long life.


Assuntos
Colecalciferol , Fator de Necrose Tumoral alfa , Humanos , Colecalciferol/farmacologia , Envelhecimento , Flavonoides , Inflamação/prevenção & controle , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Vitamina D/farmacologia
18.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542390

RESUMO

In arterial hypertension, the dysregulation of several metabolic pathways is closely associated with chronic immune imbalance and inflammation progression. With time, these disturbances lead to the development of progressive disease and end-organ involvement. However, the influence of cholecalciferol on metabolic pathways as a possible mechanism of its immunomodulatory activity in obesity-related hypertension is not known. In a phase 2, randomized, single-center, 24-week trial, we evaluated, as a secondary outcome, the serum metabolome of 36 age- and gender-matched adults with obesity-related hypertension and vitamin D deficiency, before and after supplementation with cholecalciferol therapy along with routine medication. The defined endpoint was the assessment of circulating metabolites using a nuclear magnetic resonance-based metabolomics approach. Univariate and multivariate analyses were used to evaluate the systemic metabolic alterations caused by cholecalciferol. In comparison with normotensive controls, hypertensive patients presented overall decreased expression of several amino acids (p < 0.05), including amino acids with ketogenic and glucogenic properties as well as aromatic amino acids. Following cholecalciferol supplementation, increases were observed in glutamine (p < 0.001) and histidine levels (p < 0.05), with several other amino acids remaining unaffected. Glucose (p < 0.05) and acetate (p < 0.05) decreased after 24 weeks in the group taking the supplement, and changes in the saturation of fatty acids (p < 0.05) were also observed, suggesting a role of liposoluble vitamin D in lipid metabolism. Long-term cholecalciferol supplementation in chronically obese and overweight hypertensives induced changes in the blood serum metabolome, which reflected systemic metabolism and may have fostered a new microenvironment for cell proliferation and biology. Of note, the increased availability of glutamine may be relevant for the proliferation of different T-cell subsets.


Assuntos
Hipertensão , Deficiência de Vitamina D , Adulto , Humanos , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Glutamina/uso terapêutico , Glucose/uso terapêutico , Vitamina D/uso terapêutico , Obesidade/complicações , Obesidade/tratamento farmacológico , Suplementos Nutricionais , Deficiência de Vitamina D/complicações , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Aminoácidos/metabolismo , Método Duplo-Cego
19.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892082

RESUMO

Mucosal-associated invariant T (MAIT) cells, a subset of Vα7.2+ T cells, are a crucial link between innate and adaptive immunity, responding to various stimuli through TCR-dependent and independent pathways. We investigated the responses of MAIT cells and Vα7.2+/CD161- T cells to different stimuli and evaluated the effects of Cyclosporin A (CsA) and Vitamin D3 (VitD). Peripheral blood mononuclear cells (PBMCs) from healthy donors were stimulated with various agents (PMA/Ionomycin, 5-OP-RU, 5-OP-RU/IL-12/IL-33) with or without CsA and VitD. Flow cytometric analysis assessed surface markers and intracellular cytokine production. Under steady-state conditions, MAIT cells displayed elevated expression of CCR6 and IL-13. They showed upregulated activation and exhaustion markers after activation, producing IFNγ, TNFα, and TNFα/GzB. CsA significantly inhibited MAIT cell activation and cytokine production. Conversely, Vα7.2+/CD161- T cells exhibited distinct responses, showing negligible responses to 5-OP-RU ligand but increased cytokine production upon PMA stimulation. Our study underscores the distinct nature of MAIT cells compared to Vα7.2+/CD161- T cells, which resemble conventional T cells. CsA emerges as a potent immunosuppressive agent, inhibiting proinflammatory cytokine production in MAIT cells. At the same time, VitD supports MAIT cell activation and IL-13 production, shedding light on potential therapeutic avenues for immune modulation.


Assuntos
Células T Invariantes Associadas à Mucosa , Subfamília B de Receptores Semelhantes a Lectina de Células NK , Humanos , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Células T Invariantes Associadas à Mucosa/efeitos dos fármacos , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Fatores Imunológicos/farmacologia , Citocinas/metabolismo , Ciclosporina/farmacologia , Colecalciferol/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia
20.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791386

RESUMO

Metastasis in breast cancer is the major cause of death in females (about 30%). Based on our earlier observation that Vitamin D3 downregulates mTOR, we hypothesized that Vitamin D3 conjugated to gold nanoparticles (VD3-GNPs) reduces breast cancer aggressiveness by downregulating the key cancer controller PI3K/AKT/mTOR. Western blots, migration/invasion assays, and other cell-based, biophysical, and bioinformatics studies are used to study breast cancer cell aggressiveness and nanoparticle characterization. Our VD3-GNP treatment of breast cancer cells (MCF-7 and MDA-MB-231) significantly reduces the aggressiveness (cancer cell migration and invasion rates > 45%) via the simultaneous downregulation of ETV7 and the Hippo pathway. Consistent with our hypothesis, we, indeed, found a downregulation of the PI3K/AKT/mTOR pathway. It is surprising that the extremely low dose of VD3 in the nano formulation (three orders of magnitude lower than in earlier studies) is quite effective in the alteration of cancer invasiveness and cell signaling pathways. Clearly, VD3-GNPs are a viable candidate for non-toxic, low-cost treatment for reducing breast cancer aggressiveness.


Assuntos
Neoplasias da Mama , Colecalciferol , Regulação para Baixo , Nanopartículas Metálicas , Invasividade Neoplásica , Transdução de Sinais , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Colecalciferol/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ouro/química , Via de Sinalização Hippo , Células MCF-7 , Nanopartículas Metálicas/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA