Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.001
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(14): 3585-3601.e22, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821050

RESUMO

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.


Assuntos
Dolicóis , Dolicóis/metabolismo , Dolicóis/biossíntese , Humanos , Glicosilação , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Masculino , Mutação de Sentido Incorreto , Feminino
2.
Cell ; 175(4): 1045-1058.e16, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388443

RESUMO

Protein N-glycosylation is a widespread post-translational modification. The first committed step in this process is catalysed by dolichyl-phosphate N-acetylglucosamine-phosphotransferase DPAGT1 (GPT/E.C. 2.7.8.15). Missense DPAGT1 variants cause congenital myasthenic syndrome and disorders of glycosylation. In addition, naturally-occurring bactericidal nucleoside analogues such as tunicamycin are toxic to eukaryotes due to DPAGT1 inhibition, preventing their clinical use. Our structures of DPAGT1 with the substrate UDP-GlcNAc and tunicamycin reveal substrate binding modes, suggest a mechanism of catalysis, provide an understanding of how mutations modulate activity (thus causing disease) and allow design of non-toxic "lipid-altered" tunicamycins. The structure-tuned activity of these analogues against several bacterial targets allowed the design of potent antibiotics for Mycobacterium tuberculosis, enabling treatment in vitro, in cellulo and in vivo, providing a promising new class of antimicrobial drug.


Assuntos
Antibióticos Antituberculose/farmacologia , Defeitos Congênitos da Glicosilação/metabolismo , Inibidores Enzimáticos/farmacologia , N-Acetilglucosaminiltransferases/química , Animais , Antibióticos Antituberculose/química , Sítios de Ligação , Defeitos Congênitos da Glicosilação/genética , Inibidores Enzimáticos/química , Feminino , Células HEK293 , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Camundongos , Simulação de Acoplamento Molecular , Mutação , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Ligação Proteica , Células Sf9 , Spodoptera , Tunicamicina/química , Tunicamicina/farmacologia , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo
3.
Nat Rev Genet ; 25(10): 715-729, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38724711

RESUMO

Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.


Assuntos
Polissacarídeos , Humanos , Glicosilação , Animais , Polissacarídeos/metabolismo , Polissacarídeos/genética , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Mamíferos/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo
4.
PLoS Biol ; 22(7): e3002720, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991033

RESUMO

The conserved SKN-1A/Nrf1 transcription factor regulates the expression of proteasome subunit genes and is essential for maintenance of adequate proteasome function in animal development, aging, and stress responses. Unusual among transcription factors, SKN-1A/Nrf1 is a glycoprotein synthesized in the endoplasmic reticulum (ER). N-glycosylated SKN-1A/Nrf1 exits the ER and is deglycosylated in the cytosol by the PNG-1/NGLY1 peptide:N-glycanase. Deglycosylation edits the protein sequence of SKN-1A/Nrf1 by converting N-glycosylated asparagine residues to aspartate, which is necessary for SKN-1A/Nrf1 transcriptional activation of proteasome subunit genes. Homozygous loss-of-function mutations in the peptide:N-glycanase (NGLY1) gene cause NGLY1 deficiency, a congenital disorder of deglycosylation. There are no effective treatments for NGLY1 deficiency. Since SKN-1A/Nrf1 is a major client of NGLY1, the resulting proteasome deficit contributes to NGLY1 disease. We sought to identify targets for mitigation of proteasome dysfunction in NGLY1 deficiency that might indicate new avenues for treatment. We isolated mutations that suppress the sensitivity to proteasome inhibitors caused by inactivation of the NGLY1 ortholog PNG-1 in Caenorhabditis elegans. We identified multiple suppressor mutations affecting 3 conserved genes: rsks-1, tald-1, and ent-4. We show that the suppressors act through a SKN-1/Nrf-independent mechanism and confer proteostasis benefits consistent with amelioration of proteasome dysfunction. ent-4 encodes an intestinal nucleoside/nucleotide transporter, and we show that restriction of nucleotide availability is beneficial, whereas a nucleotide-rich diet exacerbates proteasome dysfunction in PNG-1/NGLY1-deficient C. elegans. Our findings suggest that dietary or pharmacological interventions altering nucleotide availability have the potential to mitigate proteasome insufficiency in NGLY1 deficiency and other diseases associated with proteasome dysfunction.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mutação , Complexo de Endopeptidases do Proteassoma , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Glicosilação , Nucleotídeos/metabolismo , Nucleotídeos/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
5.
PLoS Genet ; 20(9): e1011406, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39259723

RESUMO

Mutations in glycosylation pathways, such as N-linked glycosylation, O-linked glycosylation, and GPI anchor synthesis, lead to Congenital Disorders of Glycosylation (CDG). CDG typically present with seizures, hypotonia, and developmental delay but display large clinical variability with symptoms affecting every system in the body. This variability suggests modifier genes might influence the phenotypes. Because of the similar physiology and clinical symptoms, there are likely common genetic modifiers between CDG. Here, we use evolution as a tool to identify common modifiers between CDG and glycosylation genes. Protein glycosylation is evolutionarily conserved from yeast to mammals. Evolutionary rate covariation (ERC) identifies proteins with similar evolutionary rates that indicate shared biological functions and pathways. Using ERC, we identified strong evolutionary rate signatures between proteins in the same and different glycosylation pathways. Genome-wide analysis of proteins showing significant ERC with GPI anchor synthesis proteins revealed strong signatures with ncRNA modification proteins and DNA repair proteins. We also identified strong patterns of ERC based on cellular sub-localization of the GPI anchor synthesis enzymes. Functional testing of the highest scoring candidates validated genetic interactions and identified novel genetic modifiers of CDG genes. ERC analysis of disease genes and biological pathways allows for rapid prioritization of potential genetic modifiers, which can provide a better understanding of disease pathophysiology and novel therapeutic targets.


Assuntos
Defeitos Congênitos da Glicosilação , Evolução Molecular , Glicosilação , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Animais , Mutação , Glicosilfosfatidilinositóis/metabolismo , Glicosilfosfatidilinositóis/genética , Fenótipo
6.
J Biol Chem ; 300(9): 107599, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059494

RESUMO

O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.


Assuntos
Defeitos Congênitos da Glicosilação , N-Acetilglucosaminiltransferases , Humanos , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Animais , Mutação , Glicosilação , Processamento de Proteína Pós-Traducional
7.
J Biol Chem ; 300(8): 107584, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025454

RESUMO

The oligosaccharide needed for protein N-glycosylation is assembled on a lipid carrier via a multistep pathway. Synthesis is initiated on the cytoplasmic face of the endoplasmic reticulum (ER) and completed on the luminal side after transbilayer translocation of a heptasaccharide lipid intermediate. More than 30 congenital disorders of glycosylation (CDGs) are associated with this pathway, including RFT1-CDG which results from defects in the membrane protein Rft1. Rft1 is essential for the viability of yeast and mammalian cells and was proposed as the transporter needed to flip the heptasaccharide lipid intermediate across the ER membrane. However, other studies indicated that Rft1 is not required for heptasaccharide lipid flipping in microsomes or unilamellar vesicles reconstituted with ER membrane proteins, nor is it required for the viability of at least one eukaryote. It is therefore not known what essential role Rft1 plays in N-glycosylation. Here, we present a molecular characterization of human Rft1, using yeast cells as a reporter system. We show that it is a multispanning membrane protein located in the ER, with its N and C termini facing the cytoplasm. It is not N-glycosylated. The majority of RFT1-CDG mutations map to highly conserved regions of the protein. We identify key residues that are important for Rft1's ability to support N-glycosylation and cell viability. Our results provide a necessary platform for future work on this enigmatic protein.


Assuntos
Defeitos Congênitos da Glicosilação , Retículo Endoplasmático , Proteínas de Membrana , Saccharomyces cerevisiae , Humanos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Glicosilação , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Glicoproteínas de Membrana
8.
J Biol Chem ; 300(8): 107567, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002685

RESUMO

The Golgi compartment performs a number of crucial roles in the cell. However, the exact molecular mechanisms underlying these actions are not fully defined. Pathogenic mutations in genes encoding Golgi proteins may serve as an important source for expanding our knowledge. For instance, mutations in the gene encoding Transmembrane protein 165 (TMEM165) were discovered as a cause of a new type of congenital disorder of glycosylation (CDG). Comprehensive studies of TMEM165 in different model systems, including mammals, yeast, and fish uncovered the new realm of Mn2+ homeostasis regulation. TMEM165 was shown to act as a Ca2+/Mn2+:H+ antiporter in the medial- and trans-Golgi network, pumping the metal ions into the Golgi lumen and protons outside. Disruption of TMEM165 antiporter activity results in defects in N- and O-glycosylation of proteins and glycosylation of lipids. Impaired glycosylation of TMEM165-CDG arises from a lack of Mn2+ within the Golgi. Nevertheless, Mn2+ insufficiency in the Golgi is compensated by the activity of the ATPase SERCA2. TMEM165 turnover has also been found to be regulated by Mn2+ cytosolic concentration. Besides causing CDG, recent investigations have demonstrated the functional involvement of TMEM165 in several other pathologies including cancer and mental health disorders. This systematic review summarizes the available information on TMEM165 molecular structure, cellular function, and its roles in health and disease.


Assuntos
Antiporters , Complexo de Golgi , Manganês , Humanos , Manganês/metabolismo , Complexo de Golgi/metabolismo , Animais , Antiporters/metabolismo , Antiporters/genética , Glicosilação , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia
9.
J Biol Chem ; 300(4): 107121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417795

RESUMO

Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals) catalyzes deglycosylation of N-glycans on glycoproteins. A genetic disorder caused by mutations in the NGLY1 gene leads to NGLY1 deficiency with symptoms including motor deficits and neurological problems. Effective therapies have not been established, though, a recent study used the administration of an adeno-associated viral vector expressing human NGLY1 to dramatically rescue motor functions in young Ngly1-/- rats. Thus, early therapeutic intervention may improve symptoms arising from central nervous system dysfunction, and assay methods for measuring NGLY1 activity in biological samples are critical for early diagnostics. In this study, we established an assay system for plate-based detection of endogenous NGLY1 activity using a FRET-based probe. Using this method, we revealed significant changes in NGLY1 activity in rat brains during aging. This novel assay offers reliable disease diagnostics and provides valuable insights into the regulation of PNGase/NGLY1 activity in diverse organisms under different stress conditions.


Assuntos
Defeitos Congênitos da Glicosilação , Transferência Ressonante de Energia de Fluorescência , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Animais , Humanos , Masculino , Ratos , Envelhecimento/metabolismo , Encéfalo/metabolismo , Defeitos Congênitos da Glicosilação/diagnóstico , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência
10.
Hum Mol Genet ; 32(18): 2787-2796, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37379343

RESUMO

N-glycanase 1 (NGLY1) deficiency is a debilitating, ultra-rare autosomal recessive disorder caused by loss of function of NGLY1, a cytosolic enzyme that deglycosylates other proteins. It is characterized by severe global developmental delay and/or intellectual disability, hyperkinetic movement disorder, transient elevation of transaminases, (hypo)alacrima and progressive, diffuse, length-dependent sensorimotor polyneuropathy. A prospective natural history study (NHS) was conducted to elucidate clinical features and disease course. Twenty-nine participants were enrolled (15 onsite, 14 remotely) and followed for up to 32 months, representing ~29% of the ~100 patients identified worldwide. Participants exhibited profound developmental delays, with almost all developmental quotients below 20 on the Mullen Scales of Early Learning, well below the normative score of 100. Increased difficulties with sitting and standing suggested decline in motor function over time. Most patients presented with (hypo)alacrima and reduced sweat response. Pediatric quality of life was poor except for emotional function. Language/communication and motor skill problems including hand use were reported by caregivers as the most bothersome symptoms. Levels of the substrate biomarker, GlcNAc-Asn (aspartylglucosamine; GNA), were consistently elevated in all participants over time, independent of age. Liver enzymes were elevated for some participants but improved especially in younger patients and did not reach levels indicating severe liver disease. Three participants died during the study period. Data from this NHS informs selection of endpoints and assessments for future clinical trials for NGLY1 deficiency interventions. Potential endpoints include GNA biomarker levels, neurocognitive assessments, autonomic and motor function (particularly hand use), (hypo)alacrima and quality of life.


Assuntos
Defeitos Congênitos da Glicosilação , Qualidade de Vida , Humanos , Criança , Estudos Prospectivos , Biomarcadores
11.
Am J Hum Genet ; 109(2): 345-360, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045343

RESUMO

Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.


Assuntos
Cistos do Sistema Nervoso Central/genética , Defeitos Congênitos da Glicosilação/genética , Hamartoma/genética , Deficiência Intelectual/genética , Oligossacarídeos/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Polimicrogiria/genética , alfa-Manosidase/genética , Adolescente , Alelos , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Linhagem Celular Tumoral , Cistos do Sistema Nervoso Central/metabolismo , Cistos do Sistema Nervoso Central/patologia , Vermis Cerebelar/metabolismo , Vermis Cerebelar/patologia , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Feminino , Feto , Glicosilação , Hamartoma/metabolismo , Hamartoma/patologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Manose/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patologia , Língua/metabolismo , Língua/patologia , alfa-Manosidase/deficiência
12.
Brain ; 147(8): 2775-2790, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456468

RESUMO

Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals; the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%) and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%) and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%) and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P = 0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%), motor delay with non-ambulance (64%), and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P = 0.003), non-ambulance (P = 0.035), ongoing enteral feeds (P < 0.001) and cortical visual impairment (P = 0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs, provide insights into their neurological basis, and vitally, enable meaningful genetic counselling for affected individuals and their families.


Assuntos
Glicosilfosfatidilinositóis , Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Estudos Retrospectivos , Lactente , Adulto , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/genética , Deficiência Intelectual/genética , Deficiências do Desenvolvimento/genética , Adulto Jovem , Defeitos Congênitos da Glicosilação/genética , Fenótipo , Convulsões/genética
13.
PLoS Genet ; 18(9): e1010430, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36166480

RESUMO

Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually causes CDGs. While both in vivo models ostensibly cause cellular stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.


Assuntos
Defeitos Congênitos da Glicosilação , Manosiltransferases , N-Acetilglucosaminiltransferases/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Defeitos Congênitos da Glicosilação/genética , Frutose , Genoma , Glicoproteínas/genética , Humanos , Manosiltransferases/genética
14.
PLoS Genet ; 18(6): e1010228, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653343

RESUMO

NGLY1 deficiency, a rare disease with no effective treatment, is caused by autosomal recessive, loss-of-function mutations in the N-glycanase 1 (NGLY1) gene and is characterized by global developmental delay, hypotonia, alacrima, and seizures. We used a Drosophila model of NGLY1 deficiency to conduct an in vivo, unbiased, small molecule, repurposing screen of FDA-approved drugs to identify therapeutic compounds. Seventeen molecules partially rescued lethality in a patient-specific NGLY1 deficiency model, including multiple serotonin and dopamine modulators. Exclusive dNGLY1 expression in serotonin and dopamine neurons, in an otherwise dNGLY1 deficient fly, was sufficient to partially rescue lethality. Further, genetic modifier and transcriptomic data supports the importance of serotonin signaling in NGLY1 deficiency. Connectivity Map analysis identified glycogen synthase kinase 3 (GSK3) inhibition as a potential therapeutic mechanism for NGLY1 deficiency, which we experimentally validated with TWS119, lithium, and GSK3 knockdown. Strikingly, GSK3 inhibitors and a serotonin modulator rescued size defects in dNGLY1 deficient larvae upon proteasome inhibition, suggesting that these compounds act through NRF1, a transcription factor that is regulated by NGLY1 and regulates proteasome expression. This study reveals the importance of the serotonin pathway in NGLY1 deficiency, and serotonin modulators or GSK3 inhibitors may be effective therapeutics for this rare disease.


Assuntos
Reposicionamento de Medicamentos , Quinase 3 da Glicogênio Sintase , Animais , Defeitos Congênitos da Glicosilação , Drosophila/genética , Drosophila/metabolismo , Humanos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Complexo de Endopeptidases do Proteassoma/metabolismo , Doenças Raras , Serotonina/genética
15.
Proteomics ; 24(15): e2400012, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38470198

RESUMO

Asparagine-linked glycosylation 1 protein is a ß-1,4-mannosyltransferase, is encoded by the ALG1 gene, which catalyzes the first step of mannosylation in N-glycosylation. Pathogenic variants in ALG1 cause a rare autosomal recessive disorder termed as ALG1-CDG. We performed a quantitative proteomics and N-glycoproteomics study in fibroblasts derived from patients with one homozygous and two compound heterozygous pathogenic variants in ALG1. Several proteins that exhibited significant upregulation included insulin-like growth factor II and pleckstrin, whereas hyaluronan and proteoglycan link protein 1 was downregulated. These proteins are crucial for cell growth, survival and differentiation. Additionally, we observed a decrease in the expression of mitochondrial proteins and an increase in autophagy-related proteins, suggesting mitochondrial and cellular stress. N-glycoproteomics revealed the reduction in high-mannose and complex/hybrid glycopeptides derived from numerous proteins in patients explaining that defect in ALG1 has broad effects on glycosylation. Further, we detected an increase in several short oligosaccharides, including chitobiose (HexNAc2) trisaccharides (Hex-HexNAc2) and novel tetrasaccharides (NeuAc-Hex-HexNAc2) derived from essential proteins including LAMP1, CD44 and integrin. These changes in glycosylation were observed in all patients irrespective of their gene variants. Overall, our findings not only provide novel molecular insights into understanding ALG1-CDG but also offer short oligosaccharide-bearing peptides as potential biomarkers.


Assuntos
Fibroblastos , Manosiltransferases , Proteoma , Proteômica , Humanos , Fibroblastos/metabolismo , Proteoma/análise , Proteoma/metabolismo , Glicosilação , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteômica/métodos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia
16.
Biochemistry ; 63(11): 1423-1433, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38743592

RESUMO

PGM1-linked congenital disorder of glycosylation (PGM1-CDG) is an autosomal recessive disease characterized by several phenotypes, some of which are life-threatening. Research focusing on the disease-related variants of the α-D-phosphoglucomutase 1 (PGM1) protein has shown that several are insoluble in vitro and expressed at low levels in patient fibroblasts. Due to these observations, we hypothesized that some disease-linked PGM1 protein variants are structurally destabilized and subject to protein quality control (PQC) and rapid intracellular degradation. Employing yeast-based assays, we show that a disease-associated human variant, PGM1 L516P, is insoluble, inactive, and highly susceptible to ubiquitylation and rapid degradation by the proteasome. In addition, we show that PGM1 L516P forms aggregates in S. cerevisiae and that both the aggregation pattern and the abundance of PGM1 L516P are chaperone-dependent. Finally, using computational methods, we perform saturation mutagenesis to assess the impact of all possible single residue substitutions in the PGM1 protein. These analyses identify numerous missense variants with predicted detrimental effects on protein function and stability. We suggest that many disease-linked PGM1 variants are subject to PQC-linked degradation and that our in silico site-saturated data set may assist in the mechanistic interpretation of PGM1 variants.


Assuntos
Fosfoglucomutase , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Mutação de Sentido Incorreto , Fosfoglucomutase/metabolismo , Fosfoglucomutase/genética , Fosfoglucomutase/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Estabilidade Proteica , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitinação
17.
Glycobiology ; 34(11)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39206713

RESUMO

Cytosolic peptide: N-glycanase (PNGase/NGLY1 in mammals) is an amidase (EC:3.5.1.52) widely conserved in eukaryotes. It catalyzes the removal of N-glycans on glycoproteins, converting N-glycosylated Asn into Asp residues. This enzyme also plays a role in the quality control system for nascent glycoproteins. Since the identification of a patient with an autosomal recessive genetic disorder caused by NGLY1 gene dysfunction, known as NGLY1 deficiency or NGLY1 congenital disorder of deglycosylation (OMIM: 615273), in 2012, more than 100 cases have been reported worldwide. NGLY1 deficiency is characterized by a wide array of symptoms, such as global mental delay, intellectual disability, abnormal electroencephalography findings, seizure, movement disorder, hypolacrima or alacrima, and liver dysfunction. Unfortunately, no effective therapeutic treatments for this disease have been established. However, administration of adeno-associated virus 9 (AAV9) vector harboring human NGLY1 gene to an NGLY1-deficient rat model (Ngly1-/- rat) by intracerebroventricular injection was found to drastically improve motor function defects. This observation indicated that early therapeutic intervention could alleviate various symptoms originating from central nervous system dysfunction in this disease. Therefore, there is a keen interest in the development of facile diagnostic methods for NGLY1 deficiency. This review summarizes the history of assay development for PNGase/NGLY1 activity, as well as the recent progress in the development of novel plate-based assay systems for NGLY1, and also discusses future perspectives.


Assuntos
Defeitos Congênitos da Glicosilação , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Animais , Humanos , Ratos , Hipotonia Muscular/genética , Hipotonia Muscular/diagnóstico , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética
18.
Glycobiology ; 34(11)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39360848

RESUMO

SRD5A3-CDG is a congenital disorder of glycosylation (CDG) resulting from pathogenic variants in SRD5A3 and follows an autosomal recessive inheritance pattern. The enzyme encoded by SRD5A3, polyprenal reductase, plays a crucial role in synthesizing lipid precursors essential for N-linked glycosylation. Despite insights from functional studies into its enzymatic function, there remains a gap in understanding global changes in patient cells. We sought to identify N-glycoproteomic and proteomic signatures specific to SRD5A3-CDG, potentially aiding in biomarker discovery and advancing our understanding of disease mechanisms. Using tandem mass tag (TMT)-based relative quantitation, we analyzed fibroblasts derived from five patients along with control fibroblasts. N-glycoproteomics analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 3,047 glycopeptides with 544 unique N-glycosylation sites from 276 glycoproteins. Of these, 418 glycopeptides showed statistically significant changes with 379 glycopeptides decreased (P < 0.05) in SRD5A3-CDG patient-derived samples. These included high mannose, complex and hybrid glycan-bearing glycopeptides. High mannose glycopeptides from protocadherin Fat 4 and integrin alpha-11 and complex glycopeptides from CD55 were among the most significantly decreased glycopeptides. Proteomics analysis led to the identification of 5,933 proteins, of which 873 proteins showed statistically significant changes. Decreased proteins included cell surface glycoproteins, various mitochondrial protein populations and proteins involved in the N-glycosylation pathway. Lysosomal proteins such as N-acetylglucosamine-6-sulfatase and procathepsin-L also showed reduced levels of phosphorylated mannose-containing glycopeptides. Our findings point to disruptions in glycosylation pathways as well as energy metabolism and lysosomal functions in SRD5A3-CDG, providing clues to improved understanding and management of patients with this disorder.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Defeitos Congênitos da Glicosilação , Fibroblastos , Proteínas de Membrana , Proteômica , Humanos , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/deficiência , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/deficiência , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Glicosilação , Glicoproteínas/metabolismo , Glicoproteínas/genética , Espectrometria de Massas em Tandem
19.
Neurogenetics ; 25(3): 281-286, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38498292

RESUMO

Mannosyl-oligosaccharide glucosidase - congenital disorder of glycosylation (MOGS-CDG) is determined by biallelic mutations in the mannosyl-oligosaccharide glucosidase (glucosidase I) gene. MOGS-CDG is a rare disorder affecting the processing of N-Glycans (CDG type II) and is characterized by prominent neurological involvement including hypotonia, developmental delay, seizures and movement disorders. To the best of our knowledge, 30 patients with MOGS-CDG have been published so far. We described a child who is compound heterozygous for two novel variants in the MOGS gene. He presented Early Infantile Developmental and Epileptic Encephalopathy (EI-DEE) in the absence of other specific systemic involvement and unrevealing first-line biochemical findings. In addition to the previously described features, the patient presented a Hirschprung disease, never reported before in individuals with MOGS-CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Sequenciamento do Exoma , Humanos , Masculino , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Lactente , alfa-Glucosidases/genética , Mutação/genética , Espasmos Infantis/genética , Espasmos Infantis/diagnóstico , Epilepsia/genética , Epilepsia/diagnóstico , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/diagnóstico
20.
Am J Hum Genet ; 108(6): 1040-1052, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33964207

RESUMO

SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.


Assuntos
Antiporters/genética , Defeitos Congênitos da Glicosilação/etiologia , Retículo Endoplasmático/patologia , Hepatopatias/complicações , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Adulto , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Genes Dominantes , Glicosilação , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA