RESUMO
The COVID-19 pandemic placed the field of vaccinology squarely at the center of global consciousness, emphasizing the vital role of vaccines as transformative public health tools. The impact of vaccines was recently acknowledged by the award of the 2023 Nobel Prize in Physiology or Medicine to Katalin Kariko and Drew Weissman for their seminal contributions to the development of mRNA vaccines. Here, we provide a historic perspective on the key innovations that led to the development of some 27 licensed vaccines over the past two centuries and recent advances that promise to transform vaccines in the future. Technological revolutions such as reverse vaccinology, synthetic biology, and structure-based design transformed decades of vaccine failures into successful vaccines against meningococcus B and respiratory syncytial virus (RSV). Likewise, the speed and flexibility of mRNA vaccines profoundly altered vaccine development, and the advancement of novel adjuvants promises to revolutionize our ability to tune immunity. Here, we highlight exciting new advances in the field of systems immunology that are transforming our mechanistic understanding of the human immune response to vaccines and how to predict and manipulate them. Additionally, we discuss major immunological challenges such as learning how to stimulate durable protective immune response in humans.
Assuntos
COVID-19 , Vacinologia , Humanos , Vacinologia/métodos , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , História do Século XX , Vacinas contra COVID-19/imunologia , História do Século XXI , Desenvolvimento de Vacinas , SARS-CoV-2/imunologia , Vacinas de mRNARESUMO
Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Second-generation vaccines will need to elicit neutralizing antibodies against sites that are evolutionarily conserved across the sarbecovirus subgenus. Here, we immunized mice containing a human antibody repertoire with diverse sarbecovirus receptor-binding domains (RBDs) to identify antibodies targeting conserved sites of vulnerability. Antibodies with broad reactivity against diverse clade B RBDs targeting the conserved class 4 epitope, with recurring IGHV/IGKV pairs, were readily elicited but were non-neutralizing. However, rare class 4 antibodies binding this conserved RBD supersite showed potent neutralization of SARS-CoV-2 and all variants of concern. Structural analysis revealed that the neutralizing ability of cross-reactive antibodies was reserved only for those with an elongated CDRH3 that extends the antiparallel beta-sheet RBD core and orients the antibody light chain to obstruct ACE2-RBD interactions. These results identify a structurally defined pathway for vaccine strategies eliciting escape-resistant SARS-CoV-2 neutralizing antibodies.
Assuntos
Betacoronavirus/fisiologia , Vacinas contra COVID-19/imunologia , Infecções por Coronavirus/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Sequência Conservada/genética , Evolução Molecular , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica , Domínios Proteicos/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Desenvolvimento de VacinasRESUMO
The 2005 Immunity paper by Karikó et al. has been hailed as a cornerstone insight that directly led to the design and delivery of the mRNA vaccines against COVID-19. We asked experts in pathogen sensing, vaccine development, and public health to provide their perspective on the study and its implications.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/fisiologia , Desenvolvimento de Vacinas/história , Vacinas de mRNA/imunologia , Animais , História do Século XXI , Humanos , RNA Mensageiro/imunologia , Organização Mundial da SaúdeAssuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Ensaios Clínicos como Assunto , Helmintíase/imunologia , Helmintos/imunologia , Projetos de Pesquisa , SARS-CoV-2/imunologia , Desenvolvimento de Vacinas , África/epidemiologia , Animais , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/efeitos adversos , Helmintíase/epidemiologia , Helmintíase/parasitologia , Helmintos/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Esquemas de Imunização , SARS-CoV-2/patogenicidade , Resultado do Tratamento , VacinaçãoRESUMO
Invasive fungal infections are emerging diseases that kill over 1.5 million people per year worldwide. With the increase of immunocompromised populations, the incidence of invasive fungal infections is expected to continue to rise. Vaccines for viral and bacterial infectious diseases have had a transformative impact on human health worldwide. However, no fungal vaccines are currently in clinical use. Recently, interest in fungal vaccines has grown significantly. One Candida vaccine has completed phase 2 clinical trials, and research on vaccines against coccidioidomycosis continues to advance. Additionally, multiple groups have discovered various Cryptococcus mutant strains that promote protective responses to subsequent challenge in mouse models. There has also been progress in antibody-mediated fungal vaccines. In this review, we highlight recent fungal vaccine research progress, outline the wealth of data generated, and summarize current research for both fungal biology and immunology studies relevant to fungal vaccine development. We also review technological advancements in vaccine development and highlight the future prospects of a human vaccine against invasive fungal infections.
Assuntos
Vacinas Fúngicas , Infecções Fúngicas Invasivas , Vacinas , Animais , Humanos , Imunidade , Camundongos , Desenvolvimento de VacinasRESUMO
Emerging and recurrent infectious diseases caused by coronaviruses remain a significant public health concern. Here, we present a targeted approach to elicit antibodies capable of neutralizing SARS-CoV-2 variants and other SARS-related coronaviruses. By introducing amino acid mutations at mutation-prone sites, we engineered glycosylation modifications to the Receptor Binding Domain (RBD) of SARS-CoV-2, thereby exposing more conserved, yet less accessible epitopes. We developed both messenger RNA (mRNA) and recombination subunit vaccines using these engineered-RBDs (M1, M2) and the wild-type RBD as immunogens. The engineered-RBD vaccines elicited robust neutralizing responses against various SARS-CoV-2 variants as well as SARS-CoV and WIV1-CoV, and conferred protection in mice challenged with the XBB.1.16 strain. Furthermore, We highlighted that glycan masking is a decisive factor in antibody binding changes and RBD-conserved antibody response. Additionally, the glycan-engineered RBD mRNA vaccines stimulated stronger cell-mediated immune responses. Our glycan modification strategy significantly enhances broad-spectrum neutralizing efficacy and cellular immunity, providing valuable insights for the development of vaccines against a wide range of SARS-related coronaviruses.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Polissacarídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , SARS-CoV-2/imunologia , Camundongos , Polissacarídeos/imunologia , Vacinas contra COVID-19/imunologia , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Camundongos Endogâmicos BALB C , Glicosilação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Feminino , Desenvolvimento de Vacinas , Domínios Proteicos/imunologiaRESUMO
Adjuvants are essential components of modern vaccines. One general mechanism underlying their immunostimulatory functions is the activation of pattern recognition receptors (PRRs) of innate immune cells. Carbohydrates - as essential signaling molecules on microbial surfaces - are potent PRR agonists and candidate materials for adjuvant design. Here, we summarize the latest trends in developing carbohydrate-containing adjuvants, with fresh opinions on how the physicochemical characteristics of the glycans (e.g., molecular size, assembly status, monosaccharide components, and functional group patterns) affect their adjuvant activities in aiding antigen transport, regulating antigen processing, and enhancing adaptive immune responses. From a translational perspective, we also discuss potential technologies for solving long-lasting challenges in carbohydrate adjuvant design.
Assuntos
Imunidade Adaptativa , Vacinas , Humanos , Receptores de Reconhecimento de Padrão , Adjuvantes Imunológicos , Desenvolvimento de Vacinas , Carboidratos , Imunidade InataRESUMO
A primary concern in vaccine development is safety, particularly avoiding an excessive immune reaction in an otherwise healthy individual. An accurate prediction of vaccine reactogenicity using in vitro assays and computational models would facilitate screening and prioritization of novel candidates early in the vaccine development process. Using the modular in vitro immune construct model of human innate immunity, PBMCs from 40 healthy donors were treated with 10 different vaccines of varying reactogenicity profiles and then cell culture supernatants were analyzed via flow cytometry and a multichemokine/cytokine assay. Differential response profiles of innate activity and cell viability were observed in the system. In parallel, an extensive adverse event (AE) dataset for the vaccines was assembled from clinical trial data. A novel reactogenicity scoring framework accounting for the frequency and severity of local and systemic AEs was applied to the clinical data, and a machine learning approach was employed to predict the incidence of clinical AEs from the in vitro assay data. Biomarker analysis suggested that the relative levels of IL-1B, IL-6, IL-10, and CCL4 have higher predictive importance for AE risk. Predictive models were developed for local reactogenicity, systemic reactogenicity, and specific individual AEs. A forward-validation study was performed with a vaccine not used in model development, Trumenba (meningococcal group B vaccine). The clinically observed Trumenba local and systemic reactogenicity fell on the 26th and 93rd percentiles of the ranges predicted by the respective models. Models predicting specific AEs were less accurate. Our study presents a useful framework for the further development of vaccine reactogenicity predictive models.
Assuntos
Vacinas , Humanos , Imunidade Inata , Incidência , Desenvolvimento de VacinasRESUMO
Rhabdoviruses with rich species lead a variety of high lethality and rapid transmission diseases to plants and animals around the globe. Vaccination is one of the most effective approaches to prevent and control virus disease. However, the key antigenic epitopes of glycoprotein being used for vaccine development are unclear. In this study, fish-derived Abs are employed for a Micropterus salmoides rhabdovirus (MSRV) vaccine design by phage display and bioinformatics analysis. We constructed an anti-MSRV phage Ab library to screen Abs for glycoprotein segment 2 (G2) (G129-266). Four M13-phage-displayed Abs (Ab-5, Ab-7, Ab-8 and Ab-30) exhibited strong specificity to target Ag, and Ab-7 had the highest affinity with MSRV. Ab-7 (300 µg/ml) significantly increased grass carp ovary cell viability to 83.40% and significantly decreased the titer of MSRV. Molecular docking results showed that the key region of Ag-Ab interaction was located in 10ESQEFTTLTSH20 of G2. G2Ser11 and G2Gln12 were replaced with alanine, respectively, and molecular docking results showed that the Ag-Ab was nonbinding (ΔG > 0). Then, the peptide vaccine KLH-G210-20 was immunized to M. salmoides via i.p. injection. ELISA result showed that the serum Ab potency level increased significantly (p < 0.01). More importantly, the challenge test demonstrated that the peptide vaccine elicited robust protection against MSRV invasion, and the relative percentage survival reached 62.07%. Overall, this study proposed an approach for screening key epitope by combining phage display technology and bioinformatics tools to provide a reliable theoretical reference for the prevention and control of viral diseases.
Assuntos
Bass , Rhabdoviridae , Vacinas , Animais , Feminino , Simulação de Acoplamento Molecular , Epitopos , Glicoproteínas , Desenvolvimento de VacinasRESUMO
Live-attenuated flavivirus vaccines confer long-term protection against disease, but the design of attenuated flaviviruses does not follow a general approach. The non-coding, subgenomic flavivirus RNA (sfRNA) is produced by all flaviviruses and is an essential factor in viral pathogenesis and transmission. We argue that modulating sfRNA expression is a promising, universal strategy to finetune flavivirus attenuation for developing effective flavivirus vaccines of the future.
Assuntos
Infecções por Flavivirus , Flavivirus , RNA Viral , Vacinas Atenuadas , Vacinas Virais , Vacinas Atenuadas/imunologia , Flavivirus/imunologia , Flavivirus/genética , RNA Viral/genética , Humanos , Vacinas Virais/imunologia , Infecções por Flavivirus/prevenção & controle , Infecções por Flavivirus/virologia , Animais , Desenvolvimento de VacinasRESUMO
Understanding how different amino acids affect the HIV-1 envelope (Env) trimer will greatly help the design and development of vaccines that induce broadly neutralizing antibodies (bnAbs). A tryptophan residue at position 375 that opens the CD4 binding site without modifying the trimer apex was identified using our saturation mutagenesis strategy. 375W was introduced into a large panel of 27 transmitted/founder, acute stage, chronic infection, and AIDS macrophage-tropic and non-macrophage-tropic primary envelopes from different clades (A, B, C, D, and G) as well as complex and circulating recombinants. We evaluated soluble CD4 and monoclonal antibody neutralization of WT and mutant Envs together with macrophage infection. The 375W substitution increased sensitivity to soluble CD4 in all 27 Envs and macrophage infection in many Envs including an X4 variant. Importantly, 375W did not impair or abrogate neutralization by potent bnAbs. Variants that were already highly macrophage tropic were compromised for macrophage tropism, indicating that other structural factors are involved. Of note, we observed a macrophage-tropic (clade G) and intermediate macrophage-tropic (clades C and D) primary Envs from the blood and not from the central nervous system (CNS), indicating that such variants could be released from the brain or evolve outside the CNS. Our data also indicate that "intermediate" macrophage-tropic variants should belong to a new class of HIV-1 tropism. These Envs infected macrophages more efficiently than non-macrophage-tropic variants without reaching the high levels of macrophage-tropic brain variants. In summary, we show that 375W is ideal for inclusion into HIV-1 vaccines, increasing Env binding to CD4 for widely diverse Envs from different clades and disease stages.IMPORTANCESubstitutions exposing the CD4 binding site (CD4bs) on HIV-1 trimers but still occluding non-neutralizing, immunogenic epitopes are desirable to develop HIV-1 vaccines. If such substitutions induce similar structural changes in trimers across diverse clades, they could be exploited for the development of multi-clade envelope (Env) vaccines. We show that the 375W substitution increases CD4 affinity for envelopes of all clades, circulating recombinant forms, and complex Envs tested, independent of disease stage. Clade B and C Envs with an exposed CD4bs were described for macrophage-tropic strains from the central nervous system (CNS). Here, we show that intermediate (clades C and D) and macrophage-tropic (clade G) envelopes can be detected outside the CNS. Vaccines targeting the CD4bs will be particularly effective against such strains and CNS disease.
Assuntos
Infecções por HIV , HIV-1 , Tropismo Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana , Humanos , Anticorpos Amplamente Neutralizantes/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/genética , Mutação , Desenvolvimento de Vacinas , Macrófagos/virologia , Antígenos CD4RESUMO
Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.
Assuntos
Proteínas de Bactérias , Vacinas contra COVID-19 , COVID-19 , Imunidade nas Mucosas , Lipídeos , Proteínas Recombinantes de Fusão , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Cricetinae , Camundongos , Adjuvantes Imunológicos , Anticorpos Antivirais/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Receptores de IgG/classificação , Receptores de IgG/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Staphylococcus aureus , Desenvolvimento de Vacinas , Carga ViralRESUMO
Synonymous recoding of RNA virus genomes is a promising approach for generating attenuated viruses to use as vaccines. Problematically, recoding typically hinders virus growth, but this may be rectified using CpG dinucleotide enrichment. CpGs are recognised by cellular zinc-finger antiviral protein (ZAP), and so in principle, removing ZAP sensing from a virus propagation system will reverse attenuation of a CpG-enriched virus, enabling high titre yield of a vaccine virus. We tested this using a vaccine strain of influenza A virus (IAV) engineered for increased CpG content in genome segment 1. Virus attenuation was mediated by the short isoform of ZAP, correlated with the number of CpGs added, and was enacted via turnover of viral transcripts. The CpG-enriched virus was strongly attenuated in mice, yet conveyed protection from a potentially lethal challenge dose of wildtype virus. Importantly for vaccine development, CpG-enriched viruses were genetically stable during serial passage. Unexpectedly, in both MDCK cells and embryonated hens' eggs that are used to propagate live attenuated influenza vaccines, the ZAP-sensitive virus was fully replication competent. Thus, ZAP-sensitive CpG enriched viruses that are defective in human systems can yield high titre in vaccine propagation systems, providing a realistic, economically viable platform to augment existing live attenuated vaccines.
Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Vacinas Virais , Animais , Feminino , Humanos , Camundongos , Vírus da Influenza A/genética , Vacinas Atenuadas , Galinhas , Vacinas Virais/genética , Desenvolvimento de Vacinas , Replicação ViralRESUMO
Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.
Assuntos
COVID-19 , Nanoestruturas , SARS-CoV-2 , Desenvolvimento de Vacinas , Humanos , Nanoestruturas/química , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas contra COVID-19/química , Animais , Adjuvantes Imunológicos/química , Neoplasias/imunologia , Neoplasias/prevenção & controle , Nanopartículas/química , Vacinas , Pandemias/prevenção & controleRESUMO
SignificanceUsing SARS-CoV-2 as a relevant case study for infectious disease, we investigate the structure-function relationships that dictate antiviral spherical nucleic acid (SNA) vaccine efficacy. We show that the SNA architecture can be rapidly employed to target COVID-19 through incorporation of the receptor-binding domain, and that the resulting vaccine potently activates human cells in vitro and mice in vivo. Furthermore, when challenged with a lethal viral infection, only mice treated with the SNA vaccine survived. Taken together, this work underscores the importance of rational vaccine design for infectious disease to yield vaccines that elicit more potent immune responses to effectively fight disease.
Assuntos
Controle de Doenças Transmissíveis , Ácidos Nucleicos/imunologia , Vacinas de DNA/imunologia , Animais , Biotecnologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Doenças Transmissíveis/etiologia , Doenças Transmissíveis/imunologia , Humanos , Ácidos Nucleicos/química , SARS-CoV-2/imunologia , Desenvolvimento de Vacinas , Vacinas de DNA/genética , Vacinas Virais/genética , Vacinas Virais/imunologiaRESUMO
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.
Assuntos
Prolina , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Desenvolvimento de Vacinas , Estomatite Vesicular , Vacinas Virais , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/genética , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Cricetinae , Humanos , Camundongos , Prolina/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Estomatite Vesicular/imunologia , Estomatite Vesicular/prevenção & controle , Estomatite Vesicular/virologia , Vesiculovirus/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologiaRESUMO
Tools to evaluate and accelerate tuberculosis (TB) vaccine development are needed to advance global TB control strategies. Validated human infection studies for TB have the potential to facilitate breakthroughs in understanding disease pathogenesis, identify correlates of protection, develop diagnostic tools, and accelerate and de-risk vaccine and drug development. However, key challenges remain for realizing the clinical utility of these models, which require further discussion and alignment among key stakeholders. In March 2023, the Wellcome Trust and the International AIDS Vaccine Initiative convened international experts involved in developing both TB and bacillus Calmette-Guérin (BCG) human infection studies (including mucosal and intradermal challenge routes) to discuss the status of each of the models and the key enablers to move the field forward. This report provides a summary of the presentations and discussion from the meeting. Discussions identified key issues, including demonstrating model validity, to provide confidence for vaccine developers, which may be addressed through demonstration of known vaccine effects (eg, BCG vaccination in specific populations), and by comparing results from field efficacy and human infection studies. The workshop underscored the importance of establishing safe and acceptable studies in high-burden settings, and the need to validate >1 model to allow for different scientific questions to be addressed as well as to provide confidence to vaccine developers and regulators around use of human infection study data in vaccine development and licensure pathways.
Assuntos
Vacinas contra a Tuberculose , Tuberculose , Humanos , Tuberculose/prevenção & controle , Tuberculose/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Desenvolvimento de Vacinas , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Mycobacterium tuberculosis/imunologia , AnimaisRESUMO
Coronavirus disease 2019 (COVID-19) epidemiology and product landscapes have changed considerably since onset of the pandemic. Safe and effective vaccines and therapeutics are available, but the continual emergence of severe acute respiratory syndrome coronavirus 2 variants introduce limitations in our ability to prevent and treat disease. Project NextGen is a collaboration between the Biomedical Advanced Research and Development Authority, part of the Administration for Strategic Preparedness and Response, and the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, that is leveraging public-private partnerships to address gaps in the nation's COVID-19 vaccine and therapeutic capabilities. Targeted investments will advance promising next-generation candidates through the most difficult phases of clinical development to encourage further private sector interest for later stage development and commercial availability. New commercial vaccines and therapeutics that are more durable and effective across variants will improve our fight against COVID-19 and transform our response to future threats.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Parcerias Público-Privadas , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Estados Unidos , Desenvolvimento de Vacinas , Tratamento Farmacológico da COVID-19 , Antivirais/uso terapêutico , Desenvolvimento de Medicamentos/tendências , Pandemias/prevenção & controleRESUMO
In response to the coronavirus disease 2019 (COVID-19) pandemic, vaccines were quickly and successfully developed and deployed, saving millions of lives globally. While first-generation vaccines are safe and effective in preventing disease caused by SARS-CoV-2, next-generation vaccines have the potential to improve efficacy and safety. Vaccines delivered by a mucosal route may elicit greater protective immunity at respiratory surfaces, thereby reducing transmission. Inclusion of viral antigens in addition to the spike protein may enhance protection against emerging variants of concern. Next-generation vaccine platforms with a new mechanism of action may necessitate efficacy trials to fulfill regulatory requirements. The Biomedical Advanced Research and Development Authority (BARDA) will be supporting Phase 2b clinical trials of candidate next-generation vaccines. The primary endpoint will be improved efficacy in terms of symptomatic disease relative to a currently approved COVID-19 vaccine. In this paper, we discuss the planned endpoints and potential challenges to this complex program.
Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Projetos de Pesquisa , Desenvolvimento de Vacinas , Ensaios Clínicos Fase II como Assunto , Eficácia de Vacinas , Pesquisa BiomédicaRESUMO
Acute respiratory infections are the leading cause of death and illness in children under 5 years old and represent a significant burden in older adults. Primarily caused by viruses infecting the lower respiratory tract, symptoms include cough, congestion, and low-grade fever, potentially leading to bronchiolitis and pneumonia. Messenger ribonucleic acid (mRNA)-based vaccines are biopharmaceutical formulations that employ mRNA molecules to induce specific immune responses, facilitating the expression of viral or bacterial antigens and promoting immunization against infectious diseases. Notably, this technology had significant relevance during the COVID-19 pandemic, as these formulations helped to limit SARS-CoV-2 virus infections, hospitalizations, and deaths. Importantly, mRNA vaccines promise to be implemented as new alternatives for fighting other respiratory viruses, such as influenza, human respiratory syncytial virus, and human metapneumovirus. This review article analyzes mRNA-based vaccines' main contributions, perspectives, challenges, and implications against respiratory viruses.