Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.448
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 88: 35-58, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30601681

RESUMO

X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.


Assuntos
Elétrons , Substâncias Macromoleculares/ultraestrutura , Fótons , Vírion/ultraestrutura , Difração de Raios X/métodos , Cristalização/instrumentação , Cristalização/métodos , Cristalografia por Raios X/história , Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , História do Século XX , História do Século XXI , Lasers/história , Síncrotrons/instrumentação , Difração de Raios X/história , Difração de Raios X/instrumentação , Raios X
2.
Immunity ; 51(1): 43-49.e4, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097341

RESUMO

Gasdermin D (GSDMD) is an effector molecule for pyroptosis downstream of canonical and noncanonical inflammasome signaling pathways. Cleavage of GSDMD by inflammatory caspases triggers the oligomerization and lipid binding by its N-terminal domain, which assembles membrane pores, whereas its C-terminal domain binds the N-terminal domain to inhibit pyroptosis. Despite recent progress in our understanding of the structure and function of the murine gasdermin A3 (mGSDMA3), the molecular mechanisms of GSDMD activation and regulation remain poorly characterized. Here, we report the crystal structures of the full-length murine and human GSDMDs, which reveal the architecture of the GSDMD N-terminal domains and demonstrate distinct and common features of autoinhibition among gasdermin family members utilizing their ß1-ß2 loops. Disruption of the intramolecular domain interface enhanced pyroptosis, whereas mutations at the predicted lipid-binding or oligomerization surface reduced cytolysis. Our study provides a framework for understanding the autoinhibition, lipid binding, and oligomerization of GSDMD by using overlapping interfaces.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Cristalização/métodos , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos , Lipídeos/química , Camundongos , Mutagênese Sítio-Dirigida , Mutação/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Ligação a Fosfato , Conformação Proteica , Domínios Proteicos/genética , Multimerização Proteica , Piroptose/genética , Relação Estrutura-Atividade
3.
Nature ; 611(7937): 695-701, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289344

RESUMO

Although tremendous advances have been made in preparing porous crystals from molecular precursors1,2, there are no general ways of designing and making topologically diversified porous colloidal crystals over the 10-1,000 nm length scale. Control over porosity in this size range would enable the tailoring of molecular absorption and storage, separation, chemical sensing, catalytic and optical properties of such materials. Here, a universal approach for synthesizing metallic open-channel superlattices with pores of 10 to 1,000 nm from DNA-modified hollow colloidal nanoparticles (NPs) is reported. By tuning hollow NP geometry and DNA design, one can adjust crystal pore geometry (pore size and shape) and channel topology (the way in which pores are interconnected). The assembly of hollow NPs is driven by edge-to-edge rather than face-to-face DNA-DNA interactions. Two new design rules describing this assembly regime emerge from these studies and are then used to synthesize 12 open-channel superlattices with control over crystal symmetry, channel geometry and topology. The open channels can be selectively occupied by guests of the appropriate size and that are modified with complementary DNA (for example, Au NPs).


Assuntos
Cristalização , DNA , Ouro , Nanopartículas , DNA/química , Ouro/química , Nanopartículas/química , Tamanho da Partícula , Porosidade , Coloides/química , Cristalização/métodos
4.
J Struct Biol ; 216(2): 108089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537893

RESUMO

Fusion proteins (FPs) are frequently utilized as a biotechnological tool in the determination of macromolecular structures using X-ray methods. Here, we explore the use of different protein tags in various FP, to obtain initial phases by using them in a partial molecular replacement (MR) and constructing the remaining FP structure with ARP/wARP. Usually, the tag is removed prior to crystallization, however leaving the tag on may facilitate crystal formation, and structural determination by expanding phases from known to unknown segments of the complex. In this study, the Protein Data Bank was mined for an up-to-date list of FPs with the most used protein tags, Maltose Binding Protein (MBP), Green Fluorescent Protein (GFP), Thioredoxin (TRX), Glutathione transferase (GST) and the Small Ubiquitin-like Modifier Protein (SUMO). Partial MR using the protein tag, followed by automatic model building, was tested on a subset of 116 FP. The efficiency of this method was analyzed and factors that influence the coordinate construction of a substantial portions of the fused protein were identified. Using MBP, GFP, and SUMO as phase generators it was possible to build at least 75 % of the protein of interest in 36 of the 116 cases tested. Our results reveal that tag selection has a significant impact; tags with greater structural stability, such as GFP, increase the success rate. Further statistical analysis identifies that resolution, Wilson B factor, solvent percentage, completeness, multiplicity, protein tag percentage in the FP (considering amino acids), and the linker length play pivotal roles using our approach. In cases where a structural homologous is absent, this method merits inclusion in the toolkit of protein crystallographers.


Assuntos
Proteínas de Fluorescência Verde , Proteínas Ligantes de Maltose , Proteínas Recombinantes de Fusão , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/química , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo , Cristalografia por Raios X/métodos , Glutationa Transferase/genética , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Modelos Moleculares , Bases de Dados de Proteínas , Cristalização/métodos , Conformação Proteica
5.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36037090

RESUMO

The X-ray diffraction (XRD) technique based on crystallography is the main experimental method to analyze the three-dimensional structure of proteins. The production process of protein crystals on which the XRD technique relies has undergone multiple experimental steps, which requires a lot of manpower and material resources. In addition, studies have shown that not all proteins can form crystals under experimental conditions, and the success rate of the final crystallization of proteins is only <10%. Although some protein crystallization predictors have been developed, not many tools capable of predicting multi-stage protein crystallization propensity are available and the accuracy of these tools is not satisfactory. In this paper, we propose a novel deep learning framework, named SADeepcry, for predicting protein crystallization propensity. The framework can be used to estimate the three steps (protein material production, purification and crystallization) in protein crystallization experiments and the success rate of the final protein crystallization. SADeepcry uses the optimized self-attention and auto-encoder modules to extract sequence, structure and physicochemical features from the proteins. Compared with other state-of-the-art protein crystallization propensity prediction models, SADeepcry can obtain more complex global spatial long-distance dependence of protein sequence information. Our computational results show that SADeepcry has increased Matthews correlation coefficient and area under the curve, by 100.3% and 13.4%, respectively, over the DCFCrystal method on the benchmark dataset. The codes of SADeepcry are available at https://github.com/zhc940702/SADeepcry.


Assuntos
Aprendizado Profundo , Atenção , Cristalização/métodos , Cristalografia por Raios X , Proteínas/química
6.
Mol Pharm ; 21(4): 1794-1803, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401048

RESUMO

Although nucleation is considered the first step in the crystallization of glass materials, the structure and properties of the nuclei are not understood well. Influence of nucleation on the structure and dynamics of celecoxib glass was evaluated in this study. The nuclei for Form III were induced by annealing the glass at freezing temperature, and their impact on the relaxation behavior was investigated using thermal analysis and broadband dielectric spectroscopy to find accelerated α relaxation and suppressed ß relaxation. In addition, observed after nucleation was a decrease in cooperativity of the molecular motion, presumably because of the appearance of void spaces in the glass structure. During long-term isothermal crystallization studies, crystal growth to Form III was accelerated in the presence of the nuclei, whereas this effect was less remarkable when a different crystal form dominated the crystallization behavior. These observations should provide more detailed insights into the nucleation mechanism and impact of nucleation on molecular dynamics including physical stability of pharmaceutical glasses. In addition, discussed is the remarkable acceleration of the crystallization rate of the celecoxib glass just below its Tg, which could be understood by diffusionless crystal growth.


Assuntos
Temperatura Baixa , Simulação de Dinâmica Molecular , Celecoxib , Cristalização/métodos , Vidro/química , Varredura Diferencial de Calorimetria
7.
Mol Pharm ; 21(1): 358-369, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099729

RESUMO

Quabodepistat (code name OPC-167832) is a novel antituberculosis drug candidate. This study aimed to discover cocrystals that improve oral bioavailability and to elucidate the mechanistic differences underlying the bioavailability of different cocrystals. Screening yielded two cocrystals containing 2,5-dihydroxybenzoic acid (2,5DHBA) or 2-hydroxybenzoic acid (2HBA). In bioavailability studies in beagle dogs, both cocrystals exhibited better bioavailability than the free form; however, the extent of bioavailability of cocrystals with 2HBA (quabodepistat-2HBA) was 1.4-fold greater than that of cocrystals with 2,5DHBA (quabodepistat-2,5DHBA). Dissolution studies at pH 1.2 yielded similar profiles for both cocrystals, although the percent dissolution differed: quabodepistat-2HBA dissolved more slowly than quabodepistat-2,5DHBA. The poor solubility of quabodepistat-2HBA is likely the primary factor limiting dissolution at pH 1.2. To identify a dissolution method that maintains the bioavailability in beagle dogs, we performed pH-shift dissolution studies that mimic the dynamic pH change from the stomach to the small intestine. Quabodepistat-2HBA demonstrated supersaturation after the pH was increased to 6.8, while quabodepistat-2,5DHBA did not demonstrate supersaturation. This result was consistent with the results of bioavailability studies in beagle dogs. We conclude that a larger quantity of orally administered quabodepistat-2HBA remained in its cocrystal form while being transferred to the small intestine compared with quabodepistat-2,5DHBA.


Assuntos
Antituberculosos , Animais , Cães , Disponibilidade Biológica , Difração de Raios X , Cristalização/métodos , Solubilidade
8.
Mol Pharm ; 21(8): 4024-4037, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38958508

RESUMO

Crystalline suspensions of monoclonal antibodies (mAbs) have great potential to improve drug substance isolation and purification on a large scale and to be used for drug delivery via high-concentration formulations. Crystalline mAb suspensions are expected to have enhanced chemical and physical properties relative to mAb solutions delivered intravenously, making them attractive candidates for subcutaneous delivery. In contrast to small molecules, the development of protein crystalline suspensions is not a widely used approach in the pharmaceutical industry. This is mainly due to the challenges in finding crystalline hits and the suboptimal physical properties of the resulting crystallites when hits are found. Modern advances in instrumentation and increased knowledge of mAb crystallization have, however, resulted in higher probabilities of discovering crystal forms and improving their particle properties and characterization. In this regard, physical, analytical characterization plays a central role in the initial steps of understanding and later optimizing the crystallization of mAbs and requires careful selection of the appropriate tools. This contribution describes a novel crystal structure of the antibody pembrolizumab and demonstrates the usefulness of small-angle X-ray scattering (SAXS) for characterizing its crystalline suspensions. It illustrates the advantages of SAXS when used to (i) confirm crystallinity and crystal phase of crystallites produced in batch mode; (ii) confirm crystallinity under various conditions and detect variations in crystal phases, enabling fine-tuning of the crystallizations for phase control across multiple batches; (iii) monitor the physical response and stability of the crystallites in suspension with regard to filtration and washing; and (iv) monitor the physical stability of the crystallites upon drying. Overall, this work highlights how SAXS is an essential tool for mAb crystallization characterization.


Assuntos
Anticorpos Monoclonais , Cristalização , Espalhamento a Baixo Ângulo , Difração de Raios X , Cristalização/métodos , Anticorpos Monoclonais/química , Difração de Raios X/métodos
9.
Mol Pharm ; 21(9): 4272-4284, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39135353

RESUMO

There has been a significant volume of work investigating the design and synthesis of new crystalline multicomponent systems via examining complementary functional groups that can reliably interact through the formation of noncovalent bonds, such as hydrogen bonds (H-bonds). Crystalline multicomponent molecular adducts formed using this approach, such as cocrystals, salts, and eutectics, have emerged as drug product intermediates that can lead to effective drug property modifications. Recent advancement in the production for these multicomponent molecular adducts has moved from batch techniques that rely upon intensive solvent use to those that are solvent-free, continuous, and industry-ready, such as reactive extrusion. In this study, a novel eutectic system was found when processing albendazole and maleic acid at a 1:2 molar ratio and successfully prepared using mechanochemical methods including liquid-assisted grinding and hot-melt reactive extrusion. The produced eutectic was characterized to exhibit a 100 °C reduction in melting temperature and enhanced dissolution performance (>12-fold increase at 2 h point), when compared to the native drug compound. To remove handling of the eutectic as a formulation intermediate, an end-to-end continuous-manufacturing-ready process enables feeding of the raw parent reagents in their respective natural forms along with a chosen polymeric excipient, Eudragit EPO. The formation of the eutectic was confirmed to have taken place in situ in the presence of the polymer, with the reaction yield determined using a multivariate calibration model constructed by combining spectroscopic analysis with partial least-squares regression modeling. The ternary extrudates exhibited a dissolution profile similar to that of the 1:2 prepared eutectic, suggesting a physical distribution (or suspension) of the in situ synthesized eutectic contents within the polymeric matrix.


Assuntos
Polímeros , Solubilidade , Análise dos Mínimos Quadrados , Polímeros/química , Química Farmacêutica/métodos , Maleatos/química , Composição de Medicamentos/métodos , Temperatura Alta , Ligação de Hidrogênio , Tecnologia de Extrusão por Fusão a Quente/métodos , Cristalização/métodos
10.
Mol Pharm ; 21(6): 2949-2959, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38685852

RESUMO

Crystallization is a widely used purification technique in the manufacture of active pharmaceutical ingredients (APIs) and precursor molecules. However, when impurities and desired compounds have similar molecular structures, separation by crystallization may become challenging. In such cases, some impurities may form crystalline solid solutions with the desired product during recrystallization. Understanding the molecular structure of these recrystallized solid solutions is crucial to devise methods for effective purification. Unfortunately, there are limited analytical techniques that provide insights into the molecular structure or spatial distribution of impurities that are incorporated within recrystallized products. In this study, we investigated model solid solutions formed by recrystallizing salicylic acid (SA) in the presence of anthranilic acid (AA). These two molecules are known to form crystalline solid solutions due to their similar molecular structures. To overcome challenges associated with the long 1H longitudinal relaxation times (T1(1H)) of SA and AA, we employed dynamic nuclear polarization (DNP) and 15N isotope enrichment to enable solid-state NMR experiments. Results of solid-state NMR experiments and DFT calculations revealed that SA and AA are homogeneously alloyed as a solid solution. Heteronuclear correlation (HETCOR) experiments and plane-wave DFT structural models provide further evidence of the molecular-level interactions between SA and AA. This research provides valuable insights into the molecular structure of recrystallized solid solutions, contributing to the development of effective purification strategies and an understanding of the physicochemical properties of solid solutions.


Assuntos
Isótopos de Carbono , Cristalização , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio , Ácido Salicílico , ortoaminobenzoatos , Espectroscopia de Ressonância Magnética/métodos , Ácido Salicílico/química , Cristalização/métodos , Isótopos de Nitrogênio/química , ortoaminobenzoatos/química , Isótopos de Carbono/química , Soluções/química , Estrutura Molecular
11.
Mol Pharm ; 21(6): 2894-2907, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38688017

RESUMO

The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modulated pharmacological benefits. Therefore, with the aim to improve the solubility and dissolution rate of the drug chlorpropamide (CPA), the mechanochemical liquid-assisted grinding (LAG) of the drug with several pharmaceutically accepted excipients was performed. This contributed to the discovery of six novel solid phases, namely salts, salt cocrystals and salt cocrystal hydrate─the salt of CPA with 3, 4-diaminopyridine (DAP); salt and salt cocrystal (SC) polymorph (Z″=3) with 1, 4-diazabicyclo [2.2.2] octane (DABCO); a salt, SC polymorph (Z″=9), and a SC hydrate (Z″=9) with piperazine (PIP). The formation of these salts and salt cocrystals are mainly guided by the strong hydrogen bonds with tunable strength having high electrostatic contribution. This attractive interaction brings the donor and the acceptor atoms close to each other for a facile proton transfer. Furthermore, the conformational constraints on the drug molecules, provided by the excipients via strong and directional hydrogen bonds, are quite impressive as this leads to the identification and characterization of "new conformational isomers" for the CPA molecules. The new crystalline phases exhibit enhanced intrinsic dissolution rate in comparison to that of the pure drug, the magnitude being 7, 131, and 120 folds for CPADAP, CPADABCO_II, and CPAPIP_III, respectively. Furthermore, it is interesting to note that the order of solubility is enhanced by 2.7-, 3-, and 7-fold, respectively, for the abovementioned salts. This also mirrors the trends in the magnitude of the binding energy, the higher magnitude being reflected in the lower solubility. Additionally, the in vivo experiments performed in SD rats results in the enhancement of the magnitude of the pharmacokinetic properties, when compared to the pristine drug. The concentration of the drug in CPADABCO_II and CPAPIP_III formulations exhibits 6- and 4-fold increments, respectively. Indeed, these results corroborate to the trends observed in the structural characterization, intermolecular energy calculations, solubility, and in vitro dissolution assessments.


Assuntos
Clorpropamida , Cristalização , Ligação de Hidrogênio , Sais , Solubilidade , Cristalização/métodos , Sais/química , Clorpropamida/química , Química Farmacêutica/métodos , Excipientes/química , Composição de Medicamentos/métodos , Animais , Ratos , Disponibilidade Biológica
12.
Mol Pharm ; 21(6): 2908-2921, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38743928

RESUMO

The physical stability of amorphous solid dispersions (ASDs) is a major topic in the formulation research of oral dosage forms. To minimize the effort of investigating the long-term stability using cost- and time-consuming experiments, we developed a thermodynamic and kinetic modeling framework to predict and understand the crystallization kinetics of ASDs during long-term storage below the glass transition. Since crystallization of the active phrarmaceutical ingredients (APIs) in ASDs largely depends on the amount of water absorbed by the ASDs, water-sorption kinetics and API-crystallization kinetics were considered simultaneously. The developed modeling approach allows prediction of the time evolution of viscosity, supersaturation, and crystallinity as a function of drug load, relative humidity, and temperature. It was applied and evaluated against two-year-lasting crystallization experiments of ASDs containing nifedipine and copovidone or HPMCAS measured in part I of this work. We could show that the proposed modeling approach is able to describe the interplay between water sorption and API crystallization and to predict long-term stabilities of ASDs just based on short-term measurements. Most importantly, it enables explaining and understanding the reasons for different and sometimes even unexpected crystallization behaviors of ASDs.


Assuntos
Cristalização , Água , Cristalização/métodos , Água/química , Cinética , Estabilidade de Medicamentos , Nifedipino/química , Compostos de Vinila/química , Termodinâmica , Pirrolidinas/química , Viscosidade , Química Farmacêutica/métodos , Umidade , Temperatura , Solubilidade , Metilcelulose/química , Metilcelulose/análogos & derivados
13.
Mol Pharm ; 21(7): 3375-3382, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885189

RESUMO

Recent work has shown that an amorphous drug-polymer salt can be highly stable against crystallization under hot and humid storage conditions (e.g., 40 °C/75% RH) and provide fast release and that these advantages depend on the degree of salt formation. Here, we investigate the salt formation between the basic drug lumefantrine (LMF) and several acidic polymers: poly(acrylic acid) (PAA), hypromellose phthalate (HPMCP), hypromellose acetate succinate (HPMCAS), cellulose acetate phthalate (CAP), Eudragit L100, and Eudragit L100-55. Salt formation was performed by "slurry synthesis" where dry components were mixed at room temperature in the presence of a small quantity of an organic solvent, which was subsequently removed. This method achieved more complete salt formation than the conventional methods of hot-melt extrusion and rotary evaporation. The acidic group density of a polymer was determined by nonaqueous titration in the same solvent used for slurry synthesis; the degree of LMF protonation was determined by X-ray photoelectron spectroscopy. The polymers studied show very different abilities to protonate LMF when compared at a common drug loading, following the order PAA > (HPMCP ∼ CAP ∼ L100 ∼ L100-55) > HPMCAS, but the difference largely disappears when the degree of protonation is plotted against the concentration of the available acidic groups for reaction. This indicates that the extent of salt formation is mainly controlled by the acidic group density and is less sensitive to the polymer architecture. Our results are relevant for selecting the optimal polymer to control the degree of ionization in amorphous solid dispersions.


Assuntos
Polímeros , Polímeros/química , Metilcelulose/química , Metilcelulose/análogos & derivados , Cristalização/métodos , Celulose/química , Celulose/análogos & derivados , Resinas Acrílicas/química , Sais/química , Derivados da Hipromelose/química , Solubilidade
14.
Mol Pharm ; 21(7): 3233-3239, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38804156

RESUMO

Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic imaging is a powerful tool to visualize the distribution of components, and it has been used to analyze drug release from tablets. In this work, ATR-FTIR spectroscopic imaging was applied for observing the dissolution of molecular crystals from tablet compacts. The IR spectra provided chemically specific information about the transformation of crystal structures during the dissolution experiments. Theophylline (TPL) anhydrate and its cocrystals were used as model systems of molecular crystals. The IR spectra during the dissolution of TPL revealed information about the crystal structure of TPL, which transformed from anhydrate to monohydrate in water. During a dissolution test of a model cocrystal system, it was suggested that an active pharmaceutical ingredient (API) and a coformer were dissolved in water simultaneously. The IR spectra that were acquired during the dissolution of a cocrystal tablet showed new spectral bands attributed to the API after 5 min. This suggested that the precipitation of API was observed during the dissolution experiment. Measurements from ATR-FTIR spectroscopic imaging can visualize the drug release from the tablet and determine the transformation of molecular crystals during their dissolution. These results will have an impact on clarifying the dissolution mechanism of molecular crystals.


Assuntos
Cristalização , Solubilidade , Comprimidos , Teofilina , Teofilina/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Comprimidos/química , Cristalização/métodos , Liberação Controlada de Fármacos , Química Farmacêutica/métodos
15.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38551918

RESUMO

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Assuntos
Varredura Diferencial de Calorimetria , Excipientes , Liofilização , Poloxâmero , Trealose , Liofilização/métodos , Poloxâmero/química , Excipientes/química , Trealose/química , Varredura Diferencial de Calorimetria/métodos , Sacarose/química , Difração de Raios X , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Cristalização/métodos , Química Farmacêutica/métodos , Proteínas/química , Composição de Medicamentos/métodos , Congelamento
16.
Mol Pharm ; 21(11): 5716-5727, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39392428

RESUMO

An integrated strategy by combining cocrystallization with nanotechnology is developed to optimize in vitro/vivo performances of marine antitumor drug cytarabine (ARA) and further obtain innovative insights into the exploitation of cocrystal alloy nanoformulation. Therein, the optimization of properties and synergistic effects of ARA mainly depends on assembling with uracil (U) and antitumor drug 5-fluorouracil (FU) into the same crystal by cocrystallization technology, while the long-term efficacy is primarily maintained by playing the superiority of nanotechnology. Along this line, the first cocrystal alloy of ARA, viz., ARA-FU-U (0.6:0.4), is successfully obtained and then transformed into a nanocrystal. Single-crystal X-ray diffraction analysis demonstrates that this cocrystal alloy consists of two isomorphic cocrystals of ARA, namely, ARA-FU and ARA-U, in 0.6:0.4 ratio. An R22(8) hydrogen-bonding cyclic system formed by a cytosine fragment of ARA with U or FU can protect and stabilize the amine group on ARA, laying the foundation for regulating its properties. The in vitro/in vivo properties of the cocrystal alloy and its nanocrystals are investigated by theoretical and experimental means. It reveals that both the alloy and nanocrystal can improve physicochemical properties and promote drug absorption, thus bringing to optimized pharmacokinetic behaviors. The nanocrystal produces superior effects than the alloy that helps to extend therapeutic time and action. Particularly, relative to the corresponding binary cocrystal, the synergistic antitumor activity of ARA and FU in the cocrystal alloy is heightened obviously. It may be that U contributes to reducing the degradation of FU, specifically increasing its concentration in tumors to enhance the synergistic effects of FU and ARA. These findings provide new thoughts for the application of cocrystal alloys in the marine drug field and break fresh ground for cocrystal alloy formulations to optimize drug properties.


Assuntos
Ligas , Citarabina , Fluoruracila , Nanopartículas , Animais , Fluoruracila/química , Fluoruracila/farmacologia , Fluoruracila/administração & dosagem , Ligas/química , Camundongos , Citarabina/química , Nanopartículas/química , Sinergismo Farmacológico , Linhagem Celular Tumoral , Cristalização/métodos , Difração de Raios X/métodos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Humanos , Uracila/química , Composição de Medicamentos/métodos , Camundongos Endogâmicos BALB C
17.
Nature ; 556(7699): 89-94, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29620730

RESUMO

The formation of condensed (compacted) protein phases is associated with a wide range of human disorders, such as eye cataracts, amyotrophic lateral sclerosis, sickle cell anaemia and Alzheimer's disease. However, condensed protein phases have their uses: as crystals, they are harnessed by structural biologists to elucidate protein structures, or are used as delivery vehicles for pharmaceutical applications. The physiochemical properties of crystals can vary substantially between different forms or structures ('polymorphs') of the same macromolecule, and dictate their usability in a scientific or industrial context. To gain control over an emerging polymorph, one needs a molecular-level understanding of the pathways that lead to the various macroscopic states and of the mechanisms that govern pathway selection. However, it is still not clear how the embryonic seeds of a macromolecular phase are formed, or how these nuclei affect polymorph selection. Here we use time-resolved cryo-transmission electron microscopy to image the nucleation of crystals of the protein glucose isomerase, and to uncover at molecular resolution the nucleation pathways that lead to two crystalline states and one gelled state. We show that polymorph selection takes place at the earliest stages of structure formation and is based on specific building blocks for each space group. Moreover, we demonstrate control over the system by selectively forming desired polymorphs through site-directed mutagenesis, specifically tuning intermolecular bonding or gel seeding. Our results differ from the present picture of protein nucleation, in that we do not identify a metastable dense liquid as the precursor to the crystalline state. Rather, we observe nucleation events that are driven by oriented attachments between subcritical clusters that already exhibit a degree of crystallinity. These insights suggest ways of controlling macromolecular phase transitions, aiding the development of protein-based drug-delivery systems and macromolecular crystallography.


Assuntos
Aldose-Cetose Isomerases/química , Cristalização/métodos , Nanopartículas/química , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/ultraestrutura , Sulfato de Amônio/química , Sulfato de Amônio/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Géis/química , Géis/farmacologia , Microscopia Eletrônica de Transmissão , Mutagênese Sítio-Dirigida , Nanopartículas/ultraestrutura , Transição de Fase/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Streptomyces/enzimologia
18.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34873060

RESUMO

The relationship between sample thickness and quality of data obtained is investigated by microcrystal electron diffraction (MicroED). Several electron microscopy (EM) grids containing proteinase K microcrystals of similar sizes from the same crystallization batch were prepared. Each grid was transferred into a focused ion beam and a scanning electron microscope in which the crystals were then systematically thinned into lamellae between 95- and 1,650-nm thick. MicroED data were collected at either 120-, 200-, or 300-kV accelerating voltages. Lamellae thicknesses were expressed in multiples of the corresponding inelastic mean free path to allow the results from different acceleration voltages to be compared. The quality of the data and subsequently determined structures were assessed using standard crystallographic measures. Structures were reliably determined with similar quality from crystalline lamellae up to twice the inelastic mean free path. Lower resolution diffraction was observed at three times the mean free path for all three accelerating voltages, but the data quality was insufficient to yield structures. Finally, no coherent diffraction was observed from lamellae thicker than four times the calculated inelastic mean free path. This study benchmarks the ideal specimen thickness with implications for all cryo-EM methods.


Assuntos
Benchmarking/métodos , Microscopia Crioeletrônica/métodos , Manejo de Espécimes/métodos , Animais , Cristalização/métodos , Cristalografia , Elétrons , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Moleculares
19.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34772804

RESUMO

Unicellular marine microalgae are responsible for one of the largest carbon sinks on Earth. This is in part due to intracellular formation of calcium carbonate scales termed coccoliths. Traditionally, the influence of changing environmental conditions on this process has been estimated using poorly constrained analogies to crystallization mechanisms in bulk solution, yielding ambiguous predictions. Here, we elucidated the intracellular nanoscale environment of coccolith formation in the model species Pleurochrysis carterae using cryoelectron tomography. By visualizing cells at various stages of the crystallization process, we reconstructed a timeline of coccolith development. The three-dimensional data portray the native-state structural details of coccolith formation, uncovering the crystallization mechanism, and how it is spatially and temporally controlled. Most strikingly, the developing crystals are only tens of nanometers away from delimiting membranes, resulting in a highly confined volume for crystal growth. We calculate that the number of soluble ions that can be found in such a minute volume at any given time point is less than the number needed to allow the growth of a single atomic layer of the crystal and that the uptake of single protons can markedly affect nominal pH values. In such extreme confinement, the crystallization process is expected to depend primarily on the regulation of ion fluxes by the living cell, and nominal ion concentrations, such as pH, become the result, rather than a driver, of the crystallization process. These findings call for a new perspective on coccolith formation that does not rely exclusively on solution chemistry.


Assuntos
Carbonato de Cálcio/metabolismo , Microalgas/metabolismo , Cristalização/métodos , Planeta Terra , Haptófitas/metabolismo , Concentração de Íons de Hidrogênio , Prótons
20.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542174

RESUMO

The present study was designed to investigate the physical stability of three organic materials with similar chemical structures. The examined compounds revealed completely different crystallization tendencies in their supercooled liquid states and were classified into three distinct classes based on their tendency to crystallize. (S)-4-Benzyl-2-oxazolidinone easily crystallizes during cooling from the melt; (S)-4-Benzylthiazolidine-2-thione does not crystallize during cooling from the melt, but crystallizes easily during subsequent reheating above Tg; and (S)-4-Benzyloxazolidine-2-thione does not crystallize either during cooling from the melt or during reheating. Such different tendencies to crystallize are observed despite the very similar chemical structures of the compounds, which only differ in oxide or sulfur atoms in one of their rings. We also studied the isothermal crystallization kinetics of the materials that were shown to transform into a crystalline state. Molecular dynamics and thermal properties were thoroughly investigated using broadband dielectric spectroscopy, as well as conventional and temperature-modulated differential scanning calorimetry in the wide temperature range. It was found that all three glass formers have the same dynamic fragility (m = 93), calculated directly from dielectric structural relaxation times. This result verifies that dynamic fragility is not related to the tendency to crystallize. In addition, thermodynamic fragility predictions were also made using calorimetric data. It was found that the thermodynamic fragility evaluated based on the width of the glass transition, observed in the temperature dependence of heat capacity, correlates best with the tendency to crystallize.


Assuntos
Tionas , Cristalização/métodos , Transição de Fase , Temperatura , Termodinâmica , Varredura Diferencial de Calorimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA