Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.330
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 178(2): 346-360.e24, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31257026

RESUMO

Neutrophils are a component of the tumor microenvironment and have been predominantly associated with cancer progression. Using a genetic approach complemented by adoptive transfer, we found that neutrophils are essential for resistance against primary 3-methylcholantrene-induced carcinogenesis. Neutrophils were essential for the activation of an interferon-γ-dependent pathway of immune resistance, associated with polarization of a subset of CD4- CD8- unconventional αß T cells (UTCαß). Bulk and single-cell RNA sequencing (scRNA-seq) analyses unveiled the innate-like features and diversity of UTCαß associated with neutrophil-dependent anti-sarcoma immunity. In selected human tumors, including undifferentiated pleomorphic sarcoma, CSF3R expression, a neutrophil signature and neutrophil infiltration were associated with a type 1 immune response and better clinical outcome. Thus, neutrophils driving UTCαß polarization and type 1 immunity are essential for resistance against murine sarcomas and selected human tumors.


Assuntos
Resistência à Doença , Neoplasias/patologia , Neutrófilos/imunologia , Sarcoma/patologia , Linfócitos T/metabolismo , Animais , Cromonas/toxicidade , Resistência à Doença/imunologia , Humanos , Imunidade Inata , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Estimativa de Kaplan-Meier , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/mortalidade , Infiltração de Neutrófilos , Neutrófilos/citologia , Neutrófilos/metabolismo , Receptores de Fator Estimulador de Colônias/metabolismo , Sarcoma/induzido quimicamente , Sarcoma/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Microambiente Tumoral
2.
J Cell Mol Med ; 28(4): e18130, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332511

RESUMO

The dressing that promotes scarless healing is essential for both normal function and aesthetics after a wound. With a deeper understanding of the mechanisms involved in scar formation during the wound healing process, the ideal dressing becomes clearer and more promising. For instance, the yes-associated transcriptional regulator (YAP) has been extensively studied as a key gene involved in regulating scar formation. However, there has been limited attention given to pectolinarin, a natural flavonoid that may exhibit strong binding affinity to YAP, in the context of scarless healing. In this study, we successfully developed a temperature-sensitive Pluronic@F-127 hydrogel as a platform for delivering pectolinarin to promote scarless wound healing. The bioactive pectolinarin was released from the hydrogel, effectively enhancing endothelial cell migration, proliferation and the expression of angiogenesis-related genes. Additionally, a concentration of 20 µg/mL of pectolinarin demonstrated remarkable antioxidant ability, capable of counteracting the detrimental effects of reactive oxygen species (ROS). Our results from rat wound healing models demonstrated that the hydrogel accelerated wound healing, promoting re-epithelialization and facilitating skin appendage regeneration. Furthermore, we discovered that a concentration of 50 µg/mL of pectolinarin incorporated to the hydrogel exhibited the most favourable outcomes in terms of promoting wound healing and minimizing scar formation. Overall, our study highlights that the significant potential of locally released pectolinarin might substantially inhibit YAP and promoting scarless wound healing.


Assuntos
Cromonas , Cicatriz , Hidrogéis , Ratos , Animais , Cicatriz/patologia , Hidrogéis/farmacologia , Temperatura , Cicatrização
3.
Immunology ; 172(3): 486-499, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38547355

RESUMO

To explore the effect of K33 only mutant ubiquitin (K33O) on bone marrow-derived dendritic cells' (BMDCs') maturity, antigen uptake capability, surface molecule expressions and BMDC-mediated CTL priming, and further investigate the role of PI3K-Akt engaged in K33O-increased BMDC maturation, antigen uptake and presentation, surface molecule expressions and BMDC-based CTL priming. BMDCs were conferred K33O and other ubiquitin mutants (K33R, K48R, K63R-mutant ubiquitin) incubation or LY294002 and wortmannin pretreatment. PI3K-Akt phosphorylation, antigen uptake, antigenic presentation and CD86/MHC class I expression in BMDC were determined by western blot or flow cytometry. BMDC-based CTL proliferation and priming were determined by in vitro mixed lymphocyte reaction (MLR), ex vivo enzyme-linked immunospot assay (Elispot) and flow cytometry with intracellular staining, respectively. The treatment with K33O effectively augmented PI3K-Akt phosphorylation, BMDCs' antigen uptake, antigenic presentation, CD86/MHC class I and CD11c expressions. MLR, Elispot and flow cytometry revealed that K33O treatment obviously enhanced CTL proliferation, CTL priming and perforin/granzyme B expression. The pretreatment with PI3K-Akt inhibitors efficiently abrogated K33O's effects on BMDC. The replenishment of K33 only mutant ubiquitin augments BMDC-mediated CTL priming in bone marrow-derived dendritic cells via PI3K-Akt signalling.


Assuntos
Apresentação de Antígeno , Células da Medula Óssea , Células Dendríticas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Linfócitos T Citotóxicos , Ubiquitina , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitina/metabolismo , Linfócitos T Citotóxicos/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apresentação de Antígeno/imunologia , Camundongos Endogâmicos C57BL , Fosforilação , Ativação Linfocitária , Diferenciação Celular , Mutação , Morfolinas/farmacologia , Teste de Cultura Mista de Linfócitos , Proliferação de Células , Antígeno B7-2/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/imunologia , Células Cultivadas , Cromonas/farmacologia , Wortmanina/farmacologia , Androstadienos/farmacologia
4.
Clin Immunol ; 263: 110228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663494

RESUMO

Asthma is a heterogeneous disease characterized by chronic airway inflammation, reversible airflow limitation, and airway remodeling. Eosinophil peroxidase (EPX) is the most abundant secondary granule protein unique to activated eosinophils. In this study, we aimed to illustrate the effect of EPX on the epithelial-mesenchymal transition (EMT) in BEAS-2B cells. Our research found that both EPX and ADAM33 were negatively correlated with FEV1/FVC and FEV1%pred, and positively correlated with IL-5 levels. Asthma patients had relatively higher levels of ADAM33 and EPX compared to the healthy control group. The expression of TSLP, TGF-ß1 and ADAM33 in the EPX intervention group was significantly higher. Moreover, EPX could promote the proliferation, migration and EMT of BEAS-2B cells, and the effect of EPX on various factors was significantly improved by the PI3K inhibitor LY294002. The findings from this study could potentially offer a novel therapeutic target for addressing airway remodeling in bronchial asthma, particularly focusing on EMT.


Assuntos
Remodelação das Vias Aéreas , Asma , Brônquios , Peroxidase de Eosinófilo , Células Epiteliais , Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta1 , Humanos , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Asma/imunologia , Masculino , Feminino , Células Epiteliais/metabolismo , Peroxidase de Eosinófilo/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Pessoa de Meia-Idade , Adulto , Brônquios/patologia , Interleucina-5/metabolismo , Cromonas/farmacologia , Citocinas/metabolismo , Linhagem Celular , Linfopoietina do Estroma do Timo , Proliferação de Células , Movimento Celular , Morfolinas/farmacologia , Proteínas ADAM
5.
Mol Med ; 30(1): 43, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539088

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been implicated in multiple inflammatory and non-inflammatory diseases, including liver injury induced by acetaminophen (APAP) overdose. Multiple small molecule inhibitors of MIF have been described, including the clinically available anti-rheumatic drug T-614 (iguratimod); however, this drug's mode of inhibition has not been fully investigated. METHODS: We conducted in vitro testing including kinetic analysis and protein crystallography to elucidate the interactions between MIF and T-614. We also performed in vivo experiments testing the efficacy of T-614 in a murine model of acetaminophen toxicity. We analyzed survival in lethal APAP overdose with and without T-614 and using two different dosing schedules of T-614. We also examined MIF and MIF inhibition effects on hepatic hydrogen peroxide (H2O2) as a surrogate of oxidative stress in non-lethal APAP overdose. RESULTS: Kinetic analysis was consistent with a non-competitive type of inhibition and an inhibition constant (Ki) value of 16 µM. Crystallographic analysis revealed that T-614 binds outside of the tautomerase active site of the MIF trimer, with only the mesyl group of the molecule entering the active site pocket. T-614 improved survival in lethal APAP overdose when given prophylactically, but this protection was not observed when the drug was administered late (6 h after APAP). T-614 also decreased hepatic hydrogen peroxide concentrations during non-lethal APAP overdose in a MIF-dependent fashion. CONCLUSIONS: T-614 is an allosteric inhibitor of MIF that prevented death and decreased hepatic hydrogen peroxide concentrations when given prophylactically in a murine model of acetaminophen overdose. Further studies are needed to elucidate the mechanistic role of MIF in APAP toxicity.


Assuntos
Benzopiranos , Doença Hepática Induzida por Substâncias e Drogas , Cromonas , Fatores Inibidores da Migração de Macrófagos , Sulfonamidas , Camundongos , Animais , Acetaminofen/efeitos adversos , Peróxido de Hidrogênio/metabolismo , Modelos Animais de Doenças , Cinética , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo , Fígado/metabolismo
6.
Small ; 20(13): e2304150, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37964398

RESUMO

Rheumatoid arthritis (RA), a systemic autoimmune disease, poses a significant human health threat. Iguratimod (IGUR), a novel disease-modifying antirheumatic drug (DMARD), has attracted great attention for RA treatment. Due to IGUR's hydrophobic nature, there's a pressing need for effective pharmaceutical formulations to enhance bioavailability and therapeutic efficacy. The high-gravity nanoprecipitation technique (HGNPT) emerges as a promising approach for formulating poorly water-soluble drugs. In this study, IGUR nanodrugs (NanoIGUR) are synthesized using HGNPT, with a focus on optimizing various operational parameters. The outcomes revealed that HGNPT enabled the continuous production of NanoIGUR with smaller sizes (ranging from 300 to 1000 nm), more uniform shapes, and reduced crystallinity. In vitro drug release tests demonstrated improved dissolution rates with decreasing particle size and crystallinity. Notably, in vitro and in vivo investigations showcased NanoIGUR's efficacy in inhibiting synovial fibroblast proliferation, migration, and invasion, as well as reducing inflammation in collagen-induced arthritis. This study introduces a promising strategy to enhance and broaden the application of poorly water-soluble drugs.


Assuntos
Antirreumáticos , Artrite Reumatoide , Cromonas , Nanopartículas , Sulfonamidas , Humanos , Álcool de Polivinil , Artrite Reumatoide/tratamento farmacológico , Antirreumáticos/química , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Água
7.
J Exp Bot ; 75(11): 3452-3466, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38497815

RESUMO

The 2-(2-phenethyl)chromones (PECs) are the signature constituents responsible for the fragrance and pharmacological properties of agarwood. O-Methyltransferases (OMTs) are necessary for the biosynthesis of methylated PECs, but there is little known about OMTs in Aquilaria sinensis. In this study, we identified 29 OMT genes from the A. sinensis genome. Expression analysis showed they were differentially expressed in different tissues and responded to drill wounding. Comprehensive analysis of the gene expression and methylated PEC content revealed that AsOMT2, AsOMT8, AsOMT11, AsOMT16, and AsOMT28 could potentially be involved in methylated PECs biosynthesis. In vitro enzyme assays and functional analysis in Nicotiana benthamiana demonstrated that AsOMT11 and AsOMT16 could methylate 6-hydroxy-2-(2-phenylethyl)chromone to form 6-methoxy-2-(2-phenylethyl)chromone. A transient overexpression experiment in the variety 'Qi-Nan' revealed that AsOMT11 and AsOMT16 could significantly promote the accumulation of three major methylated PECs. Our results provide candidate genes for the mass production of methylated PECs using synthetic biology.


Assuntos
Metiltransferases , Proteínas de Plantas , Thymelaeaceae , Thymelaeaceae/genética , Thymelaeaceae/metabolismo , Thymelaeaceae/enzimologia , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cromonas/metabolismo , Madeira/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Metilação , Regulação da Expressão Gênica de Plantas , Flavonoides
8.
Microb Pathog ; 190: 106636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556103

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in children and travelers in low-income regions. The virulence of ETEC is attributed to its heat-labile and heat-stable enterotoxins, as well as its colonization factors (CFs). CFs are essential for ETEC adherence to the intestinal epithelium. However, its invasive capability remains unelucidated. In this study, we demonstrated that the CS6-positive ETEC strain 4266 can invade mammalian epithelial cells. The invasive capability was reduced in the 4266 ΔCS6 mutant but reintroduction of CS6 into this mutant restored the invasiveness. Additionally, the laboratory E. coli strain Top 10, which lacks the invasive capability, was able to invade Caco-2 cells after gaining the CS6-expressing plasmid pCS6. Cytochalasin D inhibited cell invasion in both 4266 and Top10 pCS6 cells, and F-actin accumulation was observed near the bacteria on the cell membrane, indicating that CS6-positive bacteria were internalized via actin polymerization. Other cell signal transduction inhibitors, such as genistein, wortmannin, LY294002, PP1, and Ro 32-0432, inhibited the CS6-mediated invasion of Caco-2 cells. The internalized bacteria of both 4266 and Top10 pCS6 strains were able to survive for up to 48 h, and 4266 cells were able to replicate within Caco-2 cells. Immunofluorescence microscopy revealed that the internalized 4266 cells were present in bacteria-containing vacuoles, which underwent a maturation process indicated by the recruitment of the early endosomal marker EEA-1 and late endosomal marker LAMP-1 throughout the infection process. The autophagy marker LC3 was also observed near these vacuoles, indicating the initiation of LC-3-associated phagocytosis (LAP). However, intracellular bacteria continued to replicate, even after the initiation of LAP. Moreover, intracellular filamentation was observed in 4266 cells at 24 h after infection. Overall, this study shows that CS6, in addition to being a major CF, mediates cell invasion. This demonstrates that once internalized, CS6-positive ETEC is capable of surviving and replicating within host cells. This capability may be a key factor in the extended and recurrent nature of ETEC infections in humans, thus highlighting the critical role of CS6.


Assuntos
Citocalasina D , Escherichia coli Enterotoxigênica , Proteínas de Escherichia coli , Humanos , Células CACO-2 , Escherichia coli Enterotoxigênica/patogenicidade , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Citocalasina D/farmacologia , Actinas/metabolismo , Células Epiteliais/microbiologia , Aderência Bacteriana , Infecções por Escherichia coli/microbiologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/genética , Morfolinas/farmacologia , Transdução de Sinais , Androstadienos/farmacologia , Wortmanina/farmacologia , Endocitose , Cromonas/farmacologia , Plasmídeos/genética
9.
J Org Chem ; 89(16): 11671-11681, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39096319

RESUMO

2-Alkyl chromanone scaffold has become prominent in pharmaceuticals and natural compounds. Consequently, devising robust strategies for synthesizing 2-alkyl chromanones remains crucial. Here, multicomponent reactions were employed to synthesize 2-alkyl chromanones containing an oxazole moiety using 3-formylchromones, amines, and N-propargylamides as reactants. This method utilizes readily available feedstocks with a catalytic amount of Zn(OTf)2 and exhibits an impressive substrate scope compared to existing methods. Importantly, the synthesized compounds demonstrated highly selective anticancer activity against the DU145 cell line.


Assuntos
Antineoplásicos , Cromonas , Ácidos de Lewis , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Humanos , Cromonas/química , Cromonas/farmacologia , Cromonas/síntese química , Linhagem Celular Tumoral , Ácidos de Lewis/química , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Catálise , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 109: 129853, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909705

RESUMO

Overexpression of Bcl-2 protein is a predominant hallmark of disturbed apoptotic pathway in most of the cancers. Herein, chromone-linked thiazolidinediones were designed and synthesized to target Bcl-2 for regulating anti-apoptotic proteins. The study on in vitro cancer cell lines revealed the presence of compounds 8a, 8k, 8l, and 8n, which were found to have good to moderate anti-proliferative activity (with an IC50 concentration less than 10 µM). Among them, 8l depicted the highest cytotoxicity on the A549 cell line with an IC50 of 6.1 ± 0.02 µM. Aberrantly, the compounds displayed less toxicity towards human embryonic kidney HEK cells underlining its selectivity. The DCFDA study revealed a gradual increase in the ROS generation of 8l, followed by its quantification by flow analysis. Similarly, the studies including DAPI, AO/EtBr and Annexin-V binding clearly elucidated the DNA damage, membrane integrity prospects, and insights for early and late apoptotic phases. Markedly, the Bcl-2-FITC anti-body study revealed that compound 8l reduced the expression of anti-apoptotic proteins by 79.1 % compared to the control at 9 µM concentration. In addition, the molecular docking study provided the impending scope of these hybrids, showing promising interaction with the Mcl-1 target (member of the Bcl-2 family) with comparable binding affinities.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Cromonas , Ensaios de Seleção de Medicamentos Antitumorais , Tiazolidinedionas , Humanos , Apoptose/efeitos dos fármacos , Cromonas/farmacologia , Cromonas/química , Cromonas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Tiazolidinedionas/farmacologia , Tiazolidinedionas/química , Tiazolidinedionas/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Células HEK293 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral
11.
Org Biomol Chem ; 22(30): 6189-6197, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39027944

RESUMO

A series of chromone-deferiprone hybrids were designed, synthesized, and evaluated as inhibitors of human monoamine oxidase B (hMAO-B) with iron-chelating activity for the treatment of Alzheimer's disease (AD). The majority exhibited moderate inhibitory activity towards hMAO-B and potent iron-chelating properties. Particularly, compound 25c demonstrated remarkable selectivity against hMAO-B with an IC50 value of 1.58 µM and potent iron-chelating ability (pFe3+ = 18.79) comparable to that of deferiprone (pFe3+ = 17.90). Molecular modeling and kinetic studies showed that 25c functions as a non-competitive hMAO-B inhibitor. According to the predicted results, compound 25c can penetrate the blood-brain barrier (BBB). Additionally, it has been proved to display significant antioxidant activity and the ability to inhibit neuronal ferroptosis. More importantly, compound 25c reduced the cognitive impairment induced by scopolamine and showed significant non-toxicity in short-term toxicity assays. In summary, compound 25c was identified as a potential anti-AD agent with hMAO-B inhibitory, iron-chelating and anti-ferroptosis activities.


Assuntos
Doença de Alzheimer , Cromonas , Deferiprona , Quelantes de Ferro , Inibidores da Monoaminoxidase , Monoaminoxidase , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/síntese química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Quelantes de Ferro/farmacologia , Quelantes de Ferro/química , Quelantes de Ferro/síntese química , Deferiprona/farmacologia , Deferiprona/química , Monoaminoxidase/metabolismo , Humanos , Cromonas/química , Cromonas/farmacologia , Cromonas/síntese química , Relação Estrutura-Atividade , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Ferroptose/efeitos dos fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Relação Dose-Resposta a Droga
12.
J Pharmacol Sci ; 154(2): 113-126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246725

RESUMO

Excessive bone resorption caused by upregulated osteoclast activity is a key factor in osteoporosis pathogenesis. Farrerol is a typical natural flavanone and exhibits various pharmacological actions. However, the role and mechanism of action of farrerol in osteoclast differentiation regulation remain unclear. This study aimed to evaluate the effects and mechanism of farrerol on the inhibition of osteoclastogenesis. Tartrate-resistant acid phosphatase staining, F-actin staining, and the pit formation assay were performed to examine the differentiation and functions of osteoclasts in vitro. The expression of proteins associated with the nuclear factor kappa B and mitogen-activated protein kinase signaling pathways was analyzed by western blotting. Dual X-ray absorptiometry, microcomputed tomography, and histopathological and immunohistochemical analyses were performed to determine the therapeutic effect of farrerol in vivo bone loss prevention. The effects of farrerol on osteoblastic bone formation were assessed using alkaline phosphatase, alizarin red S staining, and calcein-alizarin red S double labeling. Farrerol inhibited osteoclastogenesis and bone resorption in osteoclasts by suppressing nuclear factor kappa B signaling rather than mitogen-activated protein kinase signaling in vitro. Farrerol protected mice against ovariectomy-induced bone loss by inhibiting osteoclast-mediated bone resorption, instead of promoting osteoblast-mediated bone formation in vivo. The findings of the current study revealed that farrerol is a potential therapeutic agent for osteoporosis.


Assuntos
Antraquinonas , Reabsorção Óssea , Cromonas , Osteoporose Pós-Menopausa , Osteoporose , Feminino , Humanos , Animais , Camundongos , NF-kappa B , Osteoclastos , Osteoporose Pós-Menopausa/tratamento farmacológico , Microtomografia por Raio-X , Transdução de Sinais , Osteoporose/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno , Reabsorção Óssea/tratamento farmacológico
13.
Mol Biol Rep ; 51(1): 305, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38361124

RESUMO

BACKGROUND: Pectolinarigenin (PEC) is a flavone extracted from Cirsium, and because it has anti-inflammatory properties, anti-cancer research is also being conducted. The objective of this work was to find out if PEC is involved in tumor control and which pathways it regulates in vivo and in vitro. METHODS: AGS cell lines were xenografted into BALB/c nude mice to create tumors, and PEC was administered intraperitoneally to see if it was involved in tumor control. Once animal testing was completed, tumor proteins were isolated and identified using LC-MS analysis, and gene ontology of the found proteins was performed. RESULTS: Body weight and hematological measurements on the xenograft mice model demonstrated that PEC was not harmful to non-cancerous cells. We found 582 proteins in tumor tissue linked to biological reactions such as carcinogenesis and cell death signaling. PEC regulated 6 out of 582 proteins in vivo and in vitro in the same way. CONCLUSION: Our findings suggested that PEC therapy may inhibit tumor development in gastric cancer (GC), and proteomic research gives fundamental information about proteins that may have great promise as new therapeutic targets in GC.


Assuntos
Apoptose , Cromonas , Neoplasias Gástricas , Humanos , Animais , Camundongos , Camundongos Nus , Xenoenxertos , Proteômica , Linhagem Celular Tumoral , Neoplasias Gástricas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células
14.
Mol Biol Rep ; 51(1): 698, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811424

RESUMO

BACKGROUND: Existing investigations suggest that the blockade of phosphoinositide 3-kinase (PI3K) activity contributes to inflammatory solution in allergic asthma, but whether this inhibition directly attenuates neutrophilic airway inflammation in vivo is still unclear. We explored the pharmacological effects of LY294002, a specific inhibitor of PI3K on the progression of neutrophilic airway inflammation and investigated the underlying mechanism. METHODS AND RESULTS: Female C57BL/6 mice were intranasally sensitized with ovalbumin (OVA) together with lipopolysaccharide (LPS) on days 0 and 6, and challenged with OVA on days 14-17 to establish a neutrophilic airway disease model. In the challenge phase, a subset of mice was treated intratracheally with LY294002. We found that treatment of LY294002 attenuates clinic symptoms of inflammatory mice. Histological studies showed that LY294002 significantly inhibited inflammatory cell infiltration and mucus production. The treatment also significantly inhibited OVA-LPS induced increases in inflammatory cell counts, especially neutrophil counts, and IL-17 levels in bronchoalveolar lavage fluid (BALF). LY294002 treated mice exhibited significantly increased IL-10 levels in BALF compared to the untreated mice. In addition, LY294002 reduced the plasma concentrations of IL-6 and IL-17. The anti-inflammatory effects of LY29402 were correlated with the downregulation of NLRP3 inflammasome. CONCLUSIONS: Our findings suggested that LY294002 as a potential pharmacological target for neutrophilic airway inflammation.


Assuntos
Asma , Líquido da Lavagem Broncoalveolar , Cromonas , Modelos Animais de Doenças , Inflamassomos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Morfolinas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos , Ovalbumina , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Asma/tratamento farmacológico , Asma/induzido quimicamente , Asma/metabolismo , Asma/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Feminino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cromonas/farmacologia , Morfolinas/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Interleucina-17/metabolismo
15.
Mol Biol Rep ; 51(1): 572, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722394

RESUMO

BACKGROUND: Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS: Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS: Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION: Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.


Assuntos
Disfunção Cognitiva , Crotonatos , Hidroxibutiratos , Nitrilas , Estresse Oxidativo , Toluidinas , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Cromonas/farmacologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Crotonatos/farmacologia , Modelos Animais de Doenças , Donepezila/farmacologia , Hidroxibutiratos/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Morfolinas/farmacologia , Nitrilas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Escopolamina/farmacologia , Toluidinas/farmacologia
16.
J Nat Prod ; 87(2): 238-251, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38354306

RESUMO

Xanthone-chromanone homo- or heterodimers are regarded as a novel class of topoisomerase (Topo) inhibitors; however, limited information about these compounds is currently available. Here, 14 new (1-14) and 6 known tetrahydroxanthone chromanone homo- and heterodimers (15-20) are reported as isolated from Penicillium chrysogenum C-7-2-1. Their structures and absolute configurations were unambiguously demonstrated by a combination of spectroscopic data, single-crystal X-ray diffraction, modified Mosher's method, and electronic circular dichroism analyses. Plausible biosynthetic pathways are proposed. For the first time, it was discovered that tetrahydroxanthones can convert to chromanones in water, whereas chromone dimerization does not show this property. Among them, compounds 5, 7, 8, and 16 exhibited significant cytotoxicity against H23 cell line with IC50 values of 6.9, 6.4, 3.9, and 2.6 µM, respectively.


Assuntos
Antineoplásicos , Cromonas , Penicillium chrysogenum , Penicillium , Xantonas , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores da Topoisomerase , Xantonas/farmacologia , Xantonas/química , Penicillium/química
17.
Bioorg Chem ; 147: 107329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608410

RESUMO

By co-culturing two endophytic fungi (Chaetomium virescens and Xylaria grammica) collected from the medicinal and edible plant Smilax glabra Roxb. and analyzing them with MolNetEnhancer module on GNPS platform, seven undescribed chromone-derived polyketides (chaetoxylariones A-G), including three pairs of enantiomer ones (2a/2b, 4a/4b and 6a/6b) and four optical pure ones (1, 3, 5 and 7), as well as five known structural analogues (8-12), were obtained. The structures of these new compounds were characterized by NMR spectroscopy, single-crystal X-ray diffraction, 13C NMR calculation and DP4+ probability analyses, as well as the comparison of the experimental electronic circular dichroism (ECD) data. Structurally, compound 1 featured an unprecedented chromone-derived sulfonamide tailored by two isoleucine-derived δ-hydroxy-3-methylpentenoic acids via the acylamide and NO bonds, respectively; compound 2 represented the first example of enantiomeric chromone derivative bearing a unique spiro-[3.3]alkane ring system; compound 3 featured a decane alkyl side chain that formed an undescribed five-membered lactone ring between C-7' and C-10'; compound 4 contained an unexpected highly oxidized five-membered carbocyclic system featuring rare adjacent keto groups; compound 7 featured a rare methylsulfonyl moiety. In addition, compound 10 showed a significant inhibition towards SW620/AD300 cells with an IC50 value of PTX significantly decreased from 4.09 µM to 120 nM, and a further study uncovered that compound 10 could obviously reverse the MDR of SW620/AD300 cells.


Assuntos
Antineoplásicos , Chaetomium , Cromonas , Ensaios de Seleção de Medicamentos Antitumorais , Policetídeos , Xylariales , Cromonas/química , Cromonas/farmacologia , Cromonas/isolamento & purificação , Policetídeos/química , Policetídeos/farmacologia , Policetídeos/isolamento & purificação , Estrutura Molecular , Xylariales/química , Chaetomium/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Técnicas de Cocultura , Proliferação de Células/efeitos dos fármacos
18.
Bioorg Chem ; 145: 107207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402795

RESUMO

Inhibition of α-glucosidase and α-amylase is an important target for treatment of type 2 diabetes. In this work, a novel series of pyrano[2,3-b]chromene derivatives 5a-m was designed based on potent α-glucosidase and α-amylase inhibitors and synthesized by simple chemical reactions. These compounds were evaluated against the latter enzymes. Most of the title compounds exhibited high inhibitory activity against α-glucosidase and α-amylase in comparison to standard inhibitor (acarbose). Representatively, the most potent compound, 4-methoxy derivative 5d, was 30.4 fold more potent than acarbose against α-glucosidase and 6.1 fold more potent than this drug against α-amylase. In silico molecular modeling demonstrated that compound 5d attached to the active sites of α-glucosidase and α-amylase with a favorable binding energies and established interactions with important amino acids. Dynamics of compound 5d also showed that this compound formed a stable complex with the α-glucosidase active site. In silicodrug-likeness as well as ADMET prediction of this compound was also performed and satisfactory results were obtained.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Humanos , Inibidores de Glicosídeo Hidrolases/química , Acarbose , Diabetes Mellitus Tipo 2/tratamento farmacológico , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Cromonas/farmacologia , Cromonas/química , alfa-Amilases , Relação Estrutura-Atividade
19.
Acta Pharmacol Sin ; 45(9): 1926-1936, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38744938

RESUMO

Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune disease with an unclear pathogenesis, and there is currently no approved drug for the treatment of this disease. Iguratimod, as a novel clinical anti-rheumatic drug in China and Japan, has shown remarkable efficacy in improving the symptoms of patients with pSS in clinical studies. In this study we investigated the mechanisms underlying the therapeutic effect of iguratimod in the treatment of pSS. Experimental Sjögren's syndrome (ESS) model was established in female mice by immunizing with salivary gland protein. After immunization, ESS mice were orally treated with iguratimod (10, 30, 100 mg·kg-1·d-1) or hydroxychloroquine (50 mg·kg-1·d-1) for 70 days. We showed that iguratimod administration dose-dependently increased saliva secretion, and ameliorated ESS development by predominantly inhibiting B cells activation and plasma cell differentiation. Iguratimod (30 and 100 mg·kg-1·d-1) was more effective than hydroxychloroquine (50 mg·kg-1·d-1). When the potential target of iguratimod was searched, we found that iguratimod bound to TEC kinase and promoted its degradation through the autophagy-lysosome pathway in BAFF-activated B cells, thereby directly inhibiting TEC-regulated B cells function, suggesting that the action mode of iguratimod on TEC was different from that of conventional kinase inhibitors. In addition, we found a crucial role of TEC overexpression in plasma cells of patients with pSS. Together, we demonstrate that iguratimod effectively ameliorates ESS via its unique suppression of TEC function, which will be helpful for its clinical application. Targeting TEC kinase, a new regulatory factor for B cells, may be a promising therapeutic option.


Assuntos
Diferenciação Celular , Cromonas , Plasmócitos , Proteínas Tirosina Quinases , Síndrome de Sjogren , Sulfonamidas , Animais , Síndrome de Sjogren/tratamento farmacológico , Feminino , Diferenciação Celular/efeitos dos fármacos , Camundongos , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Plasmócitos/efeitos dos fármacos , Cromonas/farmacologia , Cromonas/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Modelos Animais de Doenças , Humanos , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico
20.
Mol Divers ; 28(1): 125-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36881209

RESUMO

Copper-catalyzed selective alkynylation with N-propargyl carboxamides as nucleophiles has been successfully developed for the synthesis of C2-functionalized chromanones. Under optimized reaction conditions, 21 examples were obtained in one-pot procedure through 1,4-conjugate addition. This protocol features readily available feedstocks, easy operations, and moderate to good yields, which provides viable access to pharmacologically active C2-functionalized chromanones.


Assuntos
Cromonas , Cobre , Estrutura Molecular , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA