Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 585(7826): 574-578, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32939089

RESUMO

Epithelial organoids, such as those derived from stem cells of the intestine, have great potential for modelling tissue and disease biology1-4. However, the approaches that are used at present to derive these organoids in three-dimensional matrices5,6 result in stochastically developing tissues with a closed, cystic architecture that restricts lifespan and size, limits experimental manipulation and prohibits homeostasis. Here, by using tissue engineering and the intrinsic self-organization properties of cells, we induce intestinal stem cells to form tube-shaped epithelia with an accessible lumen and a similar spatial arrangement of crypt- and villus-like domains to that in vivo. When connected to an external pumping system, the mini-gut tubes are perfusable; this allows the continuous removal of dead cells to prolong tissue lifespan by several weeks, and also enables the tubes to be colonized with microorganisms for modelling host-microorganism interactions. The mini-intestines include rare, specialized cell types that are seldom found in conventional organoids. They retain key physiological hallmarks of the intestine and have a notable capacity to regenerate. Our concept for extrinsically guiding the self-organization of stem cells into functional organoids-on-a-chip is broadly applicable and will enable the attainment of more physiologically relevant organoid shapes, sizes and functions.


Assuntos
Homeostase , Intestinos/embriologia , Morfogênese , Organoides/embriologia , Alicerces Teciduais , Animais , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Cryptosporidium parvum/patogenicidade , Células-Tronco Embrionárias Humanas/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Intestinos/citologia , Intestinos/parasitologia , Intestinos/patologia , Camundongos , Modelos Biológicos , Organoides/citologia , Organoides/parasitologia , Organoides/patologia , Regeneração , Medicina Regenerativa , Células-Tronco , Técnicas de Cultura de Tecidos/métodos , Engenharia Tecidual
2.
Cell Microbiol ; 23(4): e13298, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33237610

RESUMO

Autophagy, a process of degradation and recycling of macromolecules and organelles to maintain cellular homeostasis, has also been shown to help eliminate invading pathogens. Conversely, various pathogens including parasites have been shown to modulate/exploit host autophagy facilitating their intracellular infectious cycle. In this regard, Cryptosporidium parvum (CP), a protozoan parasite of small intestine is emerging as a major global health challenge. However, the pathophysiology of cryptosporidiosis is mostly unknown. We have recently demonstrated CP-induced epithelial barrier disruption via decreasing the expression of specific tight junction (TJ) and adherens junction (AJ) proteins such as occludin, claudin-4 and E-cadherin. Therefore, we utilised confluent Caco-2 cell monolayers as in vitro model of intestinal epithelial cells (IECs) to investigate the potential role of autophagy in the pathophysiology of cryptosporidiosis. Autophagy was assessed by increase in the ratio of LC3II (microtubule associated protein 1 light chain 3) to LC3I protein and decrease in p62/SQSTM1 protein levels. CP treatment of Caco-2 cells for 24 hr induced autophagy with a maximum effect observed with 0.5 × 106 oocyst/well. CP decreased mTOR (mammalian target of rapamycin, a suppressor of autophagy) phosphorylation, suggesting autophagy induction via mTOR inactivation. Measurement of autophagic flux utilizing the lysosomal inhibitor chloroquine (CQ) showed more pronounced increase in LC3II level in cells co-treated with CP + CQ as compared to CP or CQ alone, suggesting that CP-induced increase in LC3II was due to enhanced autophagosome formation rather than impaired lysosomal clearance. CP infection did not alter ATG7, a key autophagy protein. However, the decrease in occludin, claudin-4 and E-cadherin by CP was partially blocked following siRNA silencing of ATG7, suggesting the role of autophagy in CP-induced decrease in these TJ/AJ proteins. Our results provide novel evidence of autophagy induction by CP in host IECs that could alter important host cell processes contributing to the pathophysiology of cryptosporidiosis.


Assuntos
Autofagia , Cryptosporidium parvum/patogenicidade , Células Epiteliais/patologia , Células Epiteliais/parasitologia , Interações Hospedeiro-Parasita , Células CACO-2 , Humanos , Mucosa Intestinal/parasitologia , Proteínas de Junções Íntimas/metabolismo
3.
PLoS Pathog ; 15(7): e1007953, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356619

RESUMO

Cryptosporidium parvum is a highly prevalent zoonotic and anthroponotic protozoan parasite that causes a diarrheal syndrome in children and neonatal livestock, culminating in growth retardation and mortalities. Despite the high prevalence of C. parvum, there are no fully effective and safe drugs for treating infections, and there is no vaccine. We have previously reported that the bacterial-like C. parvum lactate dehydrogenase (CpLDH) enzyme is essential for survival, virulence and growth of C. parvum in vitro and in vivo. In the present study, we screened compound libraries and identified inhibitors against the enzymatic activity of recombinant CpLDH protein in vitro. We tested the inhibitors for anti-Cryptosporidium effect using in vitro infection assays of HCT-8 cells monolayers and identified compounds NSC158011 and NSC10447 that inhibited the proliferation of intracellular C. parvum in vitro, with IC50 values of 14.88 and 72.65 µM, respectively. At doses tolerable in mice, we found that both NSC158011 and NSC10447 consistently significantly reduced the shedding of C. parvum oocysts in infected immunocompromised mice's feces, and prevented intestinal villous atrophy as well as mucosal erosion due to C. parvum. Together, our findings have unveiled promising anti-Cryptosporidium drug candidates that can be explored further for the development of the much needed novel therapeutic agents against C. parvum infections.


Assuntos
Antiprotozoários/farmacologia , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/enzimologia , Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Animais , Linhagem Celular , Criptosporidiose/tratamento farmacológico , Criptosporidiose/parasitologia , Criptosporidiose/patologia , Cryptosporidium parvum/patogenicidade , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/genética , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Testes de Sensibilidade Parasitária , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
4.
Risk Anal ; 40(11): 2442-2461, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32822077

RESUMO

A conventional dose-response function can be refitted as additional data become available. A predictive dose-response function in contrast does not require a curve-fitting step, only additional data and presents the unconditional probabilities of illness, reflecting the level of information it contains. In contrast, the predictive Bayesian dose-response function becomes progressively less conservative as more information is included. This investigation evaluated the potential for using predictive Bayesian methods to develop a dose-response for human infection that improves on existing models, to show how predictive Bayesian statistical methods can utilize additional data, and expand the Bayesian methods for a broad audience including those concerned about an oversimplification of dose-response curve use in quantitative microbial risk assessment (QMRA). This study used a dose-response relationship incorporating six separate data sets for Cryptosporidium parvum. A Pareto II distribution with known priors was applied to one of the six data sets to calibrate the model, while the others were used for subsequent updating. While epidemiological principles indicate that local variations, host susceptibility, and organism strain virulence may vary, the six data sets all appear to be well characterized using the Bayesian approach. The adaptable model was applied to an existing data set for Campylobacter jejuni for model validation purposes, which yielded results that demonstrate the ability to analyze a dose-response function with limited data using and update those relationships with new data. An analysis of the goodness of fit compared to the beta-Poisson methods also demonstrated correlation between the predictive Bayesian model and the data.


Assuntos
Teorema de Bayes , Cryptosporidium parvum/patogenicidade , Animais , Interações Hospedeiro-Patógeno , Humanos , Distribuição de Poisson , Medição de Risco/métodos
5.
Am J Physiol Cell Physiol ; 317(6): C1205-C1212, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483700

RESUMO

The protozoan parasite Cryptosporidium parvum (CP) causes cryptosporidiosis, a diarrheal disease worldwide. Infection in immunocompetent hosts typically results in acute, self-limiting, or recurrent diarrhea. However, in immunocompromised individuals infection can cause fulminant diarrhea, extraintestinal manifestations, and death. To date, the mechanisms underlying CP-induced diarrheal pathogenesis are poorly understood. Diarrheal diseases most commonly involve increased secretion and/or decreased absorption of fluid and electrolytes. We and others have previously shown impaired chloride absorption in infectious diarrhea due to dysregulation of SLC26A3 [downregulated in adenoma (DRA)], the human intestinal apical membrane Cl-/HCO3- exchanger protein. However, there are no studies on the effects of CP infection on DRA activity. Therefore, we examined the expression and function of DRA in intestinal epithelial cells in response to CP infection in vitro and in vivo. CP infection (0.5 × 106 oocysts/well in 24-well plates, 24 h) of Caco-2 cell monolayers significantly decreased Cl-/HCO3- exchange activity (measured as DIDS-sensitive 125I uptake) as well as DRA mRNA and protein levels. Substantial downregulation of DRA mRNA and protein was also observed following CP infection ex vivo in mouse enteroid-derived monolayers and in vivo in the ileal and jejunal mucosa of C57BL/6 mice for 24 h. However, at 48 h after infection in vivo, the effects on DRA mRNA and protein were attenuated and at 5 days after infection DRA returned to normal levels. Our results suggest that impaired chloride absorption due to downregulation of DRA could be one of the contributing factors to CP-induced acute, self-limiting diarrhea in immunocompetent hosts.


Assuntos
Antiporters/genética , Antiportadores de Cloreto-Bicarbonato/genética , Criptosporidiose/genética , Cryptosporidium parvum/patogenicidade , Regulação da Expressão Gênica/genética , Mucosa Intestinal/metabolismo , Transportadores de Sulfato/genética , Animais , Anticorpos Neutralizantes/farmacologia , Antiporters/antagonistas & inibidores , Antiporters/metabolismo , Células CACO-2 , Antiportadores de Cloreto-Bicarbonato/antagonistas & inibidores , Antiportadores de Cloreto-Bicarbonato/metabolismo , Cloretos/metabolismo , Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium parvum/fisiologia , Interações Hospedeiro-Parasita/genética , Humanos , Íleo/metabolismo , Íleo/parasitologia , Mucosa Intestinal/parasitologia , Transporte de Íons , Janus Quinases/genética , Janus Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Organoides/metabolismo , Organoides/parasitologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transportadores de Sulfato/antagonistas & inibidores , Transportadores de Sulfato/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-30297368

RESUMO

Cryptosporidium species cause significant morbidity in malnourished children. Nitazoxanide (NTZ) is the only approved treatment for cryptosporidiosis, but NTZ has diminished effectiveness during malnutrition. Here, we show that amixicile, a highly selective water-soluble derivative of NTZ diminishes Cryptosporidium infection severity in a malnourished mouse model despite a lack of direct anticryptosporidial activity. We suggest that amixicile, by tamping down anaerobes associated with intestinal inflammation, reverses weight loss and indirectly mitigates infection-associated pathology.


Assuntos
Benzamidas/farmacologia , Criptosporidiose/tratamento farmacológico , Cryptosporidium parvum/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Antiprotozoários/farmacologia , Criptosporidiose/etiologia , Cryptosporidium parvum/patogenicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Nitrocompostos , Piruvato Sintase/antagonistas & inibidores , Piruvato Sintase/metabolismo , Redução de Peso/efeitos dos fármacos
7.
Artigo em Inglês | MEDLINE | ID: mdl-29339392

RESUMO

Cryptosporidiosis causes life-threatening diarrhea in children under the age of 5 years and prolonged diarrhea in immunodeficient people, especially AIDS patients. The standard of care, nitazoxanide, is modestly effective in children and ineffective in immunocompromised individuals. In addition to the need for new drugs, better knowledge of drug properties that drive in vivo efficacy is needed to facilitate drug development. We report the identification of a piperazine-based lead compound for Cryptosporidium drug development, MMV665917, and a new pharmacodynamic method used for its characterization. The identification of MMV665917 from the Medicines for Malaria Venture Malaria Box was followed by dose-response studies, in vitro toxicity studies, and structure-activity relationship studies using commercial analogues. The potency of this compound against Cryptosporidium parvum Iowa and field isolates was comparable to that against Cryptosporidium hominis Furthermore, unlike nitazoxanide, clofazimine, and paromomycin, MMV665917 appeared to be curative in a NOD SCID gamma mouse model of chronic cryptosporidiosis. MMV665917 was also efficacious in a gamma interferon knockout mouse model of acute cryptosporidiosis. To determine if efficacy in this mouse model of chronic infection might relate to whether compounds are parasiticidal or parasitistatic for C. parvum, we developed a novel in vitro parasite persistence assay. This assay suggested that MMV665917 was parasiticidal, unlike nitazoxanide, clofazimine, and paromomycin. The assay also enabled determination of the concentration of the compound required to maximize the rate of parasite elimination. This time-kill assay can be used to prioritize early-stage Cryptosporidium drug leads and may aid in planning in vivo efficacy experiments. Collectively, these results identify MMV665917 as a promising lead and establish a new method for characterizing potential anticryptosporidial agents.


Assuntos
Antiprotozoários/química , Antiprotozoários/uso terapêutico , Criptosporidiose/tratamento farmacológico , Piperazina/química , Animais , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/patogenicidade , Diarreia/parasitologia , Diarreia/prevenção & controle , Feminino , Malária/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID
8.
Cell Microbiol ; 19(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28655069

RESUMO

Cryptosporidial infection causes dysregulated transcription of host genes key to intestinal epithelial homeostasis, but the underlying mechanisms remain obscure. Previous studies demonstrate that several Cryptosporidium parvum (C. parvum) RNA transcripts are selectively delivered into epithelial cells during host cell invasion and may modulate gene transcription in infected cells. We report here that C. parvum infection suppresses the transcription of LRP5, SLC7A8, and IL33 genes in infected intestinal epithelium. Trans-suppression of these genes in infected host cells is associated with promoter enrichment of suppressive epigenetic markers (i.e., H3K9me3). Cdg7_FLc_0990, a C. parvum RNA that has previously demonstrated to be delivered into the nuclei of infected epithelial cells, is recruited to the promoter regions of LRP5, SLC7A8, and IL33 genes. Cdg7_FLc_0990 appears to be recruited to their promoter regions together with G9a, a histone methyltransferase for H3K9 methylation. The PR domain zinc finger protein 1, a G9a-interacting protein, is required for the assembly of Cdg7_FLc_0990 to the G9a complex and gene-specific enrichment of H3K9 methylation. Our data demonstrate that cryptosporidial infection induces epigenetic histone methylations in infected cells through nuclear transfer of parasite Cdg7_Flc_0990 RNA transcript, resulting in transcriptional suppression of the LRP5, SLC7A8, and IL33 genes.


Assuntos
Sistema y+ de Transporte de Aminoácidos/biossíntese , Cryptosporidium parvum/genética , Cadeias Leves da Proteína-1 Reguladora de Fusão/biossíntese , Interleucina-33/biossíntese , Mucosa Intestinal/parasitologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , Transcrição Gênica/genética , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Linhagem Celular , Criptosporidiose/parasitologia , Criptosporidiose/patologia , Cryptosporidium parvum/patogenicidade , Epigênese Genética , Células Epiteliais/parasitologia , Cadeias Leves da Proteína-1 Reguladora de Fusão/genética , Proteínas de Choque Térmico HSP72/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interleucina-33/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Metilação , Camundongos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA de Protozoário/genética , RNA Interferente Pequeno/genética
9.
J Eukaryot Microbiol ; 65(6): 913-922, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29932290

RESUMO

Cryptosporidium is a protozoan, apicomplexan, parasite that poses significant risk to humans and animals, as a common cause of potentially fatal diarrhea in immunodeficient hosts. The parasites have evolved a number of unique biological features that allow them to thrive in a highly specialized parasitic lifestyle. For example, the genome of Cryptosporidium parvum is highly reduced, encoding only 3,805 proteins, which is also reflected in its reduced cellular and organellar content and functions. As such, its remnant mitochondrion, dubbed a mitosome, is one of the smallest mitochondria yet found. While numerous studies have attempted to discover the function(s) of the C. parvum mitosome, most of them have been focused on in silico predictions. Here, we have localized components of a biochemical pathway in the C. parvum mitosome, in our investigations into the functions of this peculiar mitochondrial organelle. We have shown that three proteins involved in the mitochondrial iron-sulfur cluster biosynthetic pathway are localized in the organelle, and one of them can functionally replace its yeast homolog. Thus, it seems that the C. parvum mitosome is involved in iron-sulfur cluster biosynthesis, supporting the organellar and cytosolic apoproteins. These results spearhead further research on elucidating the functions of the mitosome and broaden our understanding in the minimalistic adaptations of these organelles.


Assuntos
Cryptosporidium parvum/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Organelas/metabolismo , Linhagem Celular , Cryptosporidium parvum/genética , Cryptosporidium parvum/patogenicidade , DNA Recombinante , Genes de Protozoários/genética , Humanos , Proteínas Ferro-Enxofre/genética , Mitocôndrias/metabolismo , Proteínas de Protozoários/genética
10.
J Infect Dis ; 215(4): 636-643, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28007919

RESUMO

Cryptosporidium parvum is an important opportunistic parasite pathogen for immunocompromised individuals and a common cause of diarrhea in young children. Previous studies have identified a panel of RNA transcripts of very low protein-coding potential in C. parvum. Using an in vitro model of human intestinal cryptosporidiosis, we report here that some of these C. parvum RNA transcripts were selectively delivered into the nuclei of host epithelial cells during C. parvum infection. Nuclear delivery of several such parasitic RNAs, including Cdg7_FLc_0990, involved heat-shock protein 70-mediated nuclear importing mechanism. Overexpression of Cdg7_FLc_0990 in intestinal epithelial cells resulted in significant changes in expression levels of specific genes, with significant overlapping with alterations in gene expression profile detected in host cells after C. parvum infection. Our data demonstrate that C. parvum transcripts of low protein-coding potential are selectively delivered into epithelial cells during infection and may modulate gene transcription in infected host cells.


Assuntos
Criptosporidiose/genética , Células Epiteliais/parasitologia , Interações Hospedeiro-Patógeno/genética , RNA de Protozoário/genética , Transcrição Gênica , Linhagem Celular , Cryptosporidium parvum/patogenicidade , Células Epiteliais/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Intestinos/parasitologia , Transcriptoma
11.
J Infect Dis ; 217(1): 122-133, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28961856

RESUMO

Intestinal infection by Cryptosporidium parvum causes inhibition of epithelial turnover, but underlying mechanisms are unclear. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected epithelial cells. Using in vitro and in vivo models of intestinal cryptosporidiosis, we report here that host delivery of parasite Cdg7_FLc_1000 RNA results in inhibition of epithelial cell migration through suppression of the gene encoding sphingomyelinase 3 (SMPD3). Delivery of Cdg7_FLc_1000 into infected cells promotes the histone methyltransferase G9a-mediated H3K9 methylation in the SMPD3 locus. The DNA-binding transcriptional repressor, PR domain zinc finger protein 1, is required for the assembly of Cdg7_FLc_1000 into the G9a complex and associated with the enrichment of H3K9 methylation at the gene locus. Pathologically, nuclear transfer of Cryptosporidium parvum Cdg7_FLc_1000 RNA is involved in the attenuation of intestinal epithelial cell migration via trans-suppression of host cell SMPD3.


Assuntos
Movimento Celular , Criptosporidiose/patologia , Cryptosporidium parvum/patogenicidade , Regulação para Baixo , Células Epiteliais/fisiologia , RNA de Protozoário/metabolismo , Esfingomielina Fosfodiesterase/biossíntese , Animais , Linhagem Celular , Modelos Animais de Doenças , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Enteropatias/patologia , Metilação , Camundongos , Processamento de Proteína Pós-Traducional
12.
Cell Microbiol ; 18(12): 1871-1880, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27324279

RESUMO

Intestinal epithelial cells form a single layer separating the intestinal lumen containing nutriments and microbiota from the underlying sterile tissue and therefore play a key role in maintaining homeostasis. We investigated the factors contributing to the alteration of the epithelial barrier function during Cryptosporidium parvum infection. Infected polarized epithelial cell monolayers exhibit a drop in transepithelial resistance associated with a delocalization of E-cadherin and ß-catenin from their intercellular area of contact, the adherens junction complex. In neonatal mice infected by C. parvum, the increased permeability is correlated with parasite development and with an important recruitment of Ly6c+ inflammatory monocytes to the subepithelial space. TNFα and IL-1ß produced by inflammatory monocytes play a key role in the loss of barrier function. Our findings demonstrate for the first time that both the parasite and inflammatory monocytes contribute to the loss of intestinal barrier function during cryptosporidiosis.


Assuntos
Criptosporidiose/parasitologia , Cryptosporidium parvum/patogenicidade , Células Epiteliais/parasitologia , Interações Hospedeiro-Patógeno , Interleucina-1beta/imunologia , Mucosa Intestinal/parasitologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Animais Recém-Nascidos , Antígenos Ly/genética , Antígenos Ly/imunologia , Caderinas/genética , Caderinas/imunologia , Criptosporidiose/genética , Criptosporidiose/imunologia , Cryptosporidium parvum/crescimento & desenvolvimento , Cryptosporidium parvum/imunologia , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Interleucina-1beta/genética , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/parasitologia , Permeabilidade , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , beta Catenina/genética , beta Catenina/imunologia
13.
BMC Genomics ; 16: 320, 2015 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-25903370

RESUMO

BACKGROUND: Cryptosporidium hominis is a dominant species for human cryptosporidiosis. Within the species, IbA10G2 is the most virulent subtype responsible for all C. hominis-associated outbreaks in Europe and Australia, and is a dominant outbreak subtype in the United States. In recent yearsIaA28R4 is becoming a major new subtype in the United States. In this study, we sequenced the genomes of two field specimens from each of the two subtypes and conducted a comparative genomic analysis of the obtained sequences with those from the only fully sequenced Cryptosporidium parvum genome. RESULTS: Altogether, 8.59-9.05 Mb of Cryptosporidium sequences in 45-767 assembled contigs were obtained from the four specimens, representing 94.36-99.47% coverage of the expected genome. These genomes had complete synteny in gene organization and 96.86-97.0% and 99.72-99.83% nucleotide sequence similarities to the published genomes of C. parvum and C. hominis, respectively. Several major insertions and deletions were seen between C. hominis and C. parvum genomes, involving mostly members of multicopy gene families near telomeres. The four C. hominis genomes were highly similar to each other and divergent from the reference IaA25R3 genome in some highly polymorphic regions. Major sequence differences among the four specimens sequenced in this study were in the 5' and 3' ends of chromosome 6 and the gp60 region, largely the result of genetic recombination. CONCLUSIONS: The sequence similarity among specimens of the two dominant outbreak subtypes and genetic recombination in chromosome 6, especially around the putative virulence determinant gp60 region, suggest that genetic recombination plays a potential role in the emergence of hyper-transmissible C. hominis subtypes. The high sequence conservation between C. parvum and C. hominis genomes and significant differences in copy numbers of MEDLE family secreted proteins and insulinase-like proteases indicate that telomeric gene duplications could potentially contribute to host expansion in C. parvum.


Assuntos
Cryptosporidium parvum/genética , Cryptosporidium/genética , Genoma , Recombinação Genética/genética , Telômero/genética , Hibridização Genômica Comparativa , Mapeamento de Sequências Contíguas , Criptosporidiose/parasitologia , Criptosporidiose/patologia , Cryptosporidium/crescimento & desenvolvimento , Cryptosporidium/patogenicidade , Cryptosporidium parvum/crescimento & desenvolvimento , Cryptosporidium parvum/patogenicidade , DNA de Protozoário/análise , DNA de Protozoário/isolamento & purificação , DNA de Protozoário/metabolismo , Face/parasitologia , Duplicação Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Oocistos/metabolismo , Análise de Sequência de DNA , Virulência/genética
14.
Electrophoresis ; 36(23): 2925-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26264819

RESUMO

In our study, we examined 91 fecal samples from five different groups of people containing HIV patients, hemodialysis patients, kidney transplant recipients, immunocompetent humans without clinical signs, and humans with suspected cryptosporidiosis. The purpose of our study was to determine species and genotype composition of representatives of Cryptosporidium spp. using PCR analysis of small subunit ribosomal RNA gene and 60-kDa glycoprotein gene and examine their phylogenetic relationship. In HIV-positive/AIDS-infected group of patients and in hemodialysis patients, no presence of Cryptosporidium species was detected. In two kidney transplant recipients, we detected species/genotypes Cryptosporidium parvum IIaA13G1T1R1 (KT355488) and Cryptosporidium hominis IaA11G2R8 (KT355489) and in two immunocompetent patients with clinical symptoms, we identified Cryptosporidium muris and C. hominis IbA10G2T1 (KT355490). In the group of healthy immunocompetent individuals without clinical signs, we identified species/genotype C. hominis IbA11G2 (KT355491) in one sample.


Assuntos
Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Filogenia , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/patogenicidade , Cryptosporidium parvum/genética , Cryptosporidium parvum/isolamento & purificação , Cryptosporidium parvum/patogenicidade , Fezes/parasitologia , Infecções por HIV/parasitologia , Humanos , Hospedeiro Imunocomprometido , Reação em Cadeia da Polimerase , RNA Ribossômico/genética , Eslováquia/epidemiologia
15.
World J Microbiol Biotechnol ; 31(12): 1923-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26492887

RESUMO

Host cell interactions and invasion by Cryptosporidium is a complex process mediated by zoites ligand-host cell receptors. Knowledge of proteins involved in this process will enable entry level inhibitors to be tried as therapeutic agents. In the present study, invasion proteins of Cryptosporidium parvum were studied in vitro. Cryptosporidium sporozoites membrane proteins were isolated and Cy5 dye labelled. They were then allowed to interact with the intact host cells. The interacting proteins were identified using 2-dimensional gel electrophoresis followed by mass spectrometry analysis. Sixty-one proteins were identified including twenty-seven previously reported invasion proteins. The newly identified proteins such as serine/threonine protein kinase, PI4 kinase, Hsp105 and coiled coil may have their roles in the parasitic invasion process. Thus, a new approach was used in the study to identify the probable proteins involved in invasion and/or host-parasite interactions. The advantage of this method is that it takes only a months' time instead of decades to identify these proteins involved in invasion process.


Assuntos
Criptosporidiose/parasitologia , Cryptosporidium parvum/química , Cryptosporidium parvum/metabolismo , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Linhagem Celular Tumoral , Cryptosporidium parvum/patogenicidade , Eletroforese em Gel Bidimensional/métodos , Interações Hospedeiro-Parasita , Humanos , Focalização Isoelétrica , Espectrometria de Massas , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo
16.
J Biol Chem ; 288(47): 34111-34120, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24085304

RESUMO

The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess an apical complex, a unique assembly of organelles localized to the anterior end of the cell and involved in host cell invasion. Previously, we generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina sporozoites. This antigen was highly conserved among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium. In the present study, we identified the apical cytoskeletal antigen of Cryptosporidium parvum (C. parvum) and further characterized this antigen in C. parvum to assess its potential as a target molecule against cryptosporidiosis. Indirect immunofluorescence demonstrated that the reactivity of 6D-12-G10 with C. parvum sporozoites was similar to those of anti-ß- and anti-γ-tubulins antibodies. Immunoelectron microscopy with the 6D-12-G10 mAb detected the antigen both on the sporozoite surface and underneath the inner membrane at the apical region of zoites. The 6D-12-G10 mAb significantly inhibited in vitro host cell invasion by C. parvum. MALDI-TOF/MS and LC-MS/MS analysis of tryptic peptides revealed that the mAb 6D-12-G10 target antigen was elongation factor-1α (EF-1α). These results indicate that C. parvum EF-1α plays an essential role in mediating host cell entry by the parasite and, as such, could be a candidate vaccine antigen against cryptosporidiosis.


Assuntos
Antígenos de Protozoários/imunologia , Cryptosporidium parvum/imunologia , Fator 1 de Elongação de Peptídeos/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Linhagem Celular Tumoral , Membrana Celular/imunologia , Membrana Celular/metabolismo , Criptosporidiose/genética , Criptosporidiose/imunologia , Criptosporidiose/metabolismo , Criptosporidiose/prevenção & controle , Cryptosporidium parvum/metabolismo , Cryptosporidium parvum/patogenicidade , Masculino , Camundongos , Camundongos SCID , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Vacinas Protozoárias/imunologia , Esporozoítos/metabolismo
17.
Cell Rep ; 43(6): 114263, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38814783

RESUMO

The protozoan parasite Cryptosporidium is a leading cause of diarrhea in young children. The parasite's life cycle involves a coordinated and timely progression from asexual to sexual stages, leading to the formation of the transmissible oocyst. Underlying molecular signaling mechanisms orchestrating sexual development are not known. Here, we describe the function of a signaling kinase in Cryptosporidium male gametogenesis. We reveal the expression of Cryptosporidium parvum calcium-dependent protein kinase 5 (CDPK5) during male gamete development and its important role in the egress of mature gametes. Genetic ablation of this kinase results in viable parasites, indicating that this gene is dispensable for parasite survival. Interestingly, cdpk5 deletion decreases parasite virulence and impacts oocyst shedding in immunocompromised mice. Using phosphoproteomics, we identify possible CDPK5 substrates and biological processes regulated by this kinase. Collectively, these findings illuminate parasite cell biology by revealing a mechanism controlling male gamete production and a potential target to block disease transmission.


Assuntos
Gametogênese , Proteínas de Protozoários , Animais , Masculino , Camundongos , Virulência , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Cryptosporidium parvum/patogenicidade , Cryptosporidium parvum/enzimologia , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Criptosporidiose/parasitologia , Humanos , Transdução de Sinais
18.
Commun Biol ; 7(1): 1175, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39294220

RESUMO

Biological studies of the determinants of Cryptosporidium infectivity are lacking despite the fact that cryptosporidiosis is a major public health problem. Recently, the 60-kDa glycoprotein (GP60) has received attention because of its high sequence polymorphism and association with host infectivity of isolates and protection against reinfection. However, studies of GP60 function have been hampered by its heavy O-linked glycosylation. Here, we used advanced genetic tools to investigate the processing, fate, and function of GP60. Endogenous gene tagging showed that the GP60 cleavage products, GP40 and GP15, are both highly expressed on the surface of sporozoites, merozoites and male gametes. During invasion, GP40 translocates to the apical end of the zoites and remains detectable at the parasite-host interface. Deletion of the signal peptide, GPI anchor, and GP15 sequences affects the membrane localization of GP40. Deletion of the GP60 gene significantly reduces parasite growth and severity of infection, and replacement of the GP60 gene with sequence from an avirulent isolate reduces the pathogenicity of a highly infective isolate. These results have revealed dynamic changes in GP60 expression during parasite development. They further suggest that GP60 is a key protein mediating host infectivity and pathogenicity.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Proteínas de Protozoários , Cryptosporidium parvum/genética , Cryptosporidium parvum/patogenicidade , Cryptosporidium parvum/metabolismo , Animais , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Criptosporidiose/parasitologia , Interações Hospedeiro-Parasita , Camundongos , Humanos , Esporozoítos/metabolismo , Esporozoítos/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
19.
Tsitologiia ; 55(8): 527-38, 2013.
Artigo em Russo | MEDLINE | ID: mdl-25486784

RESUMO

Infectious gastroenteritis is one of the common causes of tachyarrythmia, malabsorbtion and growth retardation in children. Our recent studies have indicated that neonatal.cryptosporidial gastroenteritis is associated with long-term cardiomyocyte abnormalities. The aim of the present study was to find out how neonatal cryptosporidiosis of various severities affects cardiac anatomy and cardiomyocyte polyploidization, remodeling and HIF-1α expression. Using real-time PCR, cytometry, immunohistochemistry, image analysis and interatrial septum visual examination, we revealed that gradual increase in cryptosporidial invasion was associated with threshold changes. At weak parasitic infection, interatrial septum was entire and there was no statistically significant change in cardiomyocytes. At moderate and severe infection, all changes in cardiac anatomy and cardiomyocytes were statistically significant and demonstrated approximately similar degree. Compared to control, heart were atrophied and elongated, interatrial septum contained a small window (patentforamrn ovale), and cardiomyocytes lost protein, became elongated, thin and accumulated additional genomes. Also we found HIF-1α mRNA hyperexpression. Notable, the threshold response to gradual stimulus is an important criterion of development programming since such a response is commonly a consequence of abnormal anatomic structure formation and cell differentiation failure. Our results can be interesting for physicians because they indicate that even moderate cryptosporidiosis can be dangerous for neonatal heart and can trigger neonatal programming of cardiovascular pathology. Also, our results for the first time demonstrate the association between gastroenteritis, patent foramen ovale and cardiomyocyte malfunction.


Assuntos
Septo Interatrial/patologia , Criptosporidiose/patologia , Forame Oval Patente/patologia , Gastroenterite/patologia , Miócitos Cardíacos/patologia , Animais , Animais Recém-Nascidos , Septo Interatrial/crescimento & desenvolvimento , Septo Interatrial/metabolismo , Bovinos , Criptosporidiose/complicações , Criptosporidiose/metabolismo , Cryptosporidium parvum/crescimento & desenvolvimento , Cryptosporidium parvum/patogenicidade , Progressão da Doença , Forame Oval Patente/complicações , Forame Oval Patente/metabolismo , Gastroenterite/complicações , Gastroenterite/metabolismo , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Índice de Gravidade de Doença
20.
J Infect Dis ; 205(6): 1019-23, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22279124

RESUMO

Cryptosporidium hominis and Cryptosporidium parvum, which infect humans equally, are genetically/antigenically almost identical. It remains unclear, however, whether infection with C. hominis protects against C. parvum. Gnotobiotic piglets were used to investigate cross-protection. After ≥3 days of recovery from C. hominis infection, the piglets were completely protected against subsequent challenge with C. hominis but only partially against challenge with C. parvum, as compared with age-matched control animals challenged with either species. In conclusion, C. hominis-specific immunity was sufficient to completely protect against challenge with the same species but insufficient to provide the same level of protection against C. parvum.


Assuntos
Proteção Cruzada , Criptosporidiose/prevenção & controle , Cryptosporidium parvum/patogenicidade , Cryptosporidium/patogenicidade , Animais , Criança , Criptosporidiose/imunologia , Cryptosporidium/imunologia , Cryptosporidium parvum/imunologia , DNA de Protozoário/genética , Cervos/parasitologia , Fezes/parasitologia , Vida Livre de Germes , Humanos , Immunoblotting , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Especificidade da Espécie , Suínos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA