Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.870
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 171(2): 440-455.e14, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28942925

RESUMO

Corticospinal neurons (CSNs) represent the direct cortical outputs to the spinal cord and play important roles in motor control across different species. However, their organizational principle remains unclear. By using a retrograde labeling system, we defined the requirement of CSNs in the execution of a skilled forelimb food-pellet retrieval task in mice. In vivo imaging of CSN activity during performance revealed the sequential activation of topographically ordered functional ensembles with moderate local mixing. Region-specific manipulations indicate that CSNs from caudal or rostral forelimb area control reaching or grasping, respectively, and both are required in the transitional pronation step. These region-specific CSNs terminate in different spinal levels and locations, therefore preferentially connecting with the premotor neurons of muscles engaged in different steps of the task. Together, our findings suggest that spatially defined groups of CSNs encode different movement modules, providing a logic for parallel-ordered corticospinal circuits to orchestrate multistep motor skills.


Assuntos
Medula Cervical/fisiologia , Destreza Motora , Vias Neurais , Animais , Cálcio/análise , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Medula Cervical/citologia , Membro Anterior/fisiologia , Articulações/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
2.
Physiol Rev ; 104(3): 983-1020, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385888

RESUMO

Humans use their fingers to perform a variety of tasks, from simple grasping to manipulating objects, to typing and playing musical instruments, a variety wider than any other species. The more sophisticated the task, the more it involves individuated finger movements, those in which one or more selected fingers perform an intended action while the motion of other digits is constrained. Here we review the neurobiology of such individuated finger movements. We consider their evolutionary origins, the extent to which finger movements are in fact individuated, and the evolved features of neuromuscular control that both enable and limit individuation. We go on to discuss other features of motor control that combine with individuation to create dexterity, the impairment of individuation by disease, and the broad extent of capabilities that individuation confers on humans. We comment on the challenges facing the development of a truly dexterous bionic hand. We conclude by identifying topics for future investigation that will advance our understanding of how neural networks interact across multiple regions of the central nervous system to create individuated movements for the skills humans use to express their cognitive activity.


Assuntos
Evolução Biológica , Dedos , Humanos , Fenômenos Biomecânicos , Dedos/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Neurobiologia , Desempenho Psicomotor/fisiologia
3.
Annu Rev Neurosci ; 44: 425-447, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863253

RESUMO

What changes in neural architecture account for the emergence and expansion of dexterity in primates? Dexterity, or skill in performing motor tasks, depends on the ability to generate highly fractionated patterns of muscle activity. It also involves the spatiotemporal coordination of activity in proximal and distal muscles across multiple joints. Many motor skills require the generation of complex movement sequences that are only acquired and refined through extensive practice. Improvements in dexterity have enabled primates to manufacture and use tools and humans to engage in skilled motor behaviors such as typing, dance, musical performance, and sports. Our analysis leads to the following synthesis: The neural substrate that endows primates with their enhanced motor capabilities is due, in part, to (a) major organizational changes in the primary motor cortex and (b) the proliferation of output pathways from other areas of the cerebral cortex, especially from the motor areas on the medial wall of the hemisphere.


Assuntos
Córtex Motor , Animais , Destreza Motora , Movimento
4.
Nature ; 623(7988): 765-771, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938772

RESUMO

Animals of the same species exhibit similar behaviours that are advantageously adapted to their body and environment. These behaviours are shaped at the species level by selection pressures over evolutionary timescales. Yet, it remains unclear how these common behavioural adaptations emerge from the idiosyncratic neural circuitry of each individual. The overall organization of neural circuits is preserved across individuals1 because of their common evolutionarily specified developmental programme2-4. Such organization at the circuit level may constrain neural activity5-8, leading to low-dimensional latent dynamics across the neural population9-11. Accordingly, here we suggested that the shared circuit-level constraints within a species would lead to suitably preserved latent dynamics across individuals. We analysed recordings of neural populations from monkey and mouse motor cortex to demonstrate that neural dynamics in individuals from the same species are surprisingly preserved when they perform similar behaviour. Neural population dynamics were also preserved when animals consciously planned future movements without overt behaviour12 and enabled the decoding of planned and ongoing movement across different individuals. Furthermore, we found that preserved neural dynamics extend beyond cortical regions to the dorsal striatum, an evolutionarily older structure13,14. Finally, we used neural network models to demonstrate that behavioural similarity is necessary but not sufficient for this preservation. We posit that these emergent dynamics result from evolutionary constraints on brain development and thus reflect fundamental properties of the neural basis of behaviour.


Assuntos
Evolução Biológica , Haplorrinos , Córtex Motor , Destreza Motora , Neurônios , Animais , Camundongos , Haplorrinos/fisiologia , Haplorrinos/psicologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Pensamento/fisiologia
5.
Nature ; 602(7896): 274-279, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35082444

RESUMO

The brain's remarkable ability to learn and execute various motor behaviours harnesses the capacity of neural populations to generate a variety of activity patterns. Here we explore systematic changes in preparatory activity in motor cortex that accompany motor learning. We trained rhesus monkeys to learn an arm-reaching task1 in a curl force field that elicited new muscle forces for some, but not all, movement directions2,3. We found that in a neural subspace predictive of hand forces, changes in preparatory activity tracked the learned behavioural modifications and reassociated4 existing activity patterns with updated movements. Along a neural population dimension orthogonal to the force-predictive subspace, we discovered that preparatory activity shifted uniformly for all movement directions, including those unaltered by learning. During a washout period when the curl field was removed, preparatory activity gradually reverted in the force-predictive subspace, but the uniform shift persisted. These persistent preparatory activity patterns may retain a motor memory of the learned field5,6 and support accelerated relearning of the same curl field. When a set of distinct curl fields was learned in sequence, we observed a corresponding set of field-specific uniform shifts which separated the associated motor memories in the neural state space7-9. The precise geometry of these uniform shifts in preparatory activity could serve to index motor memories, facilitating the acquisition, retention and retrieval of a broad motor repertoire.


Assuntos
Aprendizagem , Córtex Motor , Destreza Motora , Animais , Aprendizagem/fisiologia , Macaca mulatta/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia
6.
Nature ; 604(7907): 708-713, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444285

RESUMO

Looking and reaching are controlled by different brain regions and are coordinated during natural behaviour1. Understanding how flexible, natural behaviours such as coordinated looking and reaching are controlled depends on understanding how neurons in different regions of the brain communicate2. Neural coherence in a gamma-frequency (40-90 Hz) band has been implicated in excitatory multiregional communication3. Inhibitory control mechanisms are also required to flexibly control behaviour4, but little is known about how neurons in one region transiently suppress individual neurons in another to support behaviour. How neuronal firing in a sender region transiently suppresses firing in a receiver region remains poorly understood. Here we study inhibitory communication during a flexible, natural behaviour, termed gaze anchoring, in which saccades are transiently inhibited by coordinated reaches. During gaze anchoring, we found that neurons in the reach region of the posterior parietal cortex can inhibit neuronal firing in the parietal saccade region to suppress eye movements and improve reach accuracy. Suppression is transient, only present around the coordinated reach, and greatest when reach neurons fire spikes with respect to beta-frequency (15-25 Hz) activity, not gamma-frequency activity. Our work provides evidence in the activity of single neurons for a novel mechanism of inhibitory communication in which beta-frequency neural coherence transiently inhibits multiregional communication to flexibly coordinate natural behaviour.


Assuntos
Destreza Motora , Lobo Parietal , Desempenho Psicomotor , Movimentos Sacádicos , Animais , Movimentos Oculares , Fixação Ocular , Macaca mulatta , Neurônios/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia
7.
Nature ; 607(7918): 321-329, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676479

RESUMO

Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.


Assuntos
Afeto , Destreza Motora , Vias Neurais , Doença de Parkinson , Tálamo , Animais , Modelos Animais de Doenças , Aprendizagem , Locomoção , Potenciação de Longa Duração , Camundongos , Neurônios/fisiologia , Núcleo Accumbens , Optogenética , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Doença de Parkinson/terapia , Putamen , Receptores Nicotínicos , Núcleo Subtalâmico , Sinapses , Tálamo/citologia , Tálamo/patologia
8.
Nature ; 590(7846): 445-450, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33408409

RESUMO

The brainstem is a key centre in the control of body movements. Although the precise nature of brainstem cell types and circuits that are central to full-body locomotion are becoming known1-5, efforts to understand the neuronal underpinnings of skilled forelimb movements have focused predominantly on supra-brainstem centres and the spinal cord6-12. Here we define the logic of a functional map for skilled forelimb movements within the lateral rostral medulla (latRM) of the brainstem. Using in vivo electrophysiology in freely moving mice, we reveal a neuronal code with tuning of latRM populations to distinct forelimb actions. These include reaching and food handling, both of which are impaired by perturbation of excitatory latRM neurons. Through the combinatorial use of genetics and viral tracing, we demonstrate that excitatory latRM neurons segregate into distinct populations by axonal target, and act through the differential recruitment of intra-brainstem and spinal circuits. Investigating the behavioural potential of projection-stratified latRM populations, we find that the optogenetic stimulation of these populations can elicit diverse forelimb movements, with each behaviour stably expressed by individual mice. In summary, projection-stratified brainstem populations encode action phases and together serve as putative building blocks for regulating key features of complex forelimb movements, identifying substrates of the brainstem for skilled forelimb behaviours.


Assuntos
Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Membro Anterior/inervação , Membro Anterior/fisiologia , Destreza Motora/fisiologia , Vias Neurais , Animais , Feminino , Masculino , Bulbo/citologia , Bulbo/fisiologia , Camundongos , Movimento
9.
Nature ; 591(7850): 431-437, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33505021

RESUMO

Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Canais de Potássio/metabolismo , Potássio/metabolismo , Animais , Biocatálise , Neurônios Dopaminérgicos/metabolismo , Feminino , Mutação com Ganho de Função , Células HEK293 , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Knockout , Destreza Motora , Complexos Multiproteicos/química , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Doença de Parkinson/genética , Canais de Potássio/química , Canais de Potássio/deficiência , Canais de Potássio/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , alfa-Sinucleína/metabolismo
10.
Nature ; 596(7873): 570-575, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290407

RESUMO

The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. Here, through a spatiotemporally resolved proximity labelling screen followed by quantitative proteomics, we identify the lysosomal membrane protein Niemann-Pick type C1 (NPC1) as a cofactor in the trafficking of STING. NPC1 interacts with STING and recruits it to the lysosome for degradation in both human and mouse cells. Notably, we find that knockout of Npc1 'primes' STING signalling by physically linking or 'tethering' STING to SREBP2 trafficking. Loss of NPC1 protein also 'boosts' STING signalling by blocking lysosomal degradation. Both priming and boosting of STING signalling are required for severe neurological disease in the Npc1-/- mouse. Genetic deletion of Sting1 (the gene that encodes STING) or Irf3, but not that of Cgas, significantly reduced the activation of microglia and relieved the loss of Purkinje neurons in the cerebellum of Npc1-/- mice, leading to improved motor function. Our study identifies a cGAS- and cGAMP-independent mode of STING activation that affects neuropathology and provides a therapeutic target for the treatment of Niemann-Pick disease type C.


Assuntos
Proteínas de Membrana/metabolismo , Modelos Biológicos , Doença de Niemann-Pick Tipo C/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Cerebelo/patologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/imunologia , Lisossomos/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Destreza Motora , Doenças Neuroinflamatórias , Proteína C1 de Niemann-Pick/deficiência , Proteína C1 de Niemann-Pick/genética , Proteína C1 de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteólise , Células de Purkinje/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
11.
Nature ; 599(7886): 650-656, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732887

RESUMO

Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease1. Yet, whether this change contributes to Parkinson's disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism-which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson's disease paradigm3,4.


Assuntos
Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Morte Celular , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Progressão da Doença , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Camundongos , Destreza Motora/efeitos dos fármacos , NADH Desidrogenase/deficiência , NADH Desidrogenase/genética , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Fenótipo , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
12.
Nat Rev Neurosci ; 22(12): 741-757, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34711956

RESUMO

The hand endows us with unparalleled precision and versatility in our interactions with objects, from mundane activities such as grasping to extraordinary ones such as virtuoso pianism. The complex anatomy of the human hand combined with expansive and specialized neuronal control circuits allows a wide range of precise manual behaviours. To support these behaviours, an exquisite sensory apparatus, spanning the modalities of touch and proprioception, conveys detailed and timely information about our interactions with objects and about the objects themselves. The study of manual dexterity provides a unique lens into the sensorimotor mechanisms that endow the nervous system with the ability to flexibly generate complex behaviour.


Assuntos
Mãos/anatomia & histologia , Mãos/fisiologia , Destreza Motora/fisiologia , Humanos , Propriocepção/fisiologia , Percepção do Tato/fisiologia
13.
Proc Natl Acad Sci U S A ; 120(52): e2303985120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113264

RESUMO

Practicing motor skills stabilizes and strengthens motor memories by repeatedly reactivating and reconsolidating them. The conventional view, by which a repetitive practice is required for substantially improving skill performance, has been recently challenged by behavioral experiments, in which even brief reactivations of the motor memory have led to significant improvements in skill performance. However, the mechanisms which facilitate brief reactivation-induced skill improvements remain elusive. While initial memory consolidation has been repeatedly associated with increased neural excitation and disinhibition, reconsolidation has been shown to involve a poorly understood mixture of both excitatory and inhibitory alterations. Here, we followed a 3-d reactivation-reconsolidation framework to examine whether the excitatory/inhibitory mechanisms which underlie brief reactivation and repetitive practice differ. Healthy volunteers practiced a motor sequence learning task using either brief reactivation or repetitive practice and were assessed using ultrahigh field (7T) magnetic resonance spectroscopy at the primary motor cortex (M1). We found that increased inhibition (GABA concentrations) and decreased excitation/inhibition (glutamate/GABA ratios) immediately following the brief reactivation were associated with overnight offline performance gains. These gains were on par with those exhibited following repetitive practice, where no correlations with inhibitory or excitatory changes were observed. Our findings suggest that brief reactivation and repetitive practice depend on fundamentally different neural mechanisms and that early inhibition-and not excitation-is particularly important in supporting the learning gains exhibited by brief reactivation.


Assuntos
Aprendizagem , Consolidação da Memória , Humanos , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Inibição Psicológica , Ácido gama-Aminobutírico
14.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38806248

RESUMO

Coordinated multijoint limb and digit movements-"manual dexterity"-underlie both specialized skills (e.g., playing the piano) and more mundane tasks (e.g., tying shoelaces). Impairments in dexterous skill cause significant disability, as occurs with motor cortical injury, Parkinson's disease, and a range of other pathologies. Clinical observations, as well as basic investigations, suggest that corticostriatal circuits play a critical role in learning and performing dexterous skills. Furthermore, dopaminergic signaling in these regions is implicated in synaptic plasticity and motor learning. Nonetheless, the role of striatal dopamine signaling in skilled motor learning remains poorly understood. Here, we use fiber photometry paired with a genetically encoded dopamine sensor to investigate striatal dopamine release in both male and female mice as they learn and perform a skilled reaching task. Dopamine rapidly increases during a skilled reach and peaks near pellet consumption. In the dorsolateral striatum, dopamine dynamics are faster than in the dorsomedial and ventral striatum. Across training, as reaching performance improves, dopamine signaling shifts from pellet consumption to cues that predict pellet availability, particularly in medial and ventral areas of the striatum. Furthermore, performance prediction errors are present across the striatum, with reduced dopamine release after an unsuccessful reach. These findings show that dopamine dynamics during skilled motor behaviors change with learning and are differentially regulated across striatal subregions.


Assuntos
Corpo Estriado , Dopamina , Aprendizagem , Destreza Motora , Animais , Dopamina/metabolismo , Masculino , Camundongos , Feminino , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Camundongos Endogâmicos C57BL
15.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38351000

RESUMO

Research on the role of the hippocampus in memory acquisition has generally focused on active learning. But to understand memory, it is at least as important to understand processes that happen offline, during both wake and sleep. In a study of patients with amnesia, we previously demonstrated that although a functional hippocampus is not necessary for the acquisition of procedural motor memory during training session, it is required for its offline consolidation during sleep. Here, we investigated whether an intact hippocampus is also required for the offline consolidation of procedural motor memory while awake. Patients with amnesia due to hippocampal damage (n = 4, all male) and demographically matched controls (n = 10, 8 males) trained on the finger tapping motor sequence task. Learning was measured as gains in typing speed and was divided into online (during task execution) and offline (during interleaved 30 s breaks) components. Amnesic patients and controls showed comparable total learning, but differed in the pattern of performance improvement. Unlike younger adults, who gain speed across breaks, both groups gained speed only while typing. Only controls retained these gains over the breaks; amnesic patients slowed down and compensated for these losses during subsequent typing. In summary, unlike their peers, whose motor performance remained stable across brief breaks in typing, amnesic patients showed evidence of impaired access to motor procedural memory. We conclude that in addition to being necessary for the offline consolidation of motor memories during sleep, the hippocampus maintains access to motor memory across brief offline periods during wake.


Assuntos
Consolidação da Memória , Desempenho Psicomotor , Adulto , Humanos , Masculino , Destreza Motora , Memória , Sono , Amnésia , Hipocampo
16.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38123361

RESUMO

When we intensively train a timing skill, such as learning to play the piano, we not only produce brain changes associated with task-specific learning but also improve our performance in other temporal behaviors that depend on these tuned neural resources. Since the neural basis of time learning and generalization is still unknown, we measured the changes in neural activity associated with the transfer of learning from perceptual to motor timing in a large sample of subjects (n = 65; 39 women). We found that intense training in an interval discrimination task increased the acuity of time perception in a group of subjects that also exhibited learning transfer, expressed as a reduction in inter-tap interval variability during an internally driven periodic motor task. In addition, we found subjects with no learning and/or generalization effects. Notably, functional imaging showed an increase in pre-supplementary motor area and caudate-putamen activity between the post- and pre-training sessions of the tapping task. This increase was specific to the subjects that generalized their timing acuity from the perceptual to the motor context. These results emphasize the central role of the cortico-basal ganglia circuit in the generalization of timing abilities between tasks.


Assuntos
Córtex Motor , Humanos , Feminino , Transferência de Experiência , Imageamento por Ressonância Magnética/métodos , Encéfalo , Gânglios da Base , Destreza Motora
17.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38538141

RESUMO

The human hand possesses both consolidated motor skills and remarkable flexibility in adapting to ongoing task demands. However, the underlying mechanisms by which the brain balances stability and flexibility remain unknown. In the absence of external input or behavior, spontaneous (intrinsic) brain connectivity is thought to represent a prior of stored memories. In this study, we investigated how manual dexterity modulates spontaneous functional connectivity in the motor cortex during hand movement. Using magnetoencephalography, in 47 human participants (both sexes), we examined connectivity modulations in the α and ß frequency bands at rest and during two motor tasks (i.e., finger tapping or toe squeezing). The flexibility and stability of such modulations allowed us to identify two groups of participants with different levels of performance (high and low performers) on the nine-hole peg test, a test of manual dexterity. In the α band, participants with higher manual dexterity showed distributed decreases of connectivity, specifically in the motor cortex, increased segregation, and reduced nodal centrality. Participants with lower manual dexterity showed an opposite pattern. Notably, these patterns from the brain to behavior are mirrored by results from behavior to the brain. Indeed, when participants were divided using the median split of the dexterity score, we found the same connectivity patterns. In summary, this experiment shows that a long-term motor skill-manual dexterity-influences the way the motor systems respond during movements.


Assuntos
Magnetoencefalografia , Córtex Motor , Destreza Motora , Humanos , Masculino , Feminino , Adulto , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Adulto Jovem , Magnetoencefalografia/métodos , Ritmo alfa/fisiologia , Mãos/fisiologia , Desempenho Psicomotor/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia
18.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38238073

RESUMO

Experience-dependent gene expression reshapes neural circuits, permitting the learning of knowledge and skills. Most learning involves repetitive experiences during which neurons undergo multiple stages of functional and structural plasticity. Currently, the diversity of transcriptional responses underlying dynamic plasticity during repetition-based learning is poorly understood. To close this gap, we analyzed single-nucleus transcriptomes of L2/3 glutamatergic neurons of the primary motor cortex after 3 d motor skill training or home cage control in water-restricted male mice. "Train" and "control" neurons could be discriminated with high accuracy based on expression patterns of many genes, indicating that recent experience leaves a widespread transcriptional signature across L2/3 neurons. These discriminating genes exhibited divergent modes of coregulation, differentiating neurons into discrete clusters of transcriptional states. Several states showed gene expressions associated with activity-dependent plasticity. Some of these states were also prominent in the previously published reference, suggesting that they represent both spontaneous and task-related plasticity events. Markedly, however, two states were unique to our dataset. The first state, further enriched by motor training, showed gene expression suggestive of late-stage plasticity with repeated activation, which is suitable for expected emergent neuronal ensembles that stably retain motor learning. The second state, equally found in both train and control mice, showed elevated levels of metabolic pathways and norepinephrine sensitivity, suggesting a response to common experiences specific to our experimental conditions, such as water restriction or circadian rhythm. Together, we uncovered divergent transcriptional responses across L2/3 neurons, each potentially linked with distinct features of repetition-based motor learning such as plasticity, memory, and motivation.


Assuntos
Aprendizagem , Plasticidade Neuronal , Masculino , Camundongos , Animais , Plasticidade Neuronal/genética , Aprendizagem/fisiologia , Neurônios/fisiologia , Destreza Motora/fisiologia , Água/metabolismo
19.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38553046

RESUMO

Exercise is known to benefit motor skill learning in health and neurological disease. Evidence from brain stimulation, genotyping, and Parkinson's disease studies converge to suggest that the dopamine D2 receptor, and shifts in the cortical excitation and inhibition (E:I) balance, are prime candidates for the drivers of exercise-enhanced motor learning. However, causal evidence using experimental pharmacological challenge is lacking. We hypothesized that the modulatory effect of the dopamine D2 receptor on exercise-induced changes in the E:I balance would determine the magnitude of motor skill acquisition. To test this, we measured exercise-induced changes in excitation and inhibition using paired-pulse transcranial magnetic stimulation (TMS) in 22 healthy female and male humans, and then had participants learn a novel motor skill-the sequential visual isometric pinch task (SVIPT). We examined the effect of D2 receptor blockade (800 mg sulpiride) on these measures within a randomized, double-blind, placebo-controlled design. Our key result was that motor skill acquisition was driven by an interaction between the D2 receptor and E:I balance. Specifically, poorer skill learning was related to an attenuated shift in the E:I balance in the sulpiride condition, whereas this interaction was not evident in placebo. Our results demonstrate that exercise-primed motor skill acquisition is causally influenced by D2 receptor activity on motor cortical circuits.


Assuntos
Exercício Físico , Córtex Motor , Destreza Motora , Receptores de Dopamina D2 , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Receptores de Dopamina D2/metabolismo , Adulto , Destreza Motora/fisiologia , Destreza Motora/efeitos dos fármacos , Estimulação Magnética Transcraniana/métodos , Adulto Jovem , Córtex Motor/fisiologia , Córtex Motor/efeitos dos fármacos , Exercício Físico/fisiologia , Método Duplo-Cego , Inibição Neural/fisiologia , Inibição Neural/efeitos dos fármacos , Aprendizagem/fisiologia , Potencial Evocado Motor/fisiologia , Potencial Evocado Motor/efeitos dos fármacos , Sulpirida/farmacologia , Antagonistas de Dopamina/farmacologia
20.
Annu Rev Neurosci ; 40: 479-498, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28489490

RESUMO

Trial-to-trial variability in the execution of movements and motor skills is ubiquitous and widely considered to be the unwanted consequence of a noisy nervous system. However, recent studies have suggested that motor variability may also be a feature of how sensorimotor systems operate and learn. This view, rooted in reinforcement learning theory, equates motor variability with purposeful exploration of motor space that, when coupled with reinforcement, can drive motor learning. Here we review studies that explore the relationship between motor variability and motor learning in both humans and animal models. We discuss neural circuit mechanisms that underlie the generation and regulation of motor variability and consider the implications that this work has for our understanding of motor learning.


Assuntos
Aprendizagem/fisiologia , Modelos Neurológicos , Destreza Motora/fisiologia , Reforço Psicológico , Animais , Humanos , Movimento/fisiologia , Vias Neurais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA