Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 287(1920): 20192386, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32075526

RESUMO

Exposure to a pathogen primes many organisms to respond faster or more efficiently to subsequent exposures. Such priming can be non-specific or specific, and has been found to extend across generations. Disentangling and quantifying specific and non-specific effects is essential for understanding the genetic epidemiology of a system. By combining a large infection experiment and mathematical modelling, we disentangle different transgenerational effects in the crustacean model Daphnia magna exposed to different strains of the bacterial parasite Pasteuria ramosa. In the experiment, we exposed hosts to a high dose of one of three parasite strains, and subsequently challenged their offspring with multiple doses of the same (homologous) or a different (heterologous) strain. We find that exposure of Daphnia to Pasteuria decreases the susceptibility of their offspring by approximately 50%. This transgenerational protection is not larger for homologous than for heterologous parasite challenges. Methodologically, our work represents an important contribution not only to the analysis of immune priming in ecological systems but also to the experimental assessment of vaccines. We present, for the first time, an inference framework to investigate specific and non-specific effects of immune priming on the susceptibility distribution of hosts-effects that are central to understanding immunity and the effect of vaccines.


Assuntos
Daphnia/microbiologia , Interações Hospedeiro-Parasita , Pasteuria/fisiologia , Animais , Daphnia/imunologia , Daphnia/fisiologia , Interações Hospedeiro-Patógeno
2.
Fish Shellfish Immunol ; 103: 126-134, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32335314

RESUMO

Dragon fruit oligosaccharide (DFO) is an indigestible prebiotic. In this study, we aimed to investigate the effects of DFO on gut microbiota, oxidative stress and immune-related gene expression in Daphnia magna. The 10-day-old D. magna were treated with 0, 9, and 27 mg l-1 DFO for 85 h. The gut bacterial communities, superoxide dismutase (SOD) activity, lipid peroxidation and the expressions of genes in Toll signaling pathway were observed. The results showed that D. magna treated with 9 and 27 mg l-1 DFO altered gut microbiota composition by increasing Limnohabitans and Lactobacillus, and significantly increased SOD activity and reduced lipid peroxidation. Moreover, the expressions of Toll2, Toll3, Toll5, Toll7 and Pelle genes were significantly increased in D. magna treated with 9 and 27 mg l-1 DFO. Our results suggested that DFO changed the composition of the gut microbiota of D. magna by increasing the beneficial bacteria. DFO also had the ability to stimulate innate immunity in D. magna by increasing SOD activity, reducing lipid peroxidation, and increasing the expression of immune-related genes.


Assuntos
Proteínas de Artrópodes/genética , Cactaceae/química , Daphnia/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Oligossacarídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ração Animal/análise , Animais , Proteínas de Artrópodes/imunologia , Daphnia/metabolismo , Daphnia/microbiologia , Dieta , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Frutas/química , Oligossacarídeos/administração & dosagem , Oligossacarídeos/química , Distribuição Aleatória
3.
Ecol Lett ; 20(4): 445-451, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28266095

RESUMO

Fundamental ecological processes, such as extrinsic mortality, determine population age structure. This influences disease spread when individuals of different ages differ in susceptibility or when maternal age determines offspring susceptibility. We show that Daphnia magna offspring born to young mothers are more susceptible than those born to older mothers, and consider this alongside previous observations that susceptibility declines with age in this system. We used a susceptible-infected compartmental model to investigate how age-specific susceptibility and maternal age effects on offspring susceptibility interact with demographic factors affecting disease spread. Our results show a scenario where an increase in extrinsic mortality drives an increase in transmission potential. Thus, we identify a realistic context in which age effects and maternal effects produce conditions favouring disease transmission.


Assuntos
Envelhecimento , Daphnia/fisiologia , Imunidade Inata , Modelos Biológicos , Pasteuria/fisiologia , Animais , Daphnia/imunologia , Daphnia/microbiologia , Herança Materna
4.
J Exp Biol ; 219(Pt 11): 1697-704, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26994174

RESUMO

The genetic background of inducible morphological defences in Daphnia is still largely unknown. Dissolved infochemicals from the aquatic larvae of the phantom midge Chaoborus induce so-called 'neck-teeth' in the first three post-embryonic stages of Daphnia pulex This defence has become a textbook example of inducible defences. In a target gene approach, by using three Daphnia genotypes which show a gradient of neck-teeth induction in response to equal amounts of kairomone, we report a high correlation of neck-teeth induction in Daphnia pulex and relative gene expression of two chitin deacetylases. Further, previous studies suggested genes from both the juvenoid and the insulin hormone signalling pathways as well as several morphogenetic genes downstream to be responsible for neck-teeth induction in D. pulex However, these data were not supported by our study. None of the three D. pulex clones showed an upregulation of these previously proposed candidate genes as a response to predator kairomone, which is interpreted as the result of refined methods used for both RNA sampling and kairomone enrichment yielding unambiguous results compared with earlier studies. The assessment of a clonal gradient of Daphnia in the presence and absence of infochemicals provides a promising approach to identify further genes involved in the induction of morphological defences by correlating gene expression and morphology.


Assuntos
Amidoidrolases/metabolismo , Daphnia/genética , Daphnia/fisiologia , Feromônios/farmacologia , Comportamento Predatório/fisiologia , Amidoidrolases/genética , Animais , Células Clonais , Daphnia/enzimologia , Daphnia/imunologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Estudos de Associação Genética , Genótipo , Larva/efeitos dos fármacos , Larva/fisiologia , Fenótipo , Comportamento Predatório/efeitos dos fármacos
5.
J Exp Biol ; 217(Pt 21): 3929-34, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25214486

RESUMO

Immunity in vertebrates is well established to develop with time, but the ontogeny of defence in invertebrates is markedly less studied. Yet, age-specific capacity for defence against pathogens, coupled with age structure in populations, has widespread implications for disease spread. Thus, we sought to determine the susceptibility of hosts of different ages in an experimental invertebrate host-pathogen system. In a series of experiments, we show that the ability of Daphnia magna to resist its natural bacterial pathogen Pasteuria ramosa changes with host age. Clonal differences make it difficult to draw general conclusions, but the majority of observations indicate that resistance increases early in the life of D. magna, consistent with the idea that the defence system develops with time. Immediately following this, at about the time when a daphnid would be most heavily investing in reproduction, resistance tends to decline. Because many ecological factors influence the age structure of Daphnia populations, our results highlight a broad mechanism by which ecological context can affect disease epidemiology. We also show that a previously observed protective effect of restricted maternal food persists throughout the entire juvenile period, and that the protective effect of prior treatment with a small dose of the pathogen ('priming') persists for 7 days, observations that reinforce the idea that immunity in D. magna can change over time. Together, our experiments lead us to conclude that invertebrate defence capabilities have an ontogeny that merits consideration with respect to both their immune systems and the epidemic spread of infection.


Assuntos
Daphnia/imunologia , Daphnia/microbiologia , Suscetibilidade a Doenças , Ecossistema , Interações Hospedeiro-Patógeno/fisiologia , Pasteuria/patogenicidade , Fatores Etários , Animais , Modelos Lineares
6.
Nat Commun ; 15(1): 5333, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909039

RESUMO

Balancing selection is an evolutionary process that maintains genetic polymorphisms at selected loci and strongly reduces the likelihood of allele fixation. When allelic polymorphisms that predate speciation events are maintained independently in the resulting lineages, a pattern of trans-species polymorphisms may occur. Trans-species polymorphisms have been identified for loci related to mating systems and the MHC, but they are generally rare. Trans-species polymorphisms in disease loci are believed to be a consequence of long-term host-parasite coevolution by balancing selection, the so-called Red Queen dynamics. Here we scan the genomes of three crustaceans with a divergence of over 15 million years and identify 11 genes containing identical-by-descent trans-species polymorphisms with the same polymorphisms in all three species. Four of these genes display molecular footprints of balancing selection and have a function related to immunity. Three of them are located in or close to loci involved in resistance to a virulent bacterial pathogen, Pasteuria, with which the Daphnia host is known to coevolve. This provides rare evidence of trans-species polymorphisms for loci known to be functionally relevant in interactions with a widespread and highly specific parasite. These findings support the theory that specific antagonistic coevolution is able to maintain genetic diversity over millions of years.


Assuntos
Daphnia , Polimorfismo Genético , Seleção Genética , Animais , Daphnia/genética , Daphnia/microbiologia , Daphnia/imunologia , Pasteuria/genética , Pasteuria/patogenicidade , Resistência à Doença/genética , Crustáceos/genética , Crustáceos/microbiologia , Crustáceos/imunologia , Evolução Molecular , Genoma/genética , Filogenia , Alelos
7.
Dev Comp Immunol ; 161: 105251, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39168396

RESUMO

Dragon fruit oligosaccharide (DFO) is an indigestible prebiotic that enhances the growth and reproduction of Daphnia magna, increases the expression of genes involved in immunity, and reduces oxidative stress. This study investigated the effects of DFO on the expression of innate immunity- (Toll, Pelle, proPO, A2M, and CTL), oxidative stress- (Mn-SOD), and nitric oxide (NO) synthesis-related genes (NOS1, NOS2, and arginase) as well as NO localization and number of hemocytes in D. magna. For this ten-day-old D. magna were treated with 0 or 9 mg l-1 of DFO for 24 and 85 h. Gene expression levels, NO intensity and localization, and total hemocytes were evaluated. After 24 h, the expression of Toll and proPO increased significantly (p < 0.05), while that of C-type lectins (CTL) was reduced (p < 0.05). At 85 h, Mn-SOD and CTL expressions were markedly suppressed (p < 0.05). NO was mostly localized in the foregut, midgut, hindgut, and carapace. The expression of NOS1 was reduced after 24 h (p < 0.05). In addition, NO intensity at 24 h was insignificantly lower than the control (p > 0.05). At 85 h, the expression of NOS1, NOS2, and arginase was higher than control, but NO intensity did not differ significantly (p > 0.05). Furthermore, the total hemocyte count elevated remarkably at 85 h (p < 0.05). Our study suggested that 9 mg l-1 of DFO could alter the expression of the genes related to innate immunity, oxidative stress, and NO synthesis in D. magna and significantly stimulate hemocyte production.


Assuntos
Daphnia , Hemócitos , Imunidade Inata , Óxido Nítrico , Oligossacarídeos , Estresse Oxidativo , Animais , Hemócitos/imunologia , Hemócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Oligossacarídeos/farmacologia , Daphnia/imunologia , Óxido Nítrico/metabolismo , Imunidade Celular , Frutas/imunologia , Prebióticos/administração & dosagem , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Daphnia magna , Cactaceae
8.
BMC Evol Biol ; 12: 63, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22577801

RESUMO

BACKGROUND: Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. RESULTS: In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK) test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing) in the genes that show the greatest deviation from neutral evolution. CONCLUSIONS: Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.


Assuntos
Daphnia/genética , Daphnia/imunologia , Evolução Molecular , Animais , Daphnia/parasitologia , Fenômenos Imunogenéticos , Seleção Genética
9.
J Evol Biol ; 25(9): 1888-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22856460

RESUMO

Hosts are armed with several lines of defence in the battle against parasites: they may prevent the establishment of infection, reduce parasite growth once infected or persevere through mechanisms that reduce the damage caused by infection, called tolerance. Studies on tolerance in animals have focused on mortality, and sterility tolerance has not been investigated experimentally. Here, we tested for genetic variation in the multiple steps of defence when the invertebrate Daphnia magna is infected with the sterilizing bacterial pathogen Pasteuria ramosa: anti-infection resistance, anti-growth resistance and the ability to tolerate sterilization once infected. When exposed to nine doses of a genetically diverse pathogen inoculum, six host genotypes varied in their average susceptibility to infection and in their parasite loads once infected. How host fecundity changed with increasing parasite loads did not vary between genotypes, indicating that there was no genetic variation for this measure of fecundity tolerance. However, genotypes differed in their level of fecundity compensation under infection, and we discuss how, by increasing host fitness without targeting parasite densities, fecundity compensation is consistent with the functional definition of tolerance. Such infection-induced life-history shifts are not traditionally considered to be part of the immune response, but may crucially reduce harm (in terms of fitness loss) caused by disease, and are a distinct source of selection on pathogens.


Assuntos
Daphnia/imunologia , Daphnia/microbiologia , Resistência à Doença , Suscetibilidade a Doenças/microbiologia , Pasteuria/patogenicidade , Animais , Carga Bacteriana , Daphnia/genética , Suscetibilidade a Doenças/imunologia , Feminino , Fertilidade , Variação Genética , Genótipo , Interações Hospedeiro-Patógeno , Análise dos Mínimos Quadrados , Pasteuria/imunologia , Esporos Bacterianos
10.
Biol Lett ; 8(6): 972-5, 2012 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22875818

RESUMO

Previous pathogen exposure is an important predictor of the probability of becoming infected. This is deeply understood for vertebrate hosts, and increasingly so for invertebrate hosts. Here, we test if an initial pathogen exposure changes the infection outcome to a secondary pathogen exposure in the natural host-pathogen system Daphnia magna and Pasteuria ramosa. Hosts were initially exposed to an infective pathogen strain, a non-infective pathogen strain or a control. The same hosts underwent a second exposure, this time to an infective pathogen strain, either immediately after the initial encounter or 48 h later. We observed that an initial encounter with a pathogen always conferred protection against infection compared with controls.


Assuntos
Daphnia/imunologia , Daphnia/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Pasteuria/patogenicidade , Animais , Estudos de Casos e Controles , Daphnia/genética , Genótipo , Alemanha , Modelos Estatísticos , Escócia , Esporos Bacterianos
11.
Biol Lett ; 7(1): 156-9, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20810432

RESUMO

The field of ecological immunology strongly relies on indicators of immunocompetence. Two major indicators in invertebrates, the activity of phenoloxidase (PO) and lytic activity have recently been questioned in studies showing that, across a natural range of baseline levels, these indicators did not predict resistance against a manipulated challenge with natural parasites. We confirmed this finding by showing that baseline levels of PO and lytic activity in the host Daphnia magna were not related to spore load of the parasite Pasteuria ramosa. Yet, PO levels in infected hosts did predict spore load, indicating PO activity can be useful as an indicator of immunocompetence in this model parasite-host system.


Assuntos
Daphnia/enzimologia , Daphnia/imunologia , Monofenol Mono-Oxigenase/metabolismo , Pasteuria/fisiologia , Animais , Interações Hospedeiro-Parasita/imunologia , Regulação para Cima
12.
Genes (Basel) ; 12(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430247

RESUMO

Recently, it has been shown that the community of gut microorganisms plays a crucial role in host performance with respect to parasite tolerance. Knowledge, however, is lacking on the role of the gut microbiome in mediating host tolerance after parasite re-exposure, especially considering multiple parasite infections. We here aimed to fill this knowledge gap by studying the role of the gut microbiome on tolerance in Daphnia magna upon multiple parasite species re-exposure. Additionally, we investigated the role of the host genotype in the interaction between the gut microbiome and the host phenotypic performance. A microbiome transplant experiment was performed in which three germ-free D. magna genotypes were exposed to a gut microbial inoculum and a parasite community treatment. The gut microbiome inocula were pre-exposed to the same parasite communities or a control treatment. Daphnia performance was monitored, and amplicon sequencing was performed to characterize the gut microbial community. Our experimental results showed that the gut microbiome plays no role in Daphnia tolerance upon parasite re-exposure. We did, however, find a main effect of the gut microbiome on Daphnia body size reflecting parasite specific responses. Our results also showed that it is rather the Daphnia genotype, and not the gut microbiome, that affected parasite-induced host mortality. Additionally, we found a role of the genotype in structuring the gut microbial community, both in alpha diversity as in the microbial composition.


Assuntos
Daphnia/genética , Microbioma Gastrointestinal/imunologia , Genótipo , Interações Hospedeiro-Parasita/genética , Parasitos/imunologia , Animais , Tamanho Corporal/genética , Tamanho Corporal/imunologia , Daphnia/imunologia , Daphnia/microbiologia , Daphnia/parasitologia , Vida Livre de Germes/genética , Vida Livre de Germes/imunologia , Interações Hospedeiro-Parasita/imunologia
13.
BMC Evol Biol ; 10: 355, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21083915

RESUMO

BACKGROUND: A central hypothesis in the evolutionary ecology of parasitism is that trade-offs exist between resistance to parasites and other fitness components such as fecundity, growth, survival, and predator avoidance, or resistance to other parasites. These trade-offs are called costs of resistance. These costs fall into two broad categories: constitutive costs of resistance, which arise from a negative genetic covariance between immunity and other fitness-related traits, and inducible costs of resistance, which are the physiological costs incurred by hosts when mounting an immune response. We sought to study inducible costs in depth using the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa. RESULTS: We designed specific experiments to study the costs induced by exposure to this parasite, and we re-analysed previously published data in an effort to determine the generality of such costs. However, despite the variety of genetic backgrounds of both hosts and parasites, and the different exposure protocols and environmental conditions used in these experiment, this work showed that costs of exposure can only rarely be detected in the D. magna-P. ramosa system. CONCLUSIONS: We discuss possible reasons for this lack of detectable costs, including scenarios where costs of resistance to parasites might not play a major role in the co-evolution of hosts and parasites.


Assuntos
Daphnia/genética , Aptidão Genética , Interações Hospedeiro-Parasita/genética , Animais , Daphnia/imunologia , Daphnia/microbiologia , Genótipo , Imunidade Inata , Pasteuria/patogenicidade , Temperatura
14.
Am Nat ; 176(5): 557-65, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20887188

RESUMO

Parasites can certainly harm host fitness. Given such virulence, hosts should evolve strategies to resist or tolerate infection. But what governs those strategies and the costs that they incur? This study illustrates how a fecundity­susceptibility trade­off among clonally reared genotypes of a zooplankton (Daphnia dentifera) infected by a fungal parasite (Metschnikowia) arises due to variation in resource acquisition and use by hosts. To make these connections, we used lab experiments and theoretical models that link feeding with susceptibility, energetics, and fecundity of hosts. These feeding­based mechanisms also produced a fecundity­survivorship trade­off. Meanwhile, a parasite spore yield­fecundity trade­off arose from variation in juvenile growth rate among host clones (another index of resource use), a result that was readily anticipated and explained by the models. Thus, several key epidemiological trade­offs stem from variation in resource acquisition and use among clones. This connection should catalyze the creation of new theory that integrates resource­ and gene­based responses of hosts to disease.


Assuntos
Daphnia/parasitologia , Metschnikowia/fisiologia , Animais , Daphnia/imunologia , Daphnia/fisiologia , Comportamento Alimentar , Fertilidade , Genótipo , Interações Hospedeiro-Parasita , Imunidade Inata , Modelos Biológicos
15.
Proc Biol Sci ; 277(1698): 3291-7, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20534618

RESUMO

Linking measures of immune function with infection, and ultimately, host and parasite fitness is a major goal in the field of ecological immunology. In this study, we tested for the presence and timing of a cellular immune response in the crustacean Daphnia magna following exposure to its sterilizing endoparasite Pasteuria ramosa. We found that D. magna possesses two cell types circulating in the haemolymph: a spherical one, which we call a granulocyte and an irregular-shaped amoeboid cell first described by Metchnikoff over 125 years ago. Daphnia magna mounts a strong cellular response (of the amoeboid cells) just a few hours after parasite exposure. We further tested for, and found, considerable genetic variation for the magnitude of this cellular response. These data fostered a heuristic model of resistance in this naturally coevolving host-parasite interaction. Specifically, the strongest cellular responses were found in the most susceptible hosts, indicating resistance is not always borne from a response that destroys invading parasites, but rather stems from mechanisms that prevent their initial entry. Thus, D. magna may have a two-stage defence--a genetically determined barrier to parasite establishment and a cellular response once establishment has begun.


Assuntos
Daphnia/microbiologia , Daphnia/fisiologia , Pasteuria/fisiologia , Animais , Daphnia/genética , Daphnia/imunologia , Variação Genética/imunologia , Genótipo , Hemócitos/citologia , Hemócitos/imunologia , Hemócitos/ultraestrutura , Hemolinfa/citologia , Hemolinfa/imunologia , Interações Hospedeiro-Patógeno , Imunidade Celular/imunologia , Microscopia Confocal , Modelos Estatísticos , Pasteuria/imunologia
16.
J Evol Biol ; 23(11): 2370-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20825550

RESUMO

Natural populations often show genetic variation in parasite resistance, forming the basis for evolutionary response to selection imposed by parasitism. We investigated whether previous epidemics selected for higher resistance to novel parasite isolates in a Daphnia galeata-microparasite system by comparing susceptibility of host clones from populations with varying epidemic history. We manipulated resource availability to evaluate whether diet influences Daphnia susceptibility as epidemics are common in nutrient-rich lakes. Exposing clones from 10 lakes under two food treatments to an allopatric protozoan parasite, we found that Daphnia originating from lakes (mainly nutrient rich) with previous epidemics better resist infection. Despite this result, there was a tendency of higher susceptibility in the low food treatment, suggesting that higher resistance of clones from populations with epidemic background is not directly caused by lake nutrient level. Rather, our results imply that host populations respond to parasite-mediated selection by evolving higher parasite resistance.


Assuntos
Daphnia/genética , Daphnia/microbiologia , Dieta , Variação Genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/imunologia , Seleção Genética , Animais , Daphnia/imunologia , Eucariotos/fisiologia , Água Doce , Modelos Lineares , Suíça
17.
BMC Genomics ; 10: 175, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19386092

RESUMO

BACKGROUND: Branchiopod crustaceans in the genus Daphnia are key model organisms for investigating interactions between genes and the environment. One major theme of research on Daphnia species has been the evolution of resistance to pathogens and parasites, but lack of knowledge of the Daphnia immune system has limited the study of immune responses. Here we provide a survey of the immune-related genome of D. pulex, derived from the newly completed genome sequence. Genes likely to be involved in innate immune responses were identified by comparison to homologues from other arthropods. For each candidate, the gene model was refined, and we conducted an analysis of sequence divergence from homologues from other taxa. RESULTS AND CONCLUSION: We found that some immune pathways, in particular the TOLL pathway, are fairly well conserved between insects and Daphnia, while other elements, in particular antimicrobial peptides, could not be recovered from the genome sequence. We also found considerable variation in gene family copy number when comparing Daphnia to insects and present phylogenetic analyses to shed light on the evolution of a range of conserved immune gene families.


Assuntos
Daphnia/genética , Daphnia/imunologia , Genoma , Filogenia , Animais , Dosagem de Genes , Genes de Insetos , Sistema Imunitário/fisiologia , Modelos Genéticos , Família Multigênica , Alinhamento de Sequência , Análise de Sequência de DNA
18.
Ecology ; 90(3): 791-801, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19341148

RESUMO

The "dilution effect" concept in disease ecology offers the intriguing possibility that clever manipulation of less competent hosts could reduce disease prevalence in populations of more competent hosts. The basic concept is straightforward: host species vary in suitability (competence) for parasites, and disease transmission decreases when there are more incompetent hosts interacting with vectors or removing free-living stages of a parasite. However, host species also often interact with each other in other ecological ways, e.g., as competitors for resources. The net result of these simultaneous, multiple interactions (disease dilution and resource competition) is challenging to predict. Nonetheless, we see the signature of both roles operating concurrently in a planktonic host-parasite system. We document pronounced spatiotemporal variation in the size of epidemics of a virulent fungus (Metschnikowia bicuspidata) in Midwestern U.S. lake populations of a dominant crustacean grazer (Daphnia dentifera). We show that some of this variation is captured by changes in structure of Daphnia assemblages. Lake-years with smaller epidemics were characterized by assemblages dominated by less suitable hosts ("diluters," D. pulicaria and D. retrocurva, whose suitabilties were determined in lab experiments and field surveys) at the start of epidemics. Furthermore, within a season, less suitable hosts increased as epidemics declined. These observations are consistent with a dilution effect. However, more detailed time series analysis (using multivariate autoregressive models) of three intensively sampled epidemics show the signature of a likely interaction between dilution and resource competition between these Daphnia species. The net outcome of this interaction likely promoted termination of these fungal outbreaks. Should this outcome always arise in "friendly competition" systems where diluting hosts compete with more competent hosts? The answers to this question lie at a frontier of disease ecology.


Assuntos
Daphnia/imunologia , Daphnia/parasitologia , Ecossistema , Interações Hospedeiro-Parasita/fisiologia , Zooplâncton/fisiologia , Animais , Surtos de Doenças/veterinária , Imunidade Inata , Análise Multivariada , Densidade Demográfica , Dinâmica Populacional , Estações do Ano , Fatores de Tempo
19.
Integr Comp Biol ; 59(5): 1203-1219, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141120

RESUMO

Host susceptibility may be critical for the spread of infectious disease, and understanding its basis is a goal of ecological immunology. Here, we employed a series of mechanistic tests to evaluate four factors commonly assumed to influence host susceptibility: parasite exposure, barriers to infection, immune responses, and body size. We tested these factors in an aquatic host-parasite system (Daphnia dentifera and the fungal parasite, Metschnikowia bicuspidata) using both laboratory-reared and field-collected hosts. We found support for each factor as a driver of infection. Elevated parasite exposure, which occurs through consumption of infectious fungal spores, increased a host's probability of infection. The host's gut epithelium functioned as a barrier to infection, but in the opposite manner from which we predicted: thinner anterior gut epithelia were more resistant to infectious spores than thick epithelia. This relationship may be mediated by structural attributes associated with epithelial cell height. Fungal spores that breached the host's gut barrier elicited an intensity-dependent hemocyte response that decreased the probability of infection for some Daphnia. Although larger body sizes were associated with increased levels of spore ingestion, larger hosts also had lower frequencies of parasite attack, less penetrable gut barriers, and stronger hemocyte responses. After investigating which mechanisms underlie host susceptibility, we asked: do these four factors contribute equally or asymmetrically to the outcome of infection? An information-theoretic approach revealed that host immune defenses (barriers and immune responses) played the strongest roles in mediating infection outcomes. These two immunological traits may be valuable metrics for linking host susceptibility to the spread of infectious disease.


Assuntos
Daphnia/imunologia , Daphnia/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Metschnikowia/fisiologia , Animais , Tamanho Corporal
20.
Parasit Vectors ; 12(1): 545, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747976

RESUMO

BACKGROUND: Host genetic diversity can affect various aspects of host-parasite interactions, including individual-level effects on parasite infectivity, production of transmission stages and virulence, as well as population-level effects that reduce disease spread and prevalence, and buffer against widespread epidemics. However, a key aspect of this diversity, the genetic variation in host susceptibility, has often been neglected in interpreting empirical data and in theoretical studies. Daphnia similis naturally coexists with its competitor Daphnia magna and is more resistant to the endoparasitic microsporidium Hamiltosporidium tvaerminnensis, as suggested by a previous survey of waterbodies, which detected this parasite in D. magna, but not in D. similis. However, under laboratory conditions D. similis was sometimes found to be susceptible. We therefore asked if there is genetic variation for disease trait expression, and if the genetic variation in disease traits in D. similis is different from that of D. magna. METHODS: We exposed ten clones of D. similis and ten clones of D. magna to three isolates of H. tvaerminnensis, and measured infection rates, parasite-induced host mortality and parasite spore production. RESULTS: The two Daphnia species differ in the range and variation of their susceptibilities. The parasite produced on average two-fold more spores when growing in D. magna clones than in D. similis clones. CONCLUSIONS: We confirm that D. similis is indeed much more resistant than D. magna and suggest that this could create a dilution effect in habitats where both species coexist.


Assuntos
Daphnia/imunologia , Daphnia/microbiologia , Resistência à Doença , Variação Genética , Microsporídios/crescimento & desenvolvimento , Microsporídios/isolamento & purificação , Animais , Daphnia/classificação , Daphnia/genética , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA