Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.452
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 626(7999): 661-669, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267581

RESUMO

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. In bacteria, the relationship between the regulatory architecture of a gene and its expression is well understood for individual model gene circuits2,3. However, a broader perspective of these dynamics at the genome scale is lacking, in part because bacterial transcriptomics has hitherto captured only a static snapshot of expression averaged across millions of cells4. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on the transcriptional response of each gene to its own replication, which we term the transcription-replication interaction profile (TRIP). Analysing single-bacterium RNA-sequencing data, we found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal the local regulatory context of a gene. Whereas the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, and this is shaped by factors such as intra-operon position and repression state. By revealing the underlying mechanistic drivers of gene expression heterogeneity, this work provides a quantitative, biophysical framework for modelling replication-dependent expression dynamics.


Assuntos
Bactérias , Replicação do DNA , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Transcrição Gênica , Bactérias/genética , Replicação do DNA/genética , Dosagem de Genes/genética , Redes Reguladoras de Genes , Genoma Bacteriano/genética , Óperon/genética , Análise de Sequência de RNA , Transcrição Gênica/genética , Cromossomos Bacterianos/genética
2.
Mol Cell ; 77(1): 39-50.e10, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735642

RESUMO

CRISPR-Cas systems encode RNA-guided surveillance complexes to find and cleave invading DNA elements. While it is thought that invaders are neutralized minutes after cell entry, the mechanism and kinetics of target search and its impact on CRISPR protection levels have remained unknown. Here, we visualize individual Cascade complexes in a native type I CRISPR-Cas system. We uncover an exponential relation between Cascade copy number and CRISPR interference levels, pointing to a time-driven arms race between invader replication and target search, in which 20 Cascade complexes provide 50% protection. Driven by PAM-interacting subunit Cas8e, Cascade spends half its search time rapidly probing DNA (∼30 ms) in the nucleoid. We further demonstrate that target DNA transcription and CRISPR arrays affect the integrity of Cascade and affect CRISPR interference. Our work establishes the mechanism of cellular DNA surveillance by Cascade that allows the timely detection of invading DNA in a crowded, DNA-packed environment.


Assuntos
Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , DNA/genética , RNA Guia de Cinetoplastídeos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Replicação do DNA/genética , Dosagem de Genes/genética
3.
Nature ; 583(7814): 83-89, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32460305

RESUMO

A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0-11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing.


Assuntos
Variação Genética , Genoma Humano/genética , Sequenciamento Completo do Genoma , Alelos , Estudos de Casos e Controles , Epigênese Genética , Feminino , Dosagem de Genes/genética , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Anotação de Sequência Molecular , Locos de Características Quantitativas , Grupos Raciais/genética , Software
4.
Cytotherapy ; 26(6): 586-591, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38551525

RESUMO

BACKGROUND AIMS: Gene therapy using lentiviral vectors (LVs) that harbor a functional ß-globin gene provides a curative treatment for hemoglobinopathies including beta-thalassemia and sickle cell disease. Accurate quantification of the vector copy number (VCN) and/or the proportion of transduced cells is critical to evaluate the efficacy of transduction and stability of the transgene during treatment. Moreover, commonly used techniques for LV quantification, including real-time quantitative polymerase chain reaction (PCR) or fluorescence-activated cell sorting, require either a standard curve or expression of a reporter protein for the detection of transduced cells. In the present study, we describe a digital droplet PCR (ddPCR) technique to measure the lentiviral VCN in transduced hematopoietic stem and progenitor cells (HSPCs). METHODS: After HSPCs were transduced with an LV encoding the therapeutic ß-globin (ßA-T87Q) gene, the integrated lentiviral sequence in the host genome was amplified with primers that targeted a sequence within the vector and the human RPP30 gene. The dynamic range of ddPCR was between 5 × 10-3 ng and 5 × 10-6 ng of target copy per reaction. RESULTS: We found that the ddPCR-based approach was able to estimate VCN with high sensitivity and a low standard deviation. Furthermore, ddPCR-mediated quantitation of lentiviral copy numbers in differentiated erythroblasts correlated with the level of ßA-T87Q protein detected by reverse-phase high-performance liquid chromatography. CONCLUSIONS: Taken together, the ddPCR technique has the potential to precisely detect LV copy numbers in the host genome, which can be used for VCN estimation, calculation of infectious titer and multiplicity of infection for HSPC transduction in a clinical setting.


Assuntos
Terapia Genética , Vetores Genéticos , Células-Tronco Hematopoéticas , Lentivirus , Transdução Genética , Globinas beta , Humanos , Lentivirus/genética , Células-Tronco Hematopoéticas/metabolismo , Vetores Genéticos/genética , Globinas beta/genética , Transdução Genética/métodos , Terapia Genética/métodos , Talassemia beta/terapia , Talassemia beta/genética , Reação em Cadeia da Polimerase/métodos , Dosagem de Genes/genética
5.
PLoS Genet ; 17(11): e1009939, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843465

RESUMO

The distribution of cellular resources across bacterial proteins has been quantified through phenomenological growth laws. Here, we describe a complementary bacterial growth law for RNA composition, emerging from optimal cellular resource allocation into ribosomes and ternary complexes. The predicted decline of the tRNA/rRNA ratio with growth rate agrees quantitatively with experimental data. Its regulation appears to be implemented in part through chromosomal localization, as rRNA genes are typically closer to the origin of replication than tRNA genes and thus have increasingly higher gene dosage at faster growth. At the highest growth rates in E. coli, the tRNA/rRNA gene dosage ratio based on chromosomal positions is almost identical to the observed and theoretically optimal tRNA/rRNA expression ratio, indicating that the chromosomal arrangement has evolved to favor maximal transcription of both types of genes at this condition.


Assuntos
Escherichia coli/genética , Genoma Bacteriano/genética , Ribossomos/genética , Transcrição Gênica , Cromossomos Bacterianos/genética , Escherichia coli/crescimento & desenvolvimento , Dosagem de Genes/genética , RNA Bacteriano/genética , RNA Ribossômico/genética , RNA de Transferência/genética
6.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526671

RESUMO

An extra copy of chromosome 21 causes Down syndrome, the most common genetic disease in humans. The mechanisms contributing to aneuploidy-related pathologies in this syndrome, independent of the identity of the triplicated genes, are not well defined. To characterize aneuploidy-driven phenotypes in trisomy 21 cells, we performed global transcriptome, proteome, and phenotypic analyses of primary human fibroblasts from individuals with Patau (trisomy 13), Edwards (trisomy 18), or Down syndromes. On average, mRNA and protein levels were increased by 1.5-fold in all trisomies, with a subset of proteins enriched for subunits of macromolecular complexes showing signs of posttranscriptional regulation. These results support the lack of evidence for widespread dosage compensation or dysregulation of chromosomal domains in human autosomes. Furthermore, we show that several aneuploidy-associated phenotypes are present in trisomy 21 cells, including lower viability and increased dependency on serine-driven lipid synthesis. Our studies establish a critical role of aneuploidy, independent of triplicated gene identity, in driving cellular defects associated with trisomy 21.


Assuntos
Aneuploidia , Fibroblastos/patologia , Trissomia/genética , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Fibroblastos/metabolismo , Dosagem de Genes/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Lipídeos/biossíntese , Substâncias Macromoleculares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina/metabolismo , Transcrição Gênica , Regulação para Cima
7.
Genes Dev ; 30(16): 1881-94, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27585592

RESUMO

Post-translational protein modification by the small ubiquitin-related modifier (SUMO) regulates numerous cellular pathways, including transcription, cell division, and genome maintenance. The SUMO protease Ulp2 modulates many of these SUMO-dependent processes in budding yeast. From whole-genome RNA sequencing (RNA-seq), we unexpectedly discovered that cells lacking Ulp2 display a twofold increase in transcript levels across two particular chromosomes: chromosome I (ChrI) and ChrXII. This is due to the two chromosomes being present at twice their normal copy number. An abnormal number of chromosomes, termed aneuploidy, is usually deleterious. However, development of specific aneuploidies allows rapid adaptation to cellular stresses, and aneuploidy characterizes most human tumors. Extra copies of ChrI and ChrXII appear quickly following loss of active Ulp2 and can be eliminated following reintroduction of ULP2, suggesting that aneuploidy is a reversible adaptive mechanism to counteract loss of the SUMO protease. Importantly, increased dosage of two genes on ChrI-CLN3 and CCR4, encoding a G1-phase cyclin and a subunit of the Ccr4-Not deadenylase complex, respectively-suppresses ulp2Δ aneuploidy, suggesting that increased levels of these genes underlie the aneuploidy induced by Ulp2 loss. Our results reveal a complex aneuploidy mechanism that adapts cells to loss of the SUMO protease Ulp2.


Assuntos
Adaptação Fisiológica/genética , Aneuploidia , Endopeptidases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Cromossomos Fúngicos/genética , Endopeptidases/metabolismo , Deleção de Genes , Dosagem de Genes/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(31): 18880-18890, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694208

RESUMO

Genomic instability contributes to tumorigenesis through the amplification and deletion of cancer driver genes. DNA copy number (CN) profiling of ensembles of tumors allows a thermodynamic analysis of the profile for each tumor. The free energy of the distribution of CNs is found to be a monotonically increasing function of the average chromosomal ploidy. The dependence is universal across several cancer types. Surprisal analysis distinguishes two main known subgroups: tumors with cells that have or have not undergone whole-genome duplication (WGD). The analysis uncovers that CN states having a narrower distribution are energetically more favorable toward the WGD transition. Surprisal analysis also determines the deviations from a fully stable-state distribution. These deviations reflect constraints imposed by tumor fitness selection pressures. The results point to CN changes that are more common in high-ploidy tumors and thus support altered selection pressures upon WGD.


Assuntos
Dosagem de Genes/genética , Instabilidade Genômica/genética , Neoplasias/genética , Variações do Número de Cópias de DNA/genética , Genoma/genética , Humanos , Ploidias , Termodinâmica
9.
Proc Natl Acad Sci U S A ; 117(36): 22331-22340, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839322

RESUMO

The chromatin remodeler CHD8 is among the most frequently mutated genes in autism spectrum disorder (ASD). CHD8 has a dosage-sensitive role in ASD, but when and how it becomes critical to human social function is unclear. Here, we conducted genomic analyses of heterozygous and homozygous Chd8 mouse embryonic stem cells and differentiated neural progenitors. We identify dosage-sensitive CHD8 transcriptional targets, sites of regulated accessibility, and an unexpected cooperation with SOX transcription factors. Collectively, our findings reveal that CHD8 negatively regulates expression of neuronal genes to maintain pluripotency and also during differentiation. Thus, CHD8 is essential for both the maintenance of pluripotency and neural differentiation, providing mechanistic insight into its function with potential implications for ASD.


Assuntos
Proteínas de Ligação a DNA , Dosagem de Genes/genética , Neurogênese/genética , Animais , Transtorno do Espectro Autista , Células Cultivadas , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Camundongos , Camundongos Knockout
10.
Genes Dev ; 29(9): 898-903, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25934502

RESUMO

Aneuploidy-the gain or loss of one or more whole chromosome-typically has an adverse impact on organismal fitness, manifest in conditions such as Down syndrome. A central question is whether aneuploid phenotypes are the consequence of copy number changes of a few especially harmful genes that may be present on the extra chromosome or are caused by copy number alterations of many genes that confer no observable phenotype when varied individually. We used the proliferation defect exhibited by budding yeast strains carrying single additional chromosomes (disomes) to distinguish between the "few critical genes" hypothesis and the "mass action of genes" hypothesis. Our results indicate that subtle changes in gene dosage across a chromosome can have significant phenotypic consequences. We conclude that phenotypic thresholds can be crossed by mass action of copy number changes that, on their own, are benign.


Assuntos
Aneuploidia , Cromossomos Fúngicos/genética , Variações do Número de Cópias de DNA/genética , Dosagem de Genes/genética , Saccharomyces cerevisiae/genética , Proliferação de Células/genética , Fenótipo , Saccharomyces cerevisiae/citologia
11.
Genes Dev ; 29(7): 690-5, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25838540

RESUMO

In Saccharomyces cerevisiae, absence of the checkpoint kinase Mec1 (ATR) is viable upon mutations that increase the activity of the ribonucleotide reductase (RNR) complex. Whether this pathway is conserved in mammals remains unknown. Here we show that cells from mice carrying extra alleles of the RNR regulatory subunit RRM2 (Rrm2(TG)) present supraphysiological RNR activity and reduced chromosomal breakage at fragile sites. Moreover, increased Rrm2 gene dosage significantly extends the life span of ATR mutant mice. Our study reveals the first genetic condition in mammals that reduces fragile site expression and alleviates the severity of a progeroid disease by increasing RNR activity.


Assuntos
Quebra Cromossômica , Sítios Frágeis do Cromossomo/genética , Dosagem de Genes/genética , Longevidade/genética , Proteínas Serina-Treonina Quinases/genética , Ribonucleosídeo Difosfato Redutase/genética , Animais , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Ativação Enzimática/genética , Fibroblastos/citologia , Humanos , Camundongos , Nucleosídeos/metabolismo , Análise de Sobrevida
12.
Hum Mol Genet ; 29(16): 2723-2735, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32720677

RESUMO

The Forkhead Box C1 (FOXC1) gene encodes a forkhead/winged helix transcription factor involved in embryonic development. Mutations in this gene cause dysgenesis of the anterior segment of the eye, most commonly Axenfeld-Rieger syndrome (ARS), often with other systemic features. The developmental mechanisms and pathways regulated by FOXC1 remain largely unknown. There are two conserved orthologs of FOXC1 in zebrafish, foxc1a and foxc1b. To further examine the role of FOXC1 in vertebrates, we generated foxc1a and foxc1b single knockout zebrafish lines and bred them to obtain various allelic combinations. Three genotypes demonstrated visible phenotypes: foxc1a-/- single homozygous and foxc1-/- double knockout homozygous embryos presented with similar characteristics comprised of severe global vascular defects and early lethality, as well as microphthalmia, periocular edema and absence of the anterior chamber of the eye; additionally, fish with heterozygous loss of foxc1a combined with homozygosity for foxc1b (foxc1a+/-;foxc1b-/-) demonstrated craniofacial defects, heart anomalies and scoliosis. All other single and combined genotypes appeared normal. Analysis of foxc1 expression detected a significant increase in foxc1a levels in homozygous and heterozygous mutant eyes, suggesting a mechanism for foxc1a upregulation when its function is compromised; interestingly, the expression of another ARS-associated gene, pitx2, was responsive to the estimated level of wild-type Foxc1a, indicating a possible role for this protein in the regulation of pitx2 expression. Altogether, our results support a conserved role for foxc1 in the formation of many organs, consistent with the features observed in human patients, and highlight the importance of correct FOXC1/foxc1 dosage for vertebrate development.


Assuntos
Segmento Anterior do Olho/anormalidades , Anormalidades do Olho/genética , Oftalmopatias Hereditárias/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Alelos , Animais , Segmento Anterior do Olho/patologia , Desenvolvimento Embrionário/genética , Anormalidades do Olho/patologia , Oftalmopatias Hereditárias/patologia , Dosagem de Genes/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genótipo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Heterozigoto , Homozigoto , Humanos , Mutação/genética , Escoliose/genética , Escoliose/patologia , Peixe-Zebra/genética
13.
PLoS Biol ; 17(12): e3000471, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31794573

RESUMO

Extrachromosomal circular DNA (eccDNA) facilitates adaptive evolution by allowing rapid and extensive gene copy number variation and is implicated in the pathology of cancer and ageing. Here, we demonstrate that yeast aged under environmental copper accumulate high levels of eccDNA containing the copper-resistance gene CUP1. Transcription of the tandemly repeated CUP1 gene causes CUP1 eccDNA accumulation, which occurs in the absence of phenotypic selection. We have developed a sensitive and quantitative eccDNA sequencing pipeline that reveals CUP1 eccDNA accumulation on copper exposure to be exquisitely site specific, with no other detectable changes across the eccDNA complement. eccDNA forms de novo from the CUP1 locus through processing of DNA double-strand breaks (DSBs) by Sae2, Mre11 and Mus81, and genome-wide analyses show that other protein coding eccDNA species in aged yeast share a similar biogenesis pathway. Although abundant, we find that CUP1 eccDNA does not replicate efficiently, and high-copy numbers in aged cells arise through frequent formation events combined with asymmetric DNA segregation. The transcriptional stimulation of CUP1 eccDNA formation shows that age-linked genetic change varies with transcription pattern, resulting in gene copy number profiles tailored by environment.


Assuntos
Variações do Número de Cópias de DNA/genética , DNA Circular/genética , Transcrição Gênica/genética , Fatores Etários , Cobre/metabolismo , Cobre/farmacologia , DNA Circular/metabolismo , Endonucleases , Dosagem de Genes/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequências de Repetição em Tandem/genética
14.
Nature ; 530(7589): 177-83, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26814963

RESUMO

Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.


Assuntos
Complemento C4/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Esquizofrenia/genética , Alelos , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Complemento C4/química , Via Clássica do Complemento , Dendritos/metabolismo , Dosagem de Genes/genética , Regulação da Expressão Gênica/genética , Haplótipos/genética , Humanos , Complexo Principal de Histocompatibilidade/genética , Camundongos , Modelos Animais , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Fatores de Risco , Esquizofrenia/patologia , Sinapses/metabolismo
15.
PLoS Genet ; 15(1): e1007902, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30677042

RESUMO

Introns can be extraordinarily large and they account for the majority of the DNA sequence in human genes. However, little is known about their population patterns of structural variation and their functional implication. By combining the most extensive maps of CNVs in human populations, we have found that intronic losses are the most frequent copy number variants (CNVs) in protein-coding genes in human, with 12,986 intronic deletions, affecting 4,147 genes (including 1,154 essential genes and 1,638 disease-related genes). This intronic length variation results in dozens of genes showing extreme population variability in size, with 40 genes with 10 or more different sizes and up to 150 allelic sizes. Intronic losses are frequent in evolutionarily ancient genes that are highly conserved at the protein sequence level. This result contrasts with losses overlapping exons, which are observed less often than expected by chance and almost exclusively affect primate-specific genes. An integrated analysis of CNVs and RNA-seq data showed that intronic loss can be associated with significant differences in gene expression levels in the population (CNV-eQTLs). These intronic CNV-eQTLs regions are enriched for intronic enhancers and can be associated with expression differences of other genes showing long distance intron-promoter 3D interactions. Our data suggests that intronic structural variation of protein-coding genes makes an important contribution to the variability of gene expression and splicing in human populations.


Assuntos
Variações do Número de Cópias de DNA/genética , Evolução Molecular , Genética Populacional , Locos de Características Quantitativas/genética , Alelos , Éxons/genética , Dosagem de Genes/genética , Regulação da Expressão Gênica , Genoma Humano/genética , Humanos , Íntrons/genética , Splicing de RNA/genética
16.
Proc Natl Acad Sci U S A ; 116(27): 13446-13451, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209046

RESUMO

Polar bear (Ursus maritimus) and brown bear (Ursus arctos) are recently diverged species that inhabit vastly differing habitats. Thus, analysis of the polar bear and brown bear genomes represents a unique opportunity to investigate the evolutionary mechanisms and genetic underpinnings of rapid ecological adaptation in mammals. Copy number (CN) differences in genomic regions between closely related species can underlie adaptive phenotypes and this form of genetic variation has not been explored in the context of polar bear evolution. Here, we analyzed the CN profiles of 17 polar bears, 9 brown bears, and 2 black bears (Ursus americanus). We identified an average of 318 genes per individual that showed evidence of CN variation (CNV). Nearly 200 genes displayed species-specific CN differences between polar bear and brown bear species. Principal component analysis of gene CN provides strong evidence that CNV evolved rapidly in the polar bear lineage and mainly resulted in CN loss. Olfactory receptors composed 47% of CN differentiated genes, with the majority of these genes being at lower CN in the polar bear. Additionally, we found significantly fewer copies of several genes involved in fatty acid metabolism as well as AMY1B, the salivary amylase-encoding gene in the polar bear. These results suggest that natural selection shaped patterns of CNV in response to the transition from an omnivorous to primarily carnivorous diet during polar bear evolution. Our analyses of CNV shed light on the genomic underpinnings of ecological adaptation during polar bear evolution.


Assuntos
Evolução Biológica , Dieta/veterinária , Dosagem de Genes , Ursidae/genética , Adaptação Fisiológica/genética , Animais , Ecologia , Dosagem de Genes/genética , Metagenômica
17.
Proc Natl Acad Sci U S A ; 116(24): 11866-11871, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31142641

RESUMO

Haploinsufficiency describes the decrease in organismal fitness observed when a single copy of a gene is deleted in diploids. We investigated the origin of haploinsufficiency by creating a comprehensive dosage sensitivity data set for genes under their native promoters. We demonstrate that the expression of haploinsufficient genes is limited by the toxicity of their overexpression. We further show that the fitness penalty associated with excess gene copy number is not the only determinant of haploinsufficiency. Haploinsufficient genes represent a unique subset of genes sensitive to copy number increases, as they are also limiting for important cellular processes when present in one copy instead of two. The selective pressure to decrease gene expression due to the toxicity of overexpression, combined with the pressure to increase expression due to their fitness-limiting nature, has made haploinsufficient genes extremely sensitive to changes in gene expression. As a consequence, haploinsufficient genes are dosage stabilized, showing much more narrow ranges in cell-to-cell variability of expression compared with other genes in the genome. We propose a dosage-stabilizing hypothesis of haploinsufficiency to explain its persistence over evolutionary time.


Assuntos
Haploinsuficiência/genética , Sobrevivência Celular/genética , Dosagem de Genes/genética , Expressão Gênica/genética , Genoma/genética , Regiões Promotoras Genéticas/genética , Leveduras/genética
18.
Proc Natl Acad Sci U S A ; 116(27): 13690-13699, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213538

RESUMO

Gene dosage variation and the associated changes in gene expression influence a wide variety of traits, ranging from cancer in humans to yield in plants. It is also expected to affect important traits of ecological and agronomic importance in forest trees, but this variation has not been systematically characterized or exploited. Here we performed a comprehensive scan of the Populus genome for dosage-sensitive loci affecting quantitative trait variation for spring and fall phenology and biomass production. The study population was a large collection of clonally propagated F1 hybrid lines of Populus that saturate the genome 10-fold with deletions and insertions (indels) of known sizes and positions. As a group, the phenotypic means of the indel lines consistently differed from control nonindel lines, with an overall negative effect of both insertions and deletions on all biomass-related traits but more diverse effects and an overall wider phenotypic distribution of the indel lines for the phenology-related traits. We also investigated the correlation between gene dosage at specific chromosomal locations and phenotype, to identify dosage quantitative trait loci (dQTL). Such dQTL were detected for most phenotypes examined, but stronger effect dQTL were identified for the phenology-related traits than for the biomass traits. Our genome-wide screen for dosage sensitivity in a higher eukaryote demonstrates the importance of global genomic balance and the impact of dosage on life history traits.


Assuntos
Dosagem de Genes/genética , Populus/genética , Característica Quantitativa Herdável , Cromossomos de Plantas/genética , Estudos de Associação Genética , Variação Genética/genética , Genoma de Planta/genética , Locos de Características Quantitativas/genética , Sintenia/genética
19.
PLoS Genet ; 15(10): e1008357, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31609978

RESUMO

Nonsyndromic orofacial cleft (NSOFC) is a severe birth defect that occurs early in embryonic development and includes the subtypes cleft palate only (CPO), cleft lip only (CLO) and cleft lip with cleft palate (CLP). Given a lack of specific genetic factor analysis for CPO and CLO, the present study aimed to dissect the landscape of genetic factors underlying the pathogenesis of these two subtypes using 6,986 cases and 10,165 controls. By combining a genome-wide association study (GWAS) for specific subtypes of CPO and CLO, as well as functional gene network and ontology pathway analysis, we identified 18 genes/loci that surpassed genome-wide significance (P < 5 × 10-8) responsible for NSOFC, including nine for CPO, seven for CLO, two for both conditions and four that contribute to the CLP subtype. Among these 18 genes/loci, 14 are novel and identified in this study and 12 contain developmental transcription factors (TFs), suggesting that TFs are the key factors for the pathogenesis of NSOFC subtypes. Interestingly, we observed an opposite effect of the genetic variants in the IRF6 gene for CPO and CLO. Moreover, the gene expression dosage effect of IRF6 with two different alleles at the same single-nucleotide polymorphism (SNP) plays important roles in driving CPO or CLO. In addition, PAX9 is a key TF for CPO. Our findings define subtypes of NSOFC using genetic factors and their functional ontologies and provide a clue to improve their diagnosis and treatment in the future.


Assuntos
Encéfalo/anormalidades , Fenda Labial/genética , Fissura Palatina/genética , Fatores Reguladores de Interferon/genética , Fator de Transcrição PAX9/genética , Alelos , Encéfalo/fisiopatologia , Fenda Labial/fisiopatologia , Fissura Palatina/fisiopatologia , Dosagem de Genes/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética
20.
PLoS Genet ; 15(9): e1008369, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525193

RESUMO

The Y chromosome harbors nine multi-copy ampliconic gene families expressed exclusively in testis. The gene copies within each family are >99% identical to each other, which poses a major challenge in evaluating their copy number. Recent studies demonstrated high variation in Y ampliconic gene copy number among humans. However, how this variation affects expression levels in human testis remains understudied. Here we developed a novel computational tool Ampliconic Copy Number Estimator (AmpliCoNE) that utilizes read sequencing depth information to estimate Y ampliconic gene copy number per family. We applied this tool to whole-genome sequencing data of 149 men with matched testis expression data whose samples are part of the Genotype-Tissue Expression (GTEx) project. We found that the Y ampliconic gene families with low copy number in humans were deleted or pseudogenized in non-human great apes, suggesting relaxation of functional constraints. Among the Y ampliconic gene families, higher copy number leads to higher expression. Within the Y ampliconic gene families, copy number does not influence gene expression, rather a high tolerance for variation in gene expression was observed in testis of presumably healthy men. No differences in gene expression levels were found among major Y haplogroups. Age positively correlated with expression levels of the HSFY and PRY gene families in the African subhaplogroup E1b, but not in the European subhaplogroups R1b and I1. We also found that expression of five Y ampliconic gene families is coordinated with that of their non-Y (i.e. X or autosomal) homologs. Indeed, five ampliconic gene families had consistently lower expression levels when compared to their non-Y homologs suggesting dosage regulation, while the HSFY family had higher expression levels than its X homolog and thus lacked dosage regulation.


Assuntos
Cromossomos Humanos Y/genética , Genes Ligados ao Cromossomo Y/genética , Análise de Sequência de DNA/métodos , Animais , Cromossomos Humanos Y/fisiologia , Variações do Número de Cópias de DNA/genética , Bases de Dados Genéticas , Mecanismo Genético de Compensação de Dose/genética , Mecanismo Genético de Compensação de Dose/fisiologia , Epigênese Genética/genética , Dosagem de Genes/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Genes Ligados ao Cromossomo Y/fisiologia , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Masculino , Família Multigênica/genética , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA