Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Neurochem ; 166(3): 547-559, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37005741

RESUMO

Astrocytes are the most abundant glial cell type in the brain, where they participate in various homeostatic functions. Transcriptomically, diverse astrocyte subpopulations play distinct roles during development and disease progression. However, the biochemical identification of astrocyte subtypes, especially by membrane surface protein glycosylation, remains poorly investigated. Protein tyrosine phosphatase receptor type zeta (PTPRZ) is a highly expressed membrane protein in CNS glia cells that can be modified with diverse glycosylation, including the unique HNK-1 capped O-mannosyl (O-Man) core M2 glycan mediated by brain-specific branching enzyme GnT-IX. Although PTPRZ modified with HNK-1 capped O-Man glycans (HNK-1-O-Man+ PTPRZ) is increased in reactive astrocytes of demyelination model mice, whether such astrocytes emerge in a broad range of disease-associated conditions or are limited to conditions associated with demyelination remains unclear. Here, we show that HNK-1-O-Man+ PTPRZ localizes in hypertrophic astrocytes of damaged brain areas in patients with multiple sclerosis. Furthermore, we show that astrocytes expressing HNK-1-O-Man+ PTPRZ are present in two demyelination mouse models (cuprizone-fed mice and a vanishing white matter disease model), while traumatic brain injury does not induce glycosylation. Administration of cuprizone to Aldh1l1-eGFP and Olig2KICreER/+ ;Rosa26eGFP mice revealed that cells expressing HNK-1-O-Man+ PTPRZ are derived from cells in the astrocyte lineage. Notably, GnT-IX but not PTPRZ mRNA was up-regulated in astrocytes isolated from the corpus callosum of cuprizone model mice. These results suggest that the unique PTPRZ glycosylation plays a key role in the patterning of demyelination-associated astrocytes.


Assuntos
Astrócitos , Doenças Desmielinizantes , Animais , Camundongos , Astrócitos/metabolismo , Encéfalo/metabolismo , Cuprizona/toxicidade , Cuprizona/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Modelos Animais de Doenças , Glicosilação , Camundongos Endogâmicos C57BL , Polissacarídeos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo
2.
Acta Neuropathol ; 146(1): 97-119, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37120788

RESUMO

Heterozygous mutations in the granulin (GRN) gene, resulting in the haploinsufficiency of the progranulin (PGRN) protein, is a leading cause of frontotemporal lobar degeneration (FTLD). Complete loss of the PGRN protein causes neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disorder. Polymorphisms in the GRN gene have also been associated with several other neurodegenerative diseases, including Alzheimer's disease (AD), and Parkinson's disease (PD). PGRN deficiency has been shown to cause myelination defects previously, but how PGRN regulates myelination is unknown. Here, we report that PGRN deficiency leads to a sex-dependent myelination defect with male mice showing more severe demyelination in response to cuprizone treatment. This is accompanied by exacerbated microglial proliferation and activation in the male PGRN-deficient mice. Interestingly, both male and female PGRN-deficient mice show sustained microglial activation after cuprizone removal and a defect in remyelination. Specific ablation of PGRN in microglia results in similar sex-dependent phenotypes, confirming a microglial function of PGRN. Lipid droplets accumulate in microglia specifically in male PGRN-deficient mice. RNA-seq analysis and mitochondrial function assays reveal key differences in oxidative phosphorylation in male versus female microglia under PGRN deficiency. A significant decrease in myelination and accumulation of myelin debris and lipid droplets in microglia were found in the corpus callosum regions of FTLD patients with GRN mutations. Taken together, our data support that PGRN deficiency leads to sex-dependent alterations in microglia with subsequent myelination defects.


Assuntos
Doenças Desmielinizantes , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Animais , Feminino , Masculino , Camundongos , Cuprizona/metabolismo , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/metabolismo , Microglia/metabolismo , Progranulinas/genética
3.
Cereb Cortex ; 32(20): 4397-4421, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-35076711

RESUMO

A consensus is yet to be reached regarding the exact prevalence of epileptic seizures or epilepsy in multiple sclerosis (MS). In addition, the underlying pathophysiological basis of the reciprocal interaction among neuroinflammation, demyelination, and epilepsy remains unclear. Therefore, a better understanding of cellular and network mechanisms linking these pathologies is needed. Cuprizone-induced general demyelination in rodents is a valuable model for studying MS pathologies. Here, we studied the relationship among epileptic activity, loss of myelin, and pro-inflammatory cytokines by inducing acute, generalized demyelination in a genetic mouse model of human absence epilepsy, C3H/HeJ mice. Both cellular and network mechanisms were studied using in vivo and in vitro electrophysiological techniques. We found that acute, generalized demyelination in C3H/HeJ mice resulted in a lower number of spike-wave discharges, increased cortical theta oscillations, and reduction of slow rhythmic intrathalamic burst activity. In addition, generalized demyelination resulted in a significant reduction in the amplitude of the hyperpolarization-activated inward current (Ih) in thalamic relay cells, which was accompanied by lower surface expression of hyperpolarization-activated, cyclic nucleotide-gated channels, and the phosphorylated form of TRIP8b (pS237-TRIP8b). We suggest that demyelination-related changes in thalamic Ih may be one of the factors defining the prevalence of seizures in MS.


Assuntos
Doenças Desmielinizantes , Epilepsia Tipo Ausência , Animais , Córtex Cerebral/fisiologia , Cuprizona/metabolismo , Cuprizona/toxicidade , Citocinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Neurônios/fisiologia , Nucleotídeos Cíclicos/metabolismo , Convulsões , Tálamo/fisiologia
4.
J Neurochem ; 160(6): 643-661, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935149

RESUMO

Multiple sclerosis (MS), especially in its progressive phase, involves early axonal and neuronal damage resulting from a combination of inflammatory mediators, demyelination, and loss of trophic support. During progressive disease stages, a microenvironment is created within the central nervous system (CNS) favoring the arrival and retention of inflammatory cells. Active demyelination and neurodegeneration have also been linked to microglia (MG) and astrocyte (AST)-activation in early lesions. While reactive MG can damage tissue, exacerbate deleterious effects, and contribute to neurodegeneration, it should be noted that activated MG possess neuroprotective functions as well, including debris phagocytosis and growth factor secretion. The progressive form of MS can be modeled by the prolonged administration to cuprizone (CPZ) in adult mice, as CPZ induces highly reproducible demyelination of different brain regions through oligodendrocyte (OLG) apoptosis, accompanied by MG and AST activation and axonal damage. Therefore, our goal was to evaluate the effects of a reduction in microglial activation through orally administered brain-penetrant colony-stimulating factor-1 receptor (CSF-1R) inhibitor BLZ945 (BLZ) on neurodegeneration and its correlation with demyelination, astroglial activation, and behavior in a chronic CPZ-induced demyelination model. Our results show that BLZ treatment successfully reduced the microglial population and myelin loss. However, no correlation was found between myelin preservation and neurodegeneration, as axonal degeneration was more prominent upon BLZ treatment. Concomitantly, BLZ failed to significantly offset CPZ-induced astroglial activation and behavioral alterations. These results should be taken into account when proposing the modulation of microglial activation in the design of therapies relevant for demyelinating diseases. Cover Image for this issue: https://doi.org/10.1111/jnc.15394.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Animais , Fatores Estimuladores de Colônias/efeitos adversos , Fatores Estimuladores de Colônias/metabolismo , Cuprizona/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo
5.
J Neurochem ; 162(5): 430-443, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35560167

RESUMO

Microglia have been implicated in multiple sclerosis (MS) pathogenesis. The fractalkine receptor CX3CR1 limits the activation of pathogenic microglia and the human polymorphic CX3CR1I249/M280 (hCX3CR1I249/M280 ) variant increases disease progression in models of MS. However, the role of hCX3CR1I249/M280 variant on microglial activation and central nervous system repair mechanisms remains unknown. Therefore, using transgenic mice expressing the hCX3CR1I249/M280 variant, we aimed to determine the contribution of defective CX3CR1 signaling to neuroinflammation and remyelination in the cuprizone model of focal demyelination. Here, we report that mice expressing hCX3CR1I249/M280 exhibit marked demyelination and microgliosis following acute cuprizone treatment. Nanostring gene expression analysis in demyelinated lesions showed that hCX3CR1I249/M280 but not CX3CR1-deficient mice up-regulated the cuprizone-induced gene profile linked to inflammatory, oxidative stress, and phagocytic pathways. Although CX3CR1-deficient (CX3CR1-KO) and fractalkine-deficient (FKN-KO) mice displayed a comparable demyelination and microglial activation phenotype to hCX3CR1I249/M280 mice, only CX3CR1-deficient and CX3CR1-WT mice showed significant myelin recovery 1 week from cuprizone withdrawal. Confocal microscopy showed that hCX3CR1I249/M280 variant inhibits the generation of cells involved in myelin repair. Our results show that defective fractalkine signaling contributes to regional differences in demyelination, and suggest that the CX3CR1 pathway activity may be a key mechanism for limiting toxic gene responses in neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15416.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Cuprizona/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Bainha de Mielina , Doenças Neuroinflamatórias
6.
Exp Brain Res ; 240(5): 1617-1627, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35362723

RESUMO

Oligodendrocyte loss and myelin sheet destruction are crucial characteristics of demyelinating diseases. Phenytoin promotes the proliferation of endogenous neural precursor cells in the ventricular-subventricular zone in the postnatal brain that help restore the oligodendroglial population. This study aimed to evaluate whether phenytoin promotes myelin recovery of the corpus callosum of demyelinated adult mice. CD1 male mice were exposed to a demyelinating agent (0.2% cuprizone) for 8 weeks. We assembled two groups: the phenytoin-treated group and the control-vehicle group. The treated group received oral phenytoin (10 mg/kg) for 4 weeks. We quantified the number of Olig2 + and NG2 + oligodendrocyte precursor cells (OPCs), Rip + oligodendrocytes, the expression level of myelin basic protein (MBP), and the muscle strength and motor coordination. The oligodendroglial lineage (Olig2 + cells, NG2 + cells, and RIP + cells) significantly increases by the phenytoin administration when compared to the control-vehicle group. The phenytoin-treated group also showed an increased expression of MBP in the corpus callosum and better functional scores in the horizontal bar test. These findings suggest that phenytoin stimulates the proliferation of OPCs, re-establishes the oligodendroglial population, promotes myelin recovery in the corpus callosum, and improves motor coordination and muscle strength.


Assuntos
Cuprizona , Células-Tronco Neurais , Animais , Diferenciação Celular , Proliferação de Células , Corpo Caloso , Cuprizona/metabolismo , Cuprizona/toxicidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Células-Tronco Neurais/fisiologia , Oligodendroglia/metabolismo , Fenitoína/metabolismo , Fenitoína/farmacologia
7.
MAGMA ; 35(2): 267-276, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34357453

RESUMO

OBJECTIVE: Magnetization EXchange (MEX) sequence measures a signal linearly dependent on the myelin proton fraction by selective suppression of water magnetization and a recovery period. Varying the recovery period enables extraction of the percentile fraction of myelin bound protons. We aim to demonstrate the MEX sequence sensitivity to the fraction of protons associated with myelin in mice brain, in vivo. METHODS: The cuprizone mouse model was used to manipulate the myelin content. Mice fed cuprizone (n = 15) and normal chow (n = 8) were imaged in vivo using MEX sequence. MR images were segmented into corpus callosum and internal capsule (white matter) and cortical gray matter, and fitted to the recovery equation. Results were analyzed with correlation to MWF and histopathology. RESULTS: The extracted parameters show significant differences in the corpus callosum between the cuprizone and control groups. The cuprizone group exhibited reduced myelin fraction 26.5% (P < 0.01). The gray matter values were less affected, with 13.5% reduction (P < 0.05); no changes were detected in the internal capsule. Results were validated by MWF scans and good correlation to the histology analysis (R2 = 0.685). CONCLUSION: The results of this first in vivo implementation of the MEX sequence provide a quantitative measure of demyelination in brain white matter.


Assuntos
Doenças Desmielinizantes , Substância Branca , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Corpo Caloso/diagnóstico por imagem , Cuprizona/metabolismo , Modelos Animais de Doenças , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina , Prótons , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
8.
Biochemistry ; 56(10): 1518-1528, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28186720

RESUMO

Cuprizone intoxication is a common animal model used to test myelin regenerative therapies for the treatment of diseases such as multiple sclerosis. Mice fed this copper chelator develop reversible, region-specific oligodendrocyte loss and demyelination. While the cellular changes influencing the demyelinating process have been explored in this model, there is no consensus about the biochemical mechanisms of toxicity in oligodendrocytes and about whether this damage arises from the chelation of copper in vivo. Here we have identified an oligodendroglial cell line that displays sensitivity to cuprizone toxicity and performed global metabolomic profiling to determine biochemical pathways altered by this treatment. We link these changes with alterations in brain metabolism in mice fed cuprizone for 2 and 6 weeks. We find that cuprizone induces widespread changes in one-carbon and amino acid metabolism as well as alterations in small molecules that are important for energy generation. We used mass spectrometry to examine chemical interactions that are important for copper chelation and toxicity. Our results indicate that cuprizone induces global perturbations in cellular metabolism that may be independent of its copper chelating ability and potentially related to its interactions with pyridoxal 5'-phosphate, a coenzyme essential for amino acid metabolism.


Assuntos
Encéfalo/efeitos dos fármacos , Quelantes/toxicidade , Cuprizona/toxicidade , Doenças Desmielinizantes/metabolismo , Esclerose Múltipla/metabolismo , Oligodendroglia/efeitos dos fármacos , Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Química Encefálica , Linhagem Celular , Quelantes/metabolismo , Cobre/metabolismo , Cuprizona/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Metabolismo Energético , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fosfato de Piridoxal/metabolismo
9.
Prog Neurobiol ; 231: 102532, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37774767

RESUMO

Multiple sclerosis (MS) pathology features autoimmune-driven neuroinflammation, demyelination, and failed remyelination. Carnosine is a histidine-containing dipeptide (HCD) with pluripotent homeostatic properties that is able to improve outcomes in an animal MS model (EAE) when supplied exogenously. To uncover if endogenous carnosine is involved in, and protects against, MS-related neuroinflammation, demyelination or remyelination failure, we here studied the HCD-synthesizing enzyme carnosine synthase (CARNS1) in human MS lesions and two preclinical mouse MS models (EAE, cuprizone). We demonstrate that due to its presence in oligodendrocytes, CARNS1 expression is diminished in demyelinated MS lesions and mouse models mimicking demyelination/inflammation, but returns upon remyelination. Carns1-KO mice that are devoid of endogenous HCDs display exaggerated neuroinflammation and clinical symptoms during EAE, which could be partially rescued by exogenous carnosine treatment. Worsening of the disease appears to be driven by a central, not peripheral immune-modulatory, mechanism possibly linked to impaired clearance of the reactive carbonyl acrolein in Carns1-KO mice. In contrast, CARNS1 is not required for normal oligodendrocyte precursor cell differentiation and (re)myelin to occur, and neither endogenous nor exogenous HCDs protect against cuprizone-induced demyelination. In conclusion, the loss of CARNS1 from demyelinated MS lesions can aggravate disease progression through weakening the endogenous protection against neuroinflammation.


Assuntos
Carnosina , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Camundongos , Animais , Esclerose Múltipla/tratamento farmacológico , Cuprizona/efeitos adversos , Cuprizona/metabolismo , Carnosina/efeitos adversos , Carnosina/metabolismo , Doenças Neuroinflamatórias , Bainha de Mielina/patologia , Oligodendroglia/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia
10.
Cell Death Dis ; 14(11): 736, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952053

RESUMO

Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease of the central nervous system (CNS) that is characterized by myelin damage, followed by axonal and ultimately neuronal loss, which has been found to be associated with mitophagy. The etiology and pathology of MS remain elusive. However, the role of FK506 binding protein 5 (FKBP5, also called FKBP51), a newly identified gene associated with MS, in the progression of the disease has not been well defined. Here, we observed that the progress of myelin loss and regeneration in Fkbp5ko mice treated with demyelination for the same amount of time was significantly slower than that in wild-type mice, and that mitophagy plays an important regulatory role in this process. To investigate the mechanism, we discovered that the levels of FKBP5 protein were greatly enhanced in the CNS of cuprizone (CPZ) mice and the myelin-denuded environment stimulates significant activation of the PINK1/Parkin-mediated mitophagy, in which the important regulator, PPAR-γ, is critically regulated by FKBP5. This study reveals the role of FKBP5 in regulating a dynamic pathway of natural restorative regulation of mitophagy through PPAR-γ in pathological demyelinating settings, which may provide potential targets for the treatment of demyelinating diseases.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Doenças Neurodegenerativas , Remielinização , Animais , Camundongos , Cuprizona/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Mitofagia , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Doenças Neurodegenerativas/metabolismo , PPAR gama/genética , PPAR gama/metabolismo
11.
Mol Neurodegener ; 18(1): 12, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36803190

RESUMO

BACKGROUND: The TREM2 R47H variant is one of the strongest genetic risk factors for late-onset Alzheimer's Disease (AD). Unfortunately, many current Trem2 R47H mouse models are associated with cryptic mRNA splicing of the mutant allele that produces a confounding reduction in protein product. To overcome this issue, we developed the Trem2R47H NSS (Normal Splice Site) mouse model in which the Trem2 allele is expressed at a similar level to the wild-type Trem2 allele without evidence of cryptic splicing products. METHODS: Trem2R47H NSS mice were treated with the demyelinating agent cuprizone, or crossed with the 5xFAD mouse model of amyloidosis, to explore the impact of the TREM2 R47H variant on inflammatory responses to demyelination, plaque development, and the brain's response to plaques. RESULTS: Trem2R47H NSS mice display an appropriate inflammatory response to cuprizone challenge, and do not recapitulate the null allele in terms of impeded inflammatory responses to demyelination. Utilizing the 5xFAD mouse model, we report age- and disease-dependent changes in Trem2R47H NSS mice in response to development of AD-like pathology. At an early (4-month-old) disease stage, hemizygous 5xFAD/homozygous Trem2R47H NSS (5xFAD/Trem2R47H NSS) mice have reduced size and number of microglia that display impaired interaction with plaques compared to microglia in age-matched 5xFAD hemizygous controls. This is associated with a suppressed inflammatory response but increased dystrophic neurites and axonal damage as measured by plasma neurofilament light chain (NfL) level. Homozygosity for Trem2R47H NSS suppressed LTP deficits and loss of presynaptic puncta caused by the 5xFAD transgene array in 4-month-old mice. At a more advanced (12-month-old) disease stage 5xFAD/Trem2R47H NSS mice no longer display impaired plaque-microglia interaction or suppressed inflammatory gene expression, although NfL levels remain elevated, and a unique interferon-related gene expression signature is seen. Twelve-month old Trem2R47H NSS mice also display LTP deficits and postsynaptic loss. CONCLUSIONS: The Trem2R47H NSS mouse is a valuable model that can be used to investigate age-dependent effects of the AD-risk R47H mutation on TREM2 and microglial function including its effects on plaque development, microglial-plaque interaction, production of a unique interferon signature and associated tissue damage.


Assuntos
Doença de Alzheimer , Doenças Desmielinizantes , Camundongos , Animais , Doença de Alzheimer/metabolismo , Cuprizona/metabolismo , Splicing de RNA , Mutação , Placa Amiloide/patologia , Modelos Animais de Doenças , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Microglia/metabolismo , Encéfalo/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
12.
Cardiovasc Toxicol ; 23(1): 46-60, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650404

RESUMO

Cuprizone (CPZ) is a neurotoxic agent that is used to induce demyelination and neurotoxicity in rats. This study aimed to investigate the protective potential of sulforaphane (SF), nuclear factor E2 related factor (Nrf-2) activator, against CPZ-induced cardiotoxicity and hepatotoxicity. Male adult Wistar rats (n = 18) were fed with a regular diet or a CPZ-contained diet (0.2%) for four weeks. The rats were divided into three groups (n = 6): negative control rats, CPZ-exposed rats, and CPZ + SF treated rats. SF was intraperitoneally administrated (2 mg/kg/day) for two weeks. The anti-inflammatory and anti-oxidative functions of SF were investigated biochemically, histologically, and immunohistochemically. CPZ increased serum levels of cardiac troponin 1 (CTn1), aspartate amino transaminase (AST), alanine amino transaminase (ALT), and alkaline phosphatase (ALP). In addition, serum levels of inflammatory interferon-gamma (IFN-γ), and pro-inflammatory interleukin 1ß (IL-1ß) were significantly elevated. Moreover, CPZ administration provoked oxidative stress as manifested by declined serum levels of total antioxidant capacity (TAC), as well as, stimulated lipid peroxidation and decreased catalase activities in both cardiac and hepatic tissues. SF treatment reversed all these biochemical alterations through exerting anti-oxidative and anti-inflammatory activities, and this was supported by histopathological investigations in both cardiac and hepatic tissues. This SF-triggered modulation of oxidative stress and inflammation is strongly associated with Nrf-2 activation, as evidenced by activated immunoexpression in both cardiac and hepatic tissues. This highlights the cardioprotective and hepatoprotective activities of SF via Nrf-2 activation and enhancing catalase function.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cuprizona , Animais , Masculino , Ratos , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Cardiotoxicidade/metabolismo , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Cuprizona/metabolismo , Cuprizona/farmacologia , Cuprizona/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fígado/patologia , Estresse Oxidativo , Ratos Wistar
13.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35705491

RESUMO

Remyelination failure in multiple sclerosis leads to progressive demyelination and inflammation, resulting in neurodegeneration and clinical decline. Microglia are innate immune cells that can acquire a regenerative phenotype to promote remyelination, yet little is known about the regulators controlling the regenerative microglia activation. Herein, using a cuprizone (CPZ)-diet induced de- and remyelination mice model, we identify PRMT1 as a driver for MHC-associated microglia population required for remyelination in the central nervous system. The loss of PRMT1, but not PRMT5, in microglia resulted in impairment of the remyelination with a reduction of oligoprogenitor cell number and prolonged microgliosis and astrogliosis. Using single-cell RNA sequencing, we found eight distinct microglial clusters during the CPZ diet, and PRMT1 depleted microglia hindered the formation of the MHC-associated cluster, expressing MHCII and CD11c. Mechanistically, PRMT1-KO microglia displayed reduced the H3K27ac peaks at the promoter regions of the MHC- and IFN-associated genes and further suppressed gene expression during CPZ diet. Overall, our findings demonstrate that PRMT1 is a critical regulator of the MHC- and IFN-associated microglia, necessary for central nervous system remyelination.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Sistema Nervoso Central/metabolismo , Cuprizona/metabolismo , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo
14.
Phytomedicine ; 106: 154309, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35994846

RESUMO

BACKGROUND: Inefficient differentiation of oligodendrocyte precursor cells (OPCs) is one of the significant pathological obstacles of myelin repair and provides an essential therapeutic target against behavioral dysfunction in various neurodegenerative diseases, especially in secondary progressive multiple sclerosis (SPMS). Ginsenoside Rg1 (Rg1) has traditionally been recognized as a protector of neuronal damages, preventing its degeneration. PURPOSE: We investigated the effects of Rg1 on myelin regeneration-mediated by OPCs and its therapeutic significance in SPMS. METHODS: A cuprizone (CPZ) model was established and then administered with Rg1 specific for evaluations of functional recovery and remyelination. In vitro, the primary mouse OPCs were isolated and cultured for examining their ability of myelin repair. Furthermore, a chronic experimental autoimmune encephalomyelitis (EAE) model was utilized to assess the therapeutic value on SPMS. RESULTS: We found that Rg1 promoted functional recovery of the demyelinated mice, including spatial memory, motor function, and anxiety-like behavior. Histologically, Rg1 enhanced myelin-genesis as proven by myelin staining and microstructures of myelin observed by transmission electron microscope. Furthermore, Rg1 significantly increased Olig2+ oligodendrocyte lineage cells in callosum, implying that the pro-remyelination effect of Rg1 was closely correlated to the enhanced differentiation of OPCs. We further demonstrated that Rg1 increased the survival and proliferation of OPCs as well as induced maturation in oligodendrocytes (OLs). Molecular analysis showed that Rg1 transduced the pro-differentiation signaling programmed by the GSK3ß/ß-Catenin pathway. Notably, relying on its pro-remyelination effects, Rg1 ameliorated severity and histopathology of EAE disease. CONCLUSION: By paving the way for OPCs differentiation, Rg1 could maintain the integrity of myelin and is a promising candidate for functional recovery in demyelinating diseases.


Assuntos
Encefalomielite Autoimune Experimental , Células Precursoras de Oligodendrócitos , Remielinização , Animais , Diferenciação Celular , Cuprizona/metabolismo , Cuprizona/farmacologia , Cuprizona/uso terapêutico , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ginsenosídeos , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Remielinização/fisiologia , beta Catenina/metabolismo
15.
EBioMedicine ; 83: 104204, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35952494

RESUMO

BACKGROUND: Multiple sclerosis is characterised by inflammation, oligodendrocyte loss and axonal demyelination and shows an additional impact on astrocytes, and their polarization. Although a certain degree of spontaneous myelin repair can be observed, disease progression, and aging impair regeneration efforts highlighting the need to better understand glial cell dynamics to establish specific regenerative treatments. METHODS: Applying a chronic demyelination model, we here analysed demyelination and remyelination related effects on astrocytes and stem cell niches and studied the consequences of medrysone application on myelin repair, and astrocyte polarization. FINDINGS: Medrysone induced recovery of mature oligodendrocytes, myelin expression and node formation. In addition, C3d/S100a10 co-expression in astrocytes was enhanced. Moreover, Timp1 expression in C3d positive astrocytes revealed another astrocytic phenotype with a myelination promoting character. INTERPRETATION: Based on these findings, specific astrocyte subpopulations are suggested to act in a myelin regenerative way and manner the regulation of which can be positively modulated by this corticosteroid. FUNDING: This work was supported by the Jürgen Manchot Stiftung, the Research Commission of the medical faculty of the Heinrich-Heine-University of Düsseldorf, the Christiane and Claudia Hempel Foundation for clinical stem cell research and the James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung.


Assuntos
Doenças Desmielinizantes , Bainha de Mielina , Corticosteroides , Animais , Astrócitos/metabolismo , Cuprizona/metabolismo , Cuprizona/farmacologia , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Pregnenodionas
16.
J Ethnopharmacol ; 298: 115622, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964820

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Astragali is a traditional Chinese medicine with various pharmacological effects. Total astragalosides (TA), the main effective ingredients in Radix Astragali, exert properties including anti-oxidative stress, anti-neuroinflammation, and neuroprotection. We previously found that TA alleviated experimental autoimmune encephalomyelitis (EAE) progression, a widely used animal model of multiple sclerosis (MS). As a chronic demyelination disease, MS generally manifests myelin loss and fails to myelin regeneration. Regulation of oligodendrocyte progenitor cells (OPCs) differentiation and remyelination is the fundamental strategy for MS treatment. However, whether TA could directly promote OPCs differentiation and remyelination is still unknown. AIMS OF THE STUDY: This study was aimed to investigate pro-differentiation and myelin regeneration effects of TA on OPCs and Cuprizone (CPZ)-induced demyelination mice, an animal model of MS, and to explore mechanism underlying from regulation of OPCs differentiation and maturation. MATERIALS AND METHODS: Mice were orally given CPZ (400 mg/kg) daily for 4 weeks to induce myelin loss, and then treated with TA (25 and 50 mg/kg) daily for 1 week. Cell proliferation assay, Western blot, RT-PCR, immunocytochemistry and immunohistochemistry were performed to explore the mechanisms. The role of TA in oligodendrocyte differentiation and maturation was evaluated using MO3.13, a human oligodendrocytic hybrid cell line. RESULTS: TA was shown to mitigate behavioral impairment in CPZ-induced mice. It markedly ameliorated myelin loss and enhanced remyelination in the corpus callosum of mice, evidenced by increased expression of myelin basic protein (MBP) and the number of CC1+ newly generated oligodendrocytes (OLs). TA also enhanced the expression of MBP at both mRNA and protein levels in MO3.13 cells. In CPZ-induced mice and MO3.13 cells, TA remarkably promoted the activation of GSK3ß, repressed the phosphorylation of ß-catenin, reduced the expression of transcription factor 4 and inhibitor of DNA binding 2. The agonist of ß-catenin, SKL2001, partially abolished the pro-differentiation effect of TA in MO3.13 cells. CONCLUSIONS: Taken together, we clarified that TA could effectively enhance the differentiation and maturation of OPCs and accelerate remyelination in CPZ-induced mice through inhibition of Wnt/ß-catenin signaling pathway. This study provides new insight into the beneficial effect of TA in the treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental , Células Precursoras de Oligodendrócitos , Remielinização , Animais , Diferenciação Celular , Cuprizona/metabolismo , Cuprizona/toxicidade , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
17.
Mol Neurodegener ; 17(1): 82, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514132

RESUMO

BACKGROUND: Microglia regulate the response to injury and disease in the brain and spinal cord. In white matter diseases microglia may cause demyelination. However, how microglia respond and regulate demyelination is not fully understood. METHODS: To understand how microglia respond during demyelination, we fed mice cuprizone-a potent demyelinating agent-and assessed the dynamics of genetically fate-mapped microglia. We then used single-cell RNA sequencing to identify and track the microglial subpopulations that arise during demyelination. To understand how microglia contribute to the clearance of dead oligodendrocytes, we ablated microglia starting at the peak of cuprizone-induced cell death and used the viability dye acridine orange to monitor apoptotic and lytic cell morphologies after microglial ablation. Lastly, we treated serum-free primary microglial cultures to model distinct aspects of cuprizone-induced demyelination and assessed the response. RESULTS: The cuprizone diet generated a robust microglial response by week 4 of the diet. Single-cell RNA sequencing at this time point revealed the presence of several cuprizone-associated microglia (CAM) clusters. These clusters expressed a transcriptomic signature indicative of cytokine regulation and reactive oxygen species production with altered lysosomal and metabolic changes consistent with ongoing phagocytosis. Using acridine orange to monitor apoptotic and lytic cell death after microglial ablation, we found that microglia preferentially phagocytose lytic carcasses. In culture, microglia exposed to lytic carcasses partially recapitulated the CAM state, suggesting that phagocytosis contributes to this distinct microglial state during cuprizone demyelination. CONCLUSIONS: Microglia serve multiple roles during demyelination, yet their transcriptomic state resembles other neurodegenerative conditions. The phagocytosis of cellular debris is likely a universal cause for a common neurodegenerative microglial state.


Assuntos
Cuprizona , Doenças Desmielinizantes , Animais , Camundongos , Cuprizona/toxicidade , Cuprizona/metabolismo , Microglia/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Transcriptoma , Laranja de Acridina/efeitos adversos , Laranja de Acridina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
18.
Mult Scler Relat Disord ; 63: 103886, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597080

RESUMO

BACKGROUND: Cuprizone (CPZ) is a copper chelator used to produce a reversible oligodendrocytopathy in animals, which has some similarities to the pathology found in human multiple sclerosis (MS). This model is attractive to study remyelination. AIMS: To demonstrate that a two-week period after cessation of CPZ exposure is sufficient to establish changes compatible with remyelination, without accompanying behavior or brain magnetic resonance imaging (MRI) disturbances. METHODS: Two groups of male C57BL/6 mice were fed an oral solution of CPZ (0.2%) for 5 weeks (W5); half of the animals were kept under the vehicle for another 2 weeks (W7). After 5 and 7 weeks, animals were subjected to a battery of behavioural tests and 18 animals to brain MRI. Animals' cerebellar samples were studied for gene expression and/or protein levels of GFAP, myelin proteolipid protein (PLP), TNF-α and IL-1ß. RESULTS: No differences were observed between CPZ-exposed and control animals, regarding behavior and MRI, both at W5 and W7. However, myelin PLP levels decreased in CPZ (W5) treated animals, and these changes reverted at W7. GFAP levels varied in the opposite direction. CONCLUSIONS: Observed changes validate the use of W5 and W7 temporal moments for the study of demyelination and early remyelination in this model.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Remielinização , Animais , Cuprizona/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/genética , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Bainha de Mielina/patologia
19.
Mol Neurodegener ; 17(1): 34, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526004

RESUMO

BACKGROUND: The dietary consumption of cuprizone - a copper chelator - has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action 'intrinsic cell damage'. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells - neutrophils or T-cells. We term this mode of action 'extrinsic cellular damage'. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.


Assuntos
Cuprizona , Doenças Desmielinizantes , Animais , Astrócitos/metabolismo , Cuprizona/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Bainha de Mielina , Oligodendroglia/metabolismo
20.
ACS Chem Neurosci ; 13(17): 2579-2598, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35947794

RESUMO

Suppression of excessive microglial overactivation can prevent the progression of multiple sclerosis (MS). Histone deacetylases 3 inhibitor (HDAC3i) has been demonstrated to exert anti-inflammatory effects by suppressing microglia (M1-liked) activation. Here, we demonstrate that the RGFP966 (a selective inhibitor of HDAC3) protects white matter after cuprizone-induced demyelination, as shown by reductions in neurological behavioral deficits and increases in myelin basic protein. Moreover, in this study, we found that RGFP966 caused a significant reduction in the levels of inflammatory cytokines, including IL-1ß, TNF-α, as well as iNOS, and inhibited microglial (M1-liked) activation in the experimental cuprizone model and LPS-stimulated BV2 cells. Meanwhile, RGFP966 alleviated apoptosis of LPS-induced BV2 cells in vitro. Furthermore, RGFP966 suppressed the expression of P2X7R, NLRP3, ASC, IL-18, IL-1ß, and caspase-1, inhibited the ratio of phosphorylated-STAT3/STAT3 and phosphorylated NF-κB p65/NF-κB p65, as well as increased acetylated NF-κB p65 in vitro and in vivo. Furthermore, we confirmed that brilliant blue G (antagonists of P2X7R) suppressed the expression of microglial NLRP3, IL-18, IL-1ß, caspase-1, NF-κB p65 (including phosphorylated NF-κB p65), and STAT3 (including phosphorylated STAT3) in vitro. These findings demonstrated that RFFP966 alleviated the inflammatory response and exerted a neuroprotective effect possibly by modulating P2X7R/STAT3/NF-κB65/NLRP3 signaling pathways. Thus, HDAD3 might be considered a promising intervention target for neurodegenerative diseases, such as MS.


Assuntos
Cuprizona , Inibidores Enzimáticos/farmacologia , Histona Desacetilases/metabolismo , NF-kappa B , Acrilamidas , Animais , Caspase 1/metabolismo , Cuprizona/metabolismo , Cuprizona/toxicidade , Modelos Animais de Doenças , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Lipopolissacarídeos/toxicidade , Camundongos , Microglia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Fenilenodiaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA