Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 135(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35722742

RESUMO

Intervertebral disc degeneration (IVDD) is a complex process involving many factors, among which excessive senescence of nucleus pulposus cells is considered to be the main factor. Our previous study found that metformin can inhibit senescence in nucleus pulposus cells; however, the mechanism of such an action was still largely unknown. In the current study, we found that metformin inactivates the cGAS-STING pathway during oxidative stress. Furthermore, knockdown of STING (also known as STING1) suppresses senescence, indicating that metformin might exert its effect through the cGAS-STING pathway. Damaged DNA is a major inducer of the activation of the cGAS-STING pathway. Mechanistically, our study showed that DNA damage was reduced during metformin treatment; however, suppression of autophagy by 3-methyladenine (3-MA) treatment compromised the effect of metformin on DNA damage. In vivo studies also showed that 3-MA might diminish the therapeutic effect of metformin on IVDD. Taken together, our results reveal that metformin may suppress senescence via inactivating the cGAS-STING pathway through autophagy, implying a new application for metformin in cGAS-STING pathway-related diseases.


Assuntos
Degeneração do Disco Intervertebral , Metformina , Núcleo Pulposo , Autofagia/fisiologia , Senescência Celular/fisiologia , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Proteínas de Membrana , Metformina/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Núcleo Pulposo/metabolismo
2.
Small ; 20(13): e2308167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37953455

RESUMO

Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.


Assuntos
Degeneração do Disco Intervertebral , Nanopartículas , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Gasderminas , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Polifenóis/farmacologia
3.
Mol Pharm ; 21(2): 373-392, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38252032

RESUMO

Intervertebral disc degeneration (IVDD) is commonly associated with many spinal problems, such as low back pain, and significantly impacts a patient's quality of life. However, current treatments for IVDD, which include conservative and surgical methods, are limited in their ability to fully address degeneration. To combat IVDD, delivery-system-based therapy has received extensive attention from researchers. These delivery systems can effectively deliver therapeutic agents for IVDD, overcoming the limitations of these agents, reducing leakage and increasing local concentration to inhibit IVDD or promote intervertebral disc (IVD) regeneration. This review first briefly introduces the structure and function of the IVD, and the related pathophysiology of IVDD. Subsequently, the roles of drug-based and bioactive-substance-based delivery systems in IVDD are highlighted. The former includes natural source drugs, nonsteroidal anti-inflammatory drugs, steroid medications, and other small molecular drugs. The latter includes chemokines, growth factors, interleukin, and platelet-rich plasma. Additionally, gene-based and cell-based delivery systems are briefly involved. Finally, the limitations and future development of the combination of therapeutic agents and delivery systems in the treatment of IVDD are discussed, providing insights for future research.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Qualidade de Vida , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular
4.
Pharmacol Res ; 205: 107219, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763327

RESUMO

Adipokines are a heterogeneous group of signalling molecules secreted prevalently by adipose tissue. Initially considered as regulators of energy metabolism and appetite, adipokines have been recognized for their substantial involvement in musculoskeletal disorders, including osteoarthritis, rheumatoid arthritis, and many others. Understanding the role of adipokines in rheumatic inflammatory and autoimmune diseases, as well as in other musculoskeletal diseases such as intervertebral disc degeneration, is crucial for the development of novel therapeutic strategies. Targeting adipokines, or their signalling pathways, may offer new opportunities for the treatment and management of these conditions. By modulating adipokines levels or activity, it may be possible to regulate inflammation, to maintain bone health, and preserve muscle mass, thereby improving the outcomes and quality of life for individuals affected by musculoskeletal diseases. The aim of this review article is to update the reader on the multifaceted role of adipokines in the main rheumatic diseases such as osteoarthritis and rheumatoid arthritis and to unravel the complex interplay among adipokines, cartilage metabolism, bone remodelling and muscles, which will pave the way for innovative therapeutic intervention in the future. For completeness, the role of adipokines in intervertebral disc degeneration will be also addressed.


Assuntos
Adipocinas , Artrite Reumatoide , Degeneração do Disco Intervertebral , Osteoartrite , Humanos , Adipocinas/metabolismo , Adipocinas/imunologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/imunologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/imunologia , Animais , Doenças Reumáticas/tratamento farmacológico , Doenças Reumáticas/imunologia , Doenças Reumáticas/metabolismo
5.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 233-238, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372089

RESUMO

Intervertebral disc degeneration (IDD) is the major cause of degeneration of joint diseases. IDD is characterized by a large number of apoptosis of nucleus pulposus cells (NPCs) and extracellular matrix (ECM) degradation. Ginsenoside Rg3 is the active component extracted from ginseng and has a vital function in modulating diseases. This study aimed to investigate the regulatory functions of ginsenoside Rg3 in IDD. We established the IDD cell model via inducing NPCs with IL-1ß. The rat model of IDD was established by fibrous ring puncture method. Cell apoptotic capability was assessed through TUNEL assay. The levels of catabolic proteases MMPs and ADAMTSs were tested by western blot and RT-qPCR. IL-1ß induction notably promoted the apoptosis of NPCs, while ginsenoside Rg3 treatment reversed the promoting function of IL-1ß. Furthermore, we found that MMP2, MMP3, Adamts4, and Adamts5 levels were increased in IL-1ß-induced NPCs, while ginsenoside Rg3 treatment markedly reduced their levels. Additionally, ginsenoside Rg3 was found to suppress the IL-1ß-stimulated p38 MAPK pathway in NPCs. In the IDD rat model, we found that ginsenoside Rg3 treatment can alleviate NPC degeneration, recover the arrangement of annulus fibrous, and preserve more proteoglycan matrix. Moreover, ginsenoside Rg3 reduced apoptosis and catabolism and inactivated the p38 MAPK pathway in IDD rats. Ginsenoside Rg3 exhibits anti-catabolic and anti-apoptotic effects in IL-1ß-stimulated NPCs and IDD rats by inactivating MAPK pathway.


Assuntos
Ginsenosídeos , Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Ratos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Células Cultivadas , Apoptose , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
J Nanobiotechnology ; 22(1): 292, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802882

RESUMO

BACKGROUND: The use of gene therapy to deliver microRNAs (miRNAs) has gradually translated to preclinical application for the treatment of intervertebral disc degeneration (IDD). However, the effects of miRNAs are hindered by the short half-life time and the poor cellular uptake, owing to the lack of efficient delivery systems. Here, we investigated nucleus pulposus cell (NPC) specific aptamer-decorated polymeric nanoparticles that can load miR-150-5p for IDD treatment. METHODS: The role of miR-150-5p during disc development and degeneration was examined by miR-150-5p knockout (KO) mice. Histological analysis was undertaken in disc specimens. The functional mechanism of miR-150-5p in IDD development was investigated by qRT-PCR assay, Western blot, coimmunoprecipitation and immunofluorescence. NPC specific aptamer-decorated nanoparticles was designed, and its penetration, stability and safety were evaluated. IDD progression was assessed by radiological analysis including X-ray and MRI, after the annulus fibrosus needle puncture surgery with miR-150-5p manipulation by intradiscal injection of nanoparticles. The investigations into the interaction between aptamer and receptor were conducted using mass spectrometry, molecular docking and molecular dynamics simulations. RESULTS: We investigated NPC-specific aptamer-decorated polymeric nanoparticles that can bind to miR-150-5p for IDD treatment. Furthermore, we detected that nanoparticle-loaded miR-150-5p inhibitors alleviated NPC senescence in vitro, and the effects of the nanoparticles were sustained for more than 3 months in vivo. The microenvironment of NPCs improves the endo/lysosomal escape of miRNAs, greatly inhibiting the secretion of senescence-associated factors and the subsequent degeneration of NPCs. Importantly, nanoparticles delivering miR-150-5p inhibitors attenuated needle puncture-induced IDD in mouse models by targeting FBXW11 and inhibiting TAK1 ubiquitination, resulting in the downregulation of NF-kB signaling pathway activity. CONCLUSIONS: NPC-targeting nanoparticles delivering miR-150-5p show favorable therapeutic efficacy and safety and may constitute a promising treatment for IDD.


Assuntos
Degeneração do Disco Intervertebral , Camundongos Knockout , MicroRNAs , Nanopartículas , Núcleo Pulposo , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/tratamento farmacológico , Núcleo Pulposo/metabolismo , Nanopartículas/química , Camundongos , Masculino , Humanos , Camundongos Endogâmicos C57BL
7.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 776-788, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38495003

RESUMO

Intervertebral disc degeneration (IDD) is the cause of low back pain (LBP), and recent research has suggested that inflammatory cytokines play a significant role in this process. Maslinic acid (MA), a natural compound found in olive plants ( Olea europaea), has anti-inflammatory properties, but its potential for treating IDD is unclear. The current study aims to investigate the effects of MA on TNFα-induced IDD in vitro and in other in vivo models. Our findings suggest that MA ameliorates the imbalance of the extracellular matrix (ECM) and mitigates senescence by upregulating aggrecan and collagen II levels as well as downregulating MMP and ADAMTS levels in nucleus pulposus cells (NPCs). It can also impede the progression of IDD in rats. We further find that MA significantly affects the PI3K/AKT and NF-κB pathways in TNFα-induced NPCs determined by RNA-seq and experimental verification, while the AKT agonist Sc-79 eliminates these signaling cascades. Furthermore, molecular docking simulation shows that MA directly binds to PI3K. Dysfunction of the PI3K/AKT pathway and ECM metabolism has also been confirmed in clinical specimens of degenerated nucleus pulposus. This study demonstrates that MA may hold promise as a therapeutic agent for alleviating ECM metabolism disorders and senescence to treat IDD.


Assuntos
Degeneração do Disco Intervertebral , NF-kappa B , Núcleo Pulposo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Triterpenos , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Masculino , Triterpenos/farmacologia , Ratos , Humanos , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Feminino , Células Cultivadas , Ácido Oleanólico/análogos & derivados
8.
Am J Physiol Cell Physiol ; 325(4): C1119-C1130, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661920

RESUMO

Intervertebral disk degeneration (IVDD) is the major cause of low back pain. Alpha-ketoglutaric acid (α-KG), an important intermediate in energy metabolism, has various functions, including epigenetic regulation, maintenance of redox homeostasis, and antiaging, but whether it can ameliorate IVDD has not been reported. Here, we examined the impacts of long-term administration of α-KG on aging-associated IVDD in adult rats. In vivo and in vitro experiments showed that α-KG supplementation effectively ameliorated IVDD in rats and the senescence of nucleus pulposus cells (NPCs). α-KG supplementation significantly attenuated senescence, apoptosis, and matrix metalloproteinase-13 (MMP-13) protein expression, and it increased the synthesis of aggrecan and collagen II in IL-1ß-treated NPCs. In addition, α-KG supplementation reduced the levels of IL-6, phosphorylated JAK2 and STAT3, and the nuclear translocation of p-STAT3 in IL-1ß-induced degenerating NPCs. The effects of α-KG were enhanced by AG490 in NPCs. The underlying mechanism may involve the inhibition of JAK2/STAT3 phosphorylation and the reduction of IL-6 expression. Our findings may help in the development of new therapeutic strategies for IVDD.NEW & NOTEWORTHY Alpha-ketoglutaric acid (α-KG) exerted its protective effect on nucleus pulposus cells' (NPCs) degeneration by inhibiting the senescence-associated secretory phenotype and extracellular matrix degradation. The possible mechanism may be associated with negatively regulating the JAK2/STAT3 phosphorylation and the decreased IL-6 expression, which could be explained by a blockage of the positive feedback control loop between IL-6 and JAK2/STAT3 pathway.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Ratos , Epigênese Genética , Interleucina-6/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Ácidos Cetoglutáricos/farmacologia , Núcleo Pulposo/metabolismo
9.
J Cell Mol Med ; 27(16): 2340-2353, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37329158

RESUMO

Ferroptosis, a novel type of cell death mediated by the iron-dependent lipid peroxidation, contributes to the pathogenesis of the intervertebral disc degeneration (IDD). Increasing evidence demonstrated that melatonin (MLT) displayed the therapeutic potential to prevent the development of IDD. Current mechanistic study aims to explore whether the downregulation of ferroptosis contributes to the therapeutic capability of MLT in IDD. Current studies demonstrated that conditioned medium (CM) from the lipopolysaccharide (LPS)-stimulated macrophages caused a series of changes about IDD, including increased intracellular oxidative stress (increased reactive oxygen species and malondialdehyde levels, but decreased glutathione levels), upregulated expression of inflammation-associated factors (IL-1ß, COX-2 and iNOS), increased expression of key matrix catabolic molecules (MMP-13, ADAMTS4 and ADAMTS5), reduced the expression of major matrix anabolic molecules (COL2A1 and ACAN), and increased ferroptosis (downregulated GPX4 and SLC7A11 levels, but upregulated ACSL4 and LPCAT3 levels) in nucleus pulposus (NP) cells. MLT could alleviate CM-induced NP cell injury in a dose-dependent manner. Moreover, the data substantiated that intercellular iron overload was involved in CM-induced ferroptosis in NP cells, and MLT treatment alleviated intercellular iron overload and protected NP cells against ferroptosis, and those protective effects of MLT in NP cells further attenuated with erastin and enhanced with ferrostatin-1(Fer-1). This study demonstrated that CM from the LPS-stimulated RAW264.7 macrophages promoted the NP cell injury. MLT alleviated the CM-induced NP cell injury partly through inhibiting ferroptosis. The findings support the role of ferroptosis in the pathogenesis of IDD, and suggest that MLT may serve as a potential therapeutic approach for clinical treatment of IDD.


Assuntos
Ferroptose , Degeneração do Disco Intervertebral , Sobrecarga de Ferro , Melatonina , Humanos , Melatonina/farmacologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Meios de Cultivo Condicionados/farmacologia , Ferro
10.
Apoptosis ; 28(9-10): 1357-1371, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37300741

RESUMO

Intervertebral disc degeneration (IDD) is the most important pathological basis of degenerative spinal diseases, for which effective interventions are still lacking. Oxidative stress is considered to be one of the leading pathological mechanisms contributing to IDD. However, the exact role of DJ-1 as an essential member of the antioxidant defense system in IDD is still unclear. Therefore, the aim of this study was to investigate the role played by DJ-1 in IDD and to reveal its potential molecular mechanisms. Western blot and immunohistochemical staining assays were performed to detect the expression of DJ-1 in degenerative nucleus pulposus cells (NPCs). After overexpression of DJ-1 in NPCs by lentiviral transfection, DCFH-DA and MitoSOX fluorescent probes were used to evaluate the levels of reactive oxygen species (ROS); while western blot, TUNEL staining, and Caspase-3 activity were used to assess apoptosis. Immunofluorescence staining was used to demonstrate the relationship between DJ-1 and p62. After inhibition of lysosomal degradation function with chloroquine, p62 degradation and apoptosis in DJ-1 overexpressing NPCs were further examined. In vivo, we assessed the therapeutic effect of upregulated DJ-1 on IDD by X-ray, MRI and Safranin O-Fast green staining. The protein expression of DJ-1 was significantly decreased in degenerated NPCs, accompanied by increased apoptosis. However, overexpression of DJ-1 significantly inhibited the elevated ROS levels and apoptosis in NPCs under oxidative stress. Mechanistically, our results showed that upregulation of DJ-1 promoted p62 degradation via the autophagic lysosomal pathway and that the protective effect of DJ-1 on NPCs under oxidative stress was partially mediated by promoting lysosomal pathway degradation of p62. Moreover, intradiscal injection of adeno-associated virus for overexpression of DJ-1 mitigated the progression of IDD in rats. This study reveals that DJ-1 maintains the homeostasis of NPCs by promoting the degradation of p62 through the autophagic lysosomal pathway, suggesting that DJ-1 is a promising new target for IDD intervention.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Ratos , Apoptose , Autofagia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Espécies Reativas de Oxigênio , Terapia de Alvo Molecular
11.
Immunol Invest ; 52(5): 546-560, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37154418

RESUMO

BACKGROUND: Apoptosis, inflammation, and the extracellular matrix (ECM) synthesis and catabolism are compromised with intervertebral disc degeneration (IDD). Ginkgetin (GK) has been demonstrated to alleviate several diseases; however, its effect on IDD remains unknown. METHODS: The nucleus pulposus cells (NPCs) were stimulated with interleukin (IL)-1ß to construct the IDD models in vitro. Rats were used for the construction of the IDD models in vivo via the fibrous ring puncture method. The effect and mechanism of GK on IDD were determined by cell counting kit-8 (CCK-8), flow cytometry, western blot, real-time quantitative polymerase chain reaction (RT-qPCR), enzyme­linked immunosorbent assay (ELISA), hematoxylin and eosin (HE) and safranine O staining, and immunohistochemistry (IHC) assays, respectively. RESULTS: GK increased the cell viability and upregulated the expressions of anti-apoptosis and ECM synthesis markers in NPCs treated with IL-1ß. GK also decreased apoptosis rate, and downregulated the expressions of proteins related to pro-apoptosis, ECM catabolism, and inflammation in vitro. Mechanically, GK reduced the expression of nucleotide binding oligomeric domain like receptor protein 3 (NLRP3) inflammasome-related proteins. Overexpression of NLRP3 reversed the effect of GK on the proliferation, apoptosis, inflammation, and ECM degradation in IL-1ß-induced NPCs. Moreover, GK attenuated the pathological manifestations, inflammation, ECM degradation, and NLRP3 inflammasome expression in IDD rats. CONCLUSION: GK suppressed apoptosis, inflammation, and ECM degradation to alleviate IDD via the inactivation of NLRP3 inflammasome.


Assuntos
Inflamassomos , Degeneração do Disco Intervertebral , Ratos , Animais , Inflamassomos/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação/metabolismo , Matriz Extracelular/metabolismo
12.
Clin Radiol ; 78(12): 928-934, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37633745

RESUMO

AIM: To determine the impact of ethanol gel chemonucleolysis (EGCh) on the radiological picture of the treated intervertebral disc, the relationship between the initial radiological status and the clinical status of the patient after EGCh treatment, and the optimal radiographic criteria for qualifying a patient for EGCh treatment. MATERIALS AND METHODS: The study involved a group of 45 patients (25 men and 20 women) aged 23-68 years (46 ± 11) who underwent an EGCh procedure after qualification, radiography, and clinical questionnaire evaluation. RESULTS: The results showed a decrease in the size of the protrusion and Gadolinium-Enhanced (GI) zone in the treated intervertebral disc. The presence of a high-intensity zone (HIZ) on baseline magnetic resonance imaging was found to be a good predictor of the timing and outcome of treatment, and an increase in disc height was observed in adjacent segments. CONCLUSION: These findings suggest that EGCh is a promising treatment for spine diseases, and the HIZ on baseline magnetic resonance imaging can be used as a qualification criterion for this procedure.


Assuntos
Quimiólise do Disco Intervertebral , Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Doenças da Coluna Vertebral , Masculino , Humanos , Feminino , Disco Intervertebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Quimiólise do Disco Intervertebral/métodos , Radiografia , Etanol , Géis/uso terapêutico , Vértebras Lombares , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia
13.
Int J Med Sci ; 20(13): 1679-1697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928874

RESUMO

Intervertebral disc degeneration (IVDD) is a prevalent and debilitating condition characterized by chronic back pain and reduced quality of life. Strontium ranelate (SRR) is a compound traditionally used for treating osteoporosis via activating TGF-ß1 signaling pathway. Recent studies have proved the anti-inflammatory effect of SRR on chondrocytes. Although the exact mechanism of IVDD remains unclear, accumulating evidences have emphasized the involvement of multifactorial pathogenesis including inflammation, oxidative stress damage, and etc. However, the biological effect of SRR on IVDD and its molecular mechanism has not been investigated. Firstly, this study proved the decreased expression of Transforming Growth Factor-beta 1(TGF-ß1) in degenerated human intervertebral disc tissues. Subsequently, we confirmed for the first time that SRR could promote cell proliferation, mitigate inflammation and oxidative stress in human nucleus pulposus cells in vitro via increasing the expression of TGF-ß1 and suppressing the Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB) pathway. The molecular docking result proved the interaction between SRR and TGF-ß1 protein. To further verify this interaction, gain- and loss- of function experiments were conducted. We discovered that both TGF-ß1 knockdown and overexpression influenced the activation of the NF-κB pathway. Taken together, SRR could mitigate IL-1ß induced-cell dysfunction in human nucleus pulposus cells by regulating TGF-ß1/NF-κB axis in vitro. Finally, the in vivo therapeutic effect of SRR on IVDD was confirmed. Our findings may contribute to the understanding of the complex interplay between inflammation and degenerative processes in the intervertebral disc and provide valuable insights into the development of targeted treatment-based therapeutics for IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/genética , Simulação de Acoplamento Molecular , Qualidade de Vida , Disco Intervertebral/patologia , Inflamação/patologia
14.
J Nanobiotechnology ; 21(1): 76, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864461

RESUMO

Intervertebral disc degeneration (IDD) has been identified as one of the predominant factors leading to persistent low back pain and disability in middle-aged and elderly people. Dysregulation of Prostaglandin E2 (PGE2) can cause IDD, while low-dose celecoxib can maintain PGE2 at the physiological level and activate the skeletal interoception. Here, as nano fibers have been extensively used in the treatment of IDD, novel polycaprolactone (PCL) nano fibers loaded with low-dose celecoxib were fabricated for IDD treatment. In vitro studies demonstrated that the nano fibers had the ability of releasing low-dose celecoxib slowly and sustainably and maintain PGE2. Meanwhile, in a puncture-induced rabbit IDD model, the nano fibers reversed IDD. Furthermore, low-dose celecoxib released from the nano fibers was firstly proved to promote CHSY3 expression. In a lumbar spine instability-induced mouse IDD model, low-dose celecoxib inhibited IDD in CHSY3wt mice rather than CHSY3-/- mice. This model indicated that CHSY3 was indispensable for low-dose celecoxib to alleviate IDD. In conclusion, this study developed a novel low-dose celecoxib-loaded PCL nano fibers to reverse IDD by maintaining PGE2 at the physiological level and promoting CHSY3 expression.


Assuntos
Dinoprostona , Degeneração do Disco Intervertebral , Animais , Camundongos , Coelhos , Celecoxib/farmacologia , Modelos Animais de Doenças , Degeneração do Disco Intervertebral/tratamento farmacológico
15.
J Nanobiotechnology ; 21(1): 350, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759249

RESUMO

The pathogenesis of intervertebral disc degeneration (IVDD) is attributed to metabolic dysregulation within the extracellular matrix and heightened apoptosis of nucleus pulposus cells (NPC). Therefore, a potential therapeutic strategy for managing IVDD involves the reestablishment of metabolic equilibrium within the extracellular matrix and the suppression of excessive myeloid cell apoptosis. The microRNA, miR-5590, displays marked differential expression in degenerative nucleus pulposus (NP) tissues and exerts a direct influence on the regulation of DDX5 expression. This, in turn, modulates mammalian target of rapamycin (mTOR) phosphorylation, thereby impacting autophagy and apoptosis. However, ensuring the smooth delivery of miRNA to a specific injury site poses a significant challenge. To address this issue, a multifunctional DNA hydrogel was developed and subsequently loaded with miR-5590 via spherical nucleic acids (SNAs) for the treatment of IVDD. The hydrogel, which exhibits versatility, has the potential to be administered through injection at the site of injury, resulting in a consistent and prolonged release of miR-5590. This leads to the creation of a genetic microenvironment within the NP, which triggers the onset of autophagy in NPCs and subsequently suppresses apoptosis. As a result, this process regulates the metabolic equilibrium within the extracellular matrix, thereby impeding the in vitro and in vivo progression of IVDD. The amalgamation of miRNAs and biomaterials offers a promising therapeutic strategy for the management of IVDD in clinical settings.


Assuntos
Degeneração do Disco Intervertebral , MicroRNAs , Humanos , Hidrogéis , Degeneração do Disco Intervertebral/tratamento farmacológico , DNA , Autofagia
16.
J Nanobiotechnology ; 21(1): 99, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36941611

RESUMO

Excessive reactive oxygen species (ROS) in nucleus pulposus cells (NPCs) promote extracellular matrix (ECM) degradation and cellular inflammatory responses by activating a variety of cellular pathways, ultimately inducing cell apoptosis and leading to the development of low back pain. Here, we designed and fabricated an isoginkgetin-loaded ROS-responsive delivery system (IGK@SeNP) based on diselenide block copolymers. Successfully encapsulated IGK was released intelligently and rapidly in a microenvironment with high ROS levels in degenerative disc. Controlled-release IGK not only efficiently scavenged ROS from the intervertebral disc together with diselenide block copolymers but also effectively enhanced autophagy in NPCs to inhibit ECM degradation and cell apoptosis, and showed significant therapeutic effects in the rat intervertebral disc degeneration (IDD) model. Overall, the synergistic effects of IGK@SeNP in ROS scavenging and autophagy enhancement endowed it with an attractive therapeutic strategy for IDD treatment.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Autofagia , Apoptose
17.
BMC Musculoskelet Disord ; 24(1): 772, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784117

RESUMO

BACKGROUND: Through bioinformatics analysis to identify the hub genes of Intervertebral disc degeneration (IVDD) associated with basement membranes (BMs) and find out the potential molecular targets and drugs for BMs-related annulus fibrosus (AF) degeneration based on bioinformatic analysis and molecular approach. METHODS: Intervertebral disc degeneration (IVDD) related targets were obtained from GeneCards, DisGenet and OMIM databases. BMs related genes were obtained from Basement membraneBASE database. The intersection targets were identified and subjected to protein-to-protein interaction (PPI) construction via STRING. Hub genes were identified and conducted Gene ontology (GO) and pathway enrichment analysis through MCODE and Clue GO in Cytospace respectively. DSigDB database was retrieved to predict therapeutic drugs and molecular docking was performed through PyMOL, AutoDock 1.5.6 to verify the binding energy between the drug and the different expressed hub genes. Finally, GSE70362 from GEO database was obtained to verify the different expression and correlation of each hub gene for AF degeneration. RESULTS: We identified 41 intersection genes between 3 disease targets databases and Basement membraneBASE database. PPI network revealed 25 hub genes and they were mainly enriched in GO terms relating to glycosaminoglycan catabolic process, the TGF-ß signaling pathway. 4 core targets were found to be significant via comparison of microarray samples and they showed strong correlation. The molecular docking results showed that the core targets have strong binding energy with predicting drugs including chitosamine and retinoic acid. CONCLUSIONS: In this study, we identified hub genes, pathways, potential targets, and drugs for treatment in BMs-related AF degeneration and IVDD.


Assuntos
Medicamentos de Ervas Chinesas , Degeneração do Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas/genética , Análise em Microsséries , Biologia Computacional/métodos
18.
J Orthop Sci ; 28(5): 976-983, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36030156

RESUMO

BACKGROUND: Lumbar disc herniation (LDH) is a common cause of low back pain and is associated with degeneration of the nucleus pulposus causing nerve root compression. Chemonucleolysis of the nucleus pulposus with condoliase is a low-invasive treatment for LDH. The purpose of this study was to investigate changes in Pfirrmann criteria, which are used to evaluate disc degeneration, after injection of condoliase into a herniated intervertebral disc, and to identify factors associated with disc degeneration at 3 months post-injection. METHODS: Medical records and radiographic findings were reviewed retrospectively for 127 patients with LDH (88 male, 39 female, mean age: 46.6 ± 17.1 years, mean follow-up: 9.8 ± 7.8 months) who underwent chemonucleolysis with intradiscal condoliase injection at our center since September 2018. Condoliase (1.25 U/mL; 1 mL volume) was injected toward the middle of the affected intervertebral nucleus pulposus using a 21-gauge disc-puncture needle. RESULTS: Cases in which the Pfirrmann grade did and did not progress in the 3 months after the injection were included in groups P (progression, n = 49) and NP (non-progression, n = 78), respectively. Logistic regression analysis of progression of Pfirrmann grade post-injection showed significant associations with age <40 years (p = 0.013, odds ratio (OR): 3.69, 95% confidence interval (CI): 1.32-10.31), Pfirrmann Grade II or III at baseline (p = 0.021, OR: 3.51, 95% CI: 1.24-9.64), and a high-intensity MRI signal in the herniation (p = 0.047, OR: 2.97, 95% CI: 1.03-8.87). Patients in group P had significantly higher rates of disc height decrease ≥20%, reduced herniated disc size, and improved VAS for pain, but both groups had significant decreases in pain. No cases had anaphylactic shock or neurologic sequelae. CONCLUSIONS: These results show the safety and efficacy of chemonucleolysis with condoliase for treatment of painful LDH. Progression of Pfirrmann criteria on MRI at 3 months after injection was significantly associated with an improved clinical outcome.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/tratamento farmacológico , Estudos Retrospectivos , Dor Lombar/complicações , Imageamento por Ressonância Magnética , Vértebras Lombares/diagnóstico por imagem
19.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768679

RESUMO

The intervertebral disk degeneration (IDD) and its associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. IDD progresses with age, leading to spondylosis, spondylarthrosis, intervertebral disk herniation, and spinal stenosis. The purpose of this review is an attempt to summarize the data characterizing the patterns of production of pro-inflammatory and anti-inflammatory cytokines in IDD and to appreciate the prognostic value of cytokine imbalance as its biomarker. This narrative review demonstrates that the problem of evaluating the contribution of pro-inflammatory and anti-inflammatory cytokines to the maintenance or alteration of cytokine balance may be a new key to unlocking the mystery of IDD development and new therapeutic strategies for the treatment of IDD in the setting of acute and chronic inflammation. The presented data support the hypothesis that cytokine imbalance is one of the most important biomarkers of IDD.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/tratamento farmacológico , Citocinas/uso terapêutico , Deslocamento do Disco Intervertebral/tratamento farmacológico , Biomarcadores , Anti-Inflamatórios/uso terapêutico
20.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069151

RESUMO

Functionally enhanced mesenchymal stromal cells participate in the repair of intervertebral disc. This study aimed to assess the safety and tolerability of intradiscal administration of matrilin-3-primed adipose-derived stromal cell (ASC) spheroids with hyaluronic acid (HA) in patients with chronic discogenic low back pain (LBP). In this single-arm, open-label phase I clinical trial, eight patients with chronic discogenic LBP were observed over 6 months. Each patient underwent a one-time intradiscal injection of 1 mL of 6.0 × 106 cells/disc combined with HA under real-time fluoroscopic guidance. Safety and feasibility were gauged using Visual Analogue Scale (VAS) pain and Oswestry Disability Index (ODI) scores and magnetic resonance imaging. All participants remained in the trial, with no reported adverse events linked to the procedure or stem cells. A successful outcome-marked by a minimum 2-point improvement in the VAS pain score and a 10-point improvement in ODI score from the start were observed in six participants. Although the modified Pfirrmann grade remained consistent across all participants, radiological improvements were evident in four patients. Specifically, two patients exhibited reduced high-intensity zones while another two demonstrated decreased disc protrusion. In conclusion, the intradiscal application of matrilin-3-primed ASC spheroids with HA is a safe and feasible treatment option for chronic discogenic LBP.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Células-Tronco Mesenquimais , Humanos , Proteínas Matrilinas , Dor Lombar/terapia , Estudos de Viabilidade , Resultado do Tratamento , Degeneração do Disco Intervertebral/tratamento farmacológico , Obesidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA